Prevalence of Doping Use in Elite Sports: A Review of Numbers and Methods


The prevalence of doping in elite sports is relevant for all those involved in sports, particularly for evaluating anti-doping policy measures. Remarkably, few scientific articles have addressed this subject so far, and the last review dates back to 1997. As a consequence, the true prevalence of doping in elite sports is unknown. Even though it is virtually impossible to uncover the exact prevalence of a prohibited activity such as doping, various methods are available to uncover parts of this particular problem, which enables the circumvention (to a certain degree) of the issues of truthfulness, definition problems and the limits of pharmacological evidence. This review outlines the various methods that exist and presents the scarce data available in this area. It is concluded that a combination of questionnaires using the Randomised Response Technique and models of biological parameters is able to provide the statistical possibilities to reveal accurate estimates of this often undisclosed practice. Data gathered in this way yield an estimation of 14–39 % of current adult elite athletes who intentionally used doping. These period prevalences have been found in specific sub-groups of elite athletes, and the available data suggest that the prevalence of doping is considerably different between sub-groups with varying types of sport, levels and nationalities. The above-mentioned figure of 14–39 % is likely to be a more accurate reflection of the prevalence of intentional doping in elite sports than that provided by doping control test results (estimate of doping: 1–2 % annually) or questionnaire-based research (estimations between 1 and 70 % depending on sport, level and exact definitions of intent and doping). In the future, analytical science may play a more important role in this topic if it may become feasible to detect very low concentrations of prohibited substances in sewage systems downstream of major sporting events. However, it is clear that current doping control test results show a distinct underestimation of true doping prevalence. It does not seem feasible to distil better estimates of the prevalence of doping based on performance indicators or ego documents because of the various existing effects that influence athletic performance. Such information can only be used as extra information to augment the accuracy of prevalence rates that have been found by using other techniques. True doping prevalence studies have been scarce in elite sports so far. With the correct application of the available scientific methods, preferably using harmonised definitions of the terms ‘doping’ and ‘elite sports’, more information on this topic may be gathered in a relatively short time. This would assist anti-doping professionals in the future in order to evaluate the effects of possible anti-doping measures, and better anti-doping policies would serve athletes who compete without doping. The existing anti-doping measures seriously impact the lives of elite athletes and their immediate entourage, which imposes a moral burden to evaluate these measures in the best possible way.

This is a preview of subscription content, log in to check access.


  1. 1.

    USADA. U.S. postal service pro cycling team investigation. Colorado Springs, United States of America: United States Anti-Doping Agency; 2012.

  2. 2.

    Sorgdrager W, van Bottenburg M, Goedhart E. Joining or Quitting [Original Title: ‘Meedoen of Stoppen’]. Arnhem, The Netherlands; 2013.

  3. 3.

    WADA. WADA seeks stakeholder feedback on Working Group Report: lack of effectiveness of testing programs. Montreal, Canada 2013 [30 May 2013]; Available from:

  4. 4.

    Laure P. Epidemiologic approach of doping in sport. A review. J Sports Med Phys Fitness. 1997;37(3):218–24.

    CAS  PubMed  Google Scholar 

  5. 5.

    Hatton CK. Beyond sports-doping headlines: the science of laboratory tests for performance-enhancing drugs. Pediatr Clin North Am. 2007;54(4):713–33 (xi).

    PubMed  Article  Google Scholar 

  6. 6.

    Lentillon-Kaestner V, Ohl F. Can we measure accurately the prevalence of doping? Scand J Med Sci Sports. 2011;21(6):e132–42.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    D’Angelo C, Tamburrini C. Addict to win? A different approach to doping. J Med Ethics. 2010;36(11):700–7.

    PubMed  Article  Google Scholar 

  8. 8.

    Kayser B, Mauron A, Miah A. Viewpoint: legalisation of performance-enhancing drugs. Lancet. 2005;366(Suppl 1):S21.

    PubMed  Article  Google Scholar 

  9. 9.

    Kayser B, Mauron A, Miah A. Current anti-doping policy: a critical appraisal. BMC Med Ethics. 2007;8:2.

    PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    McNamee MJ, Tarasti L. Juridical and ethical peculiarities in doping policy. J Med Ethics. 2010;36(3):165–9.

    PubMed  Article  Google Scholar 

  11. 11.

    Savulescu J, Foddy B, Clayton M. Why we should allow performance enhancing drugs in sport. Br J Sports Med. 2004;38(6):666–70.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. 12.

    Berning JM, Adams KJ, Stamford BA. Anabolic steroid usage in athletics: facts, fiction, and public relations. J Strength Cond Res. 2004;18(4):908–17.

    PubMed  Google Scholar 

  13. 13.

    Jenkins PJ. Growth hormone and exercise: physiology, use and abuse. Growth Horm IGF Res. 2001;11(Suppl A):S71–7.

    PubMed  Article  Google Scholar 

  14. 14.

    WADA. The 2013 Prohibited List International Standard. Montreal, Canada: World Anti-Doping Agency; 2012.

  15. 15.

    WADA. Laboratory testing figures. Montreal, Canada 2012 [30 May 2013]; Available from: Accessed 11 July 2014.

  16. 16.

    Bowers LD. The analytical chemistry of drug monitoring in athletes. Annu Rev Anal Chem (Palo Alto Calif). 2009;2:485–507.

    CAS  Article  Google Scholar 

  17. 17.

    Catlin DH, Fitch KD, Ljungqvist A. Medicine and science in the fight against doping in sport. J Intern Med. 2008;264(2):99–114.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Lentillon-Kaestner V. The development of doping use in high-level cycling: from team-organized doping to advances in the fight against doping. Scand J Med Sci Sports. 2013;23(2):189–97.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Voet W. Prikken en slikken [original title: Massacre a la chaine]. Roeselare: Roularta Books NV; 1999.

    Google Scholar 

  20. 20.

    IOC. IOC disqualifies four medallists from Athens 2004 following further analysis of stored samples. Lausanne, Switzerland 2012 [30 May 2013]; Available from:

  21. 21.

    CNN. Ramzi stripped of Olympic 1500 m gold. Atlanta, USA 2009 [30 May 2013]; Available from:

  22. 22.

    Le Ressiot D. Mensonge Armstrong [The Armstrong Lie]. L’Equipe. 2005;2005:23.

    Google Scholar 

  23. 23.

    Verroken M. Ethical aspects and the prevalence of hormone abuse in sport. J Endocrinol. 2001;170(1):49–54.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Bahr R, Tjornhom M. Prevalence of doping in sports: doping control in Norway, 1977–1995. Clin J Sport Med. 1998;8(1):32–7.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Palmer W, Taylor S, Wingate A. Adverse analyzing—a European study of anti doping organization reporting practices and the efficacy of drug testing athletes. Switzerland: UNI Global Union; 2011.

    Google Scholar 

  26. 26.

    Strano Rossi S, Botre F. Prevalence of illicit drug use among the Italian athlete population with special attention on drugs of abuse: a 10-year review. J Sports Sci. 2011;29(5):471–6.

    PubMed  Article  Google Scholar 

  27. 27.

    van der Merwe PJ, Kruger HS. Drugs in sport—results of the past 6 years of dope testing in South Africa. S Afr Med J. 1992;82(3):151–3.

    PubMed  Google Scholar 

  28. 28.

    Maquirriain J. Epidemiological analysis of doping offences in the professional tennis circuit. J Occup Med Toxicol. 2010;5:30.

    PubMed Central  PubMed  Article  Google Scholar 

  29. 29.

    Pluim B. A doping sinner is not always a cheat. Br J Sports Med. 2008;42(7):549–50.

    PubMed  Google Scholar 

  30. 30.

    Zorzoli M, Rossi F. Implementation of the biological passport: the experience of the International Cycling Union. Drug Test Anal. 2010;2(11–12):542–7.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Videman T, Lereim I, Hemmingsson P, et al. Changes in hemoglobin values in elite cross-country skiers from 1987–1999. Scand J Med Sci Sports. 2000;10(2):98–102.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Manfredini F, Carrabre JE, Litmanen H, et al. Blood tests and fair competition: the biathlon experience. Int J Sports Med. 2003;24(5):352–8.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Sottas PE, Robinson N, Saugy M, et al. A forensic approach to the interpretation of blood doping markers. Law Probab Risk. 2008;7(3):191–210.

    Article  Google Scholar 

  34. 34.

    Sottas PE, Robinson N, Saugy M. The athlete’s biological passport and indirect markers of blood doping. Handb Exp Pharmacol. 2010;195:305–26.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Sottas PE, Saudan C, Saugy M. Doping: a paradigm shift has taken place in testing. Nature. 2008;455(7210):166.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Sottas PE, Robinson N, Fischetto G, et al. Prevalence of blood doping in samples collected from elite track and field athletes. Clin Chem. 2011;57(5):762–9.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Vouillamoz M, Thom C, Grisdale R, et al. Anti-doping testing at the 2008 European football championship. Drug Test Anal. 2009;1(11–12):485–93.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Stray-Gundersen J, Videman T, Penttila I, et al. Abnormal hematologic profiles in elite cross-country skiers: blood doping or? Clin J Sport Med. 2003;13(3):132–7.

    PubMed  Article  Google Scholar 

  39. 39.

    Kuipers H, Moran J, Dubravcic-Simunjak S, et al. Hemoglobin level in elite speed skaters from 2000 up to 2005, and its relationship with competitive results. Int J Sports Med. 2007;28(1):16–20.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Kuipers H, Moran J, Mitchell DW, et al. Hemoglobin levels and athletic performance in elite speed skaters during the Olympic season 2006. Clin J Sport Med. 2007;17(2):135–9.

    PubMed  Article  Google Scholar 

  41. 41.

    Sottas PE, Saudan C, Schweizer C, et al. From population- to subject-based limits of T/E ratio to detect testosterone abuse in elite sports. Forensic Sci Int. 2008;174(2–3):166–72.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Schumacher YO, Saugy M, Pottgiesser T, et al. Detection of EPO doping and blood doping: the haematological module of the Athlete Biological Passport. Drug Test Anal. 2012;4:846–53.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Schroder HF, Gebhardt W, Thevis M. Anabolic, doping, and lifestyle drugs, and selected metabolites in wastewater-detection, quantification, and behaviour monitored by high-resolution MS and MS(n) before and after sewage treatment. Anal Bioanal Chem. 2010;398(3):1207–29.

    PubMed  Article  Google Scholar 

  44. 44.

    Reid MJ, Langford KH, Grung M, et al. Estimation of cocaine consumption in the community: a critical comparison of the results from three complimentary techniques. BMJ Open. 2012;2(6).

  45. 45.

    Bahrke MS, Yesalis CE. Abuse of anabolic androgenic steroids and related substances in sport and exercise. Curr Opin Pharmacol. 2004;4(6):614–20.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Bahrke MS, Yesalis CE, Kopstein AN, et al. Risk factors associated with anabolic-androgenic steroid use among adolescents. Sports Med. 2000;29(6):397–405.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Castillo EM, Comstock RD. Prevalence of use of performance-enhancing substances among United States adolescents. Pediatr Clin North Am. 2007;54(4):663–75 (ix–x).

    PubMed  Article  Google Scholar 

  48. 48.

    Kindlundh AM, Isacson DG, Berglund L, et al. Doping among high school students in Uppsala, Sweden: a presentation of the attitudes, distribution, side effects, and extent of use. Scand J Soc Med. 1998;26(1):71–4.

    CAS  PubMed  Google Scholar 

  49. 49.

    Laure P, Binsinger C. Doping prevalence among preadolescent athletes: a 4-year follow-up. Br J Sports Med. 2007;41(10):660–3 (discussion 3).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. 50.

    Sjoqvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet. 2008;371(9627):1872–82.

    PubMed  Article  Google Scholar 

  51. 51.

    van Amsterdam J, Opperhuizen A, Hartgens F. Adverse health effects of anabolic-androgenic steroids. Regul Toxicol Pharmacol. 2010;57(1):117–23.

    PubMed  Article  Google Scholar 

  52. 52.

    vandenBerg P, Neumark-Sztainer D, Cafri G, et al. Steroid use among adolescents: longitudinal findings from Project EAT. Pediatrics. 2007;119(3):476–86.

    PubMed  Article  Google Scholar 

  53. 53.

    Nilsson S, Baigi A, Marklund B, et al. The prevalence of the use of androgenic anabolic steroids by adolescents in a county of Sweden. Eur J Public Health. 2001;11(2):195–7.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Terney R, McLain LG. The use of anabolic steroids in high school students. Am J Dis Child. 1990;144(1):99–103.

    CAS  PubMed  Google Scholar 

  55. 55.

    Papadopoulos FC, Skalkidis I, Parkkari J, et al. Doping use among tertiary education students in six developed countries. Eur J Epidemiol. 2006;21(4):307–13.

    PubMed  Article  Google Scholar 

  56. 56.

    Wanjek B, Rosendahl J, Strauss B, et al. Doping, drugs and drug abuse among adolescents in the State of Thuringia (Germany): prevalence, knowledge and attitudes. Int J Sports Med. 2007;28(4):346–53.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Windsor R, Dumitru D. Prevalence of anabolic steroid use by male and female adolescents. Med Sci Sports Exerc. 1989;21(5):494–7.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Yesalis CE, Bahrke MS. Anabolic-androgenic steroids. Current issues. Sports Med. 1995;19(5):326–40.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Thevis M, Sauer M, Geyer H, et al. Determination of the prevalence of anabolic steroids, stimulants, and selected drugs subject to doping controls among elite sport students using analytical chemistry. J Sports Sci. 2008;26(10):1059–65.

    PubMed  Article  Google Scholar 

  60. 60.

    Melnik BC. Androgen abuse in the community. Curr Opin Endocrinol Diabetes Obes. 2009;16(3):218–23.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Baker JS, Graham M, Davies B. Gym users and abuse of prescription drugs. J R Soc Med. 2006;99(7):331–2.

    PubMed Central  PubMed  Article  Google Scholar 

  62. 62.

    Baker JS, Graham MR, Davies B. Steroid and prescription medicine abuse in the health and fitness community: a regional study. Eur J Intern Med. 2006;17(7):479–84.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Evans NA. Current concepts in anabolic-androgenic steroids. Am J Sports Med. 2004;32(2):534–42.

    PubMed  Article  Google Scholar 

  64. 64.

    Bolding G, Sherr L, Elford J. Use of anabolic steroids and associated health risks among gay men attending London gyms. Addiction. 2002;97(2):195–203.

    PubMed  Article  Google Scholar 

  65. 65.

    Da Silva PR, Machado LC Jr, Figueiredo VC, et al. Prevalence of the use of anabolic agents among strength training apprentices in Porto Alegre, RS. Arq Bras Endocrinol Metabol. 2007;51(1):104–10.

    PubMed  Article  Google Scholar 

  66. 66.

    Graham MR, Davies B, Grace FM, et al. Anabolic steroid use: patterns of use and detection of doping. Sports Med. 2008;38(6):505–25.

    PubMed  Article  Google Scholar 

  67. 67.

    Striegel H, Simon P, Frisch S, et al. Anabolic ergogenic substance users in fitness-sports: a distinct group supported by the health care system. Drug Alcohol Depend. 2006;81(1):11–9.

    PubMed  Article  Google Scholar 

  68. 68.

    Tricker R, O’Neill MR, Cook D. The incidence of anabolic steroid use among competitive bodybuilders. J Drug Educ. 1989;19(4):313–25.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Kanayama G, Gruber AJ, Pope HG Jr, et al. Over-the-counter drug use in gymnasiums: an underrecognized substance abuse problem? Psychother Psychosom. 2001;70(3):137–40.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Petroczi A, Aidman EV, Hussain I, et al. Virtue or pretense? Looking behind self-declared innocence in doping. PLoS One. 2010;5(5):e10457.

    PubMed Central  PubMed  Article  Google Scholar 

  71. 71.

    Petroczi A, Uvacsek M, Nepusz T, et al. Incongruence in doping related attitudes, beliefs and opinions in the context of discordant behavioural data: in which measure do we trust? PLoS One. 2011;6(4):e18804.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  72. 72.

    Striegel H, Ulrich R, Simon P. Randomized response estimates for doping and illicit drug use in elite athletes. Drug Alcohol Depend. 2010;106(2–3):230–2.

    PubMed  Article  Google Scholar 

  73. 73.

    Secades-Villa R, Fernandez-Hermida JR. The validity of self-reports in a follow-up study with drug addicts. Addict Behav. 2003;28(6):1175–82.

    PubMed  Article  Google Scholar 

  74. 74.

    Stone AL, Latimer WW. Adolescent substance use assessment: concordance between tools using self-administered and interview formats. Subst Use Misuse. 2005;40(12):1865–74.

    PubMed  Article  Google Scholar 

  75. 75.

    Goldman B, Bush P, Klatz R. Death in the locker room. United States: Icarus Press; 1984.

    Google Scholar 

  76. 76.

    Connor J, Woolf J, Mazanov J. Would they dope? Revisiting the Goldman dilemma. Br J Sports Med. 2013;47(11):697–700.

    PubMed  Article  Google Scholar 

  77. 77.

    Lensvelt-Mulders G, Hox J, Van der Heijden P, et al. Meta-analysis of randomized response research: thirty-five years of validation. Sociol Methods Res. 2005;33:319–48.

    Article  Google Scholar 

  78. 78.

    Lensvelt-Mulders G, Hox J, Van der Heijden P. How to improve the efficiency of randomized response designs. Qual Quant. 2005;39:253–65.

    Article  Google Scholar 

  79. 79.

    Pitsch W, Emrich E, Klein M. Doping in elite sports in Germany: results of a www survey. Eur J Sport Soc. 2007;4(2):89–102.

    Google Scholar 

  80. 80.

    Stubbe JH, Chorus AMJ, Frank LE, et al. Prevalence of use of performance enhancing drugs by fitness center members. Drug Test Anal. 2013;6(5):434–8.

    PubMed  Google Scholar 

  81. 81.

    Simon P, Striegel H, Aust F, et al. Doping in fitness sports: estimated number of unreported cases and individual probability of doping. Addiction. 2006;101(11):1640–4.

    PubMed  Article  Google Scholar 

  82. 82.

    Seiler S, Beneke R, Halson SL, et al. Is doping-free sport a Utopia? Int J Sports Physiol Perform. 2013;8(1):1–3.

    PubMed  Google Scholar 

  83. 83.

    Zhong W, Wu H, Li L. Olympics: some facts about Ye Shiwen’s swim. Nature. 2012;488(7412):459.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Vayer A. La preuve par 21. 2013 [17 June 2013]; Available from:

  85. 85.

    Savage M. Armstrong in context. 2012 [17 June 2013]; Available from:

  86. 86.

    Tucker R, Dugas J. The anatomy of a climb: Contador on the Verbier—its place in Tour climbing “history”; 2009 [17 June 2013]; Available from:

  87. 87.

    Noakes TD. Tainted glory—doping and athletic performance. N Engl J Med. 2004;351(9):847–9.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Seiler S, De Koning JJ, Foster C. The fall and rise of the gender difference in elite anaerobic performance 1952–2006. Med Sci Sports Exerc. 2007;39(3):534–40.

    PubMed  Article  Google Scholar 

  89. 89.

    Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34(8):513–54.

    PubMed  Article  Google Scholar 

  90. 90.

    Berthelot G, Tafflet M, El Helou N, et al. Athlete atypicity on the edge of human achievement: performances stagnate after the last peak, in 1988. PLoS One. 2010;5(1):e8800.

    PubMed Central  PubMed  Article  Google Scholar 

  91. 91.

    Berthelot G, Thibault V, Tafflet M, et al. The citius end: world records progression announces the completion of a brief ultra-physiological quest. PLoS One. 2008;3(2):e1552.

    PubMed Central  PubMed  Article  Google Scholar 

  92. 92.

    Lippi G, Banfi G, Favaloro EJ, et al. Updates on improvement of human athletic performance: focus on world records in athletics. Br Med Bull. 2008;87:7–15.

    PubMed  Article  Google Scholar 

  93. 93.

    Lodewijkx HF, Brouwer B. Some empirical notes on the epo epidemic in professional cycling. Res Q Exerc Sport. 2011;82(4):740–54.

    PubMed  Article  Google Scholar 

  94. 94.

    El Helou N, Berthelot G, Thibault V, et al. Tour de France, Giro, Vuelta, and classic European races show a unique progression of road cycling speed in the last 20 years. J Sports Sci. 2010;28(7):789–96.

    PubMed  Article  Google Scholar 

  95. 95.

    Ernst S, Simon P. A quantitative approach for assessing significant improvements in elite sprint performance: has IGF-1 entered the arena? Drug Test Anal. 2013;5(6):384-9.

  96. 96.

    De Rijckaert E. zaak Festina–Het recht van antwoord van dokter Eric Rijckaert [The Festina case—the right to an answer by doctor Eric Rijckaert]. Belgium: Uitgeverij Lannoo NV; 2000.

    Google Scholar 

  97. 97.

    Dekker T. Schoon genoeg [Clean enough]. Amsterdam: Arbeiderspers; 2011.

    Google Scholar 

  98. 98.

    Hamilton T, Coyle D. The secret race—inside the hidden world of the Tour de France: doping, cover-ups, and winning at all costs. USA: Bantam Books; 2012.

    Google Scholar 

  99. 99.

    Millar D, Whittle J. Racing through the dark. London: Orion Books; 2011.

    Google Scholar 

  100. 100.

    Matschiner S, Behr M. Grenzwertig: Aus dem Leben eines Dopingdealers [Threshold-worthy: out of the life of a doping dealer]. Germany: Riva Sportverlag; 2011.

    Google Scholar 

  101. 101.

    Canseco J. Juiced: wild times, rampant’ roids, smash hits, and how baseball got big. USA: William Morrow; 2005.

    Google Scholar 

  102. 102.

    Lentillon-Kaestner V, Carstairs C. Doping use among young elite cyclists: a qualitative psychosociological approach. Scand J Med Sci Sports. 2010;20(2):336–45.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Ohl F, Fincoeur B, Lentillon-Kaestner V, et al. The socialization of young cyclists and the culture of doping. Int Rev Sociol Sport. Epub 24 July 2013.

  104. 104.

    Petroczi A, Mazanov J, Nepusz T, et al. Comfort in big numbers: does over-estimation of doping prevalence in others indicate self-involvement? J Occup Med Toxicol. 2008;3:19.

    PubMed Central  PubMed  Article  Google Scholar 

  105. 105.

    Press A. WADA: 1 in 10 may be doping. 2012 [updated 30 May 2013]; Available from:

  106. 106.

    Donovan RJ, Egger G, Kapernick V, et al. A conceptual framework for achieving performance enhancing drug compliance in sport. Sports Med. 2002;32(4):269–84.

    PubMed  Article  Google Scholar 

  107. 107.

    Morente-Sanchez J, Zabala M. Doping in sport: a review of elite athletes’ attitudes, beliefs, and knowledge. Sports Med. 2013;43(6):395–411.

    PubMed  Article  Google Scholar 

  108. 108.

    Marclay F, Grata E, Perrenoud L, et al. A one-year monitoring of nicotine use in sport: frontier between potential performance enhancement and addiction issues. Forensic Sci Int. 2011;213(1–3):73–84.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Puffer JC. The use of drugs in swimming. Clin Sports Med. 1986;5(1):77–89.

    CAS  PubMed  Google Scholar 

  110. 110.

    SportAccord. Definition of sport. Lausanne, Switzerland 2013 [30 May 2013]; Available from:

Download references


OdH started the initiative to write this review, collected all literature and wrote most of the text. Both MvB and HK contributed to the set-up, structure and content. OdH holds the position of Manager Scientific Affairs for the national anti-doping organisation of the Netherlands. None of the authors have any other potential conflicts of interest that are directly relevant to the content of this review.

The issue of prevalence of doping in elite sports has been thoroughly discussed with many anti-doping professionals and athletes over the past few years, and all these colleagues and athletes are gratefully acknowledged for their enthusiasm and critical questions. The time to write this review was made available by means of a grant from the Dutch Ministry of Health, Welfare, and Sports.

Author information



Corresponding author

Correspondence to Olivier de Hon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Hon, O., Kuipers, H. & van Bottenburg, M. Prevalence of Doping Use in Elite Sports: A Review of Numbers and Methods. Sports Med 45, 57–69 (2015).

Download citation


  • Elite Athlete
  • Athletic Performance
  • Anabolic Androgenic Steroid
  • Period Prevalence
  • Elite Sport