The Effect of Inter-Set Rest Intervals on Resistance Exercise-Induced Muscle Hypertrophy


Due to a scarcity of longitudinal trials directly measuring changes in muscle girth, previous recommendations for inter-set rest intervals in resistance training programs designed to stimulate muscular hypertrophy were primarily based on the post-exercise endocrinological response and other mechanisms theoretically related to muscle growth. New research regarding the effects of inter-set rest interval manipulation on resistance training-induced muscular hypertrophy is reviewed here to evaluate current practices and provide directions for future research. Of the studies measuring long-term muscle hypertrophy in groups employing different rest intervals, none have found superior muscle growth in the shorter compared with the longer rest interval group and one study has found the opposite. Rest intervals less than 1 minute can result in acute increases in serum growth hormone levels and these rest intervals also decrease the serum testosterone to cortisol ratio. Long-term adaptations may abate the post-exercise endocrinological response and the relationship between the transient change in hormonal production and chronic muscular hypertrophy is highly contentious and appears to be weak. The relationship between the rest interval-mediated effect on immune system response, muscle damage, metabolic stress, or energy production capacity and muscle hypertrophy is still ambiguous and largely theoretical. In conclusion, the literature does not support the hypothesis that training for muscle hypertrophy requires shorter rest intervals than training for strength development or that predetermined rest intervals are preferable to auto-regulated rest periods in this regard.

This is a preview of subscription content, log in to check access.


  1. 1.

    Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.

    PubMed  Article  Google Scholar 

  2. 2.

    Rhea MR, Alvar BA, Burkett LN, et al. A meta-analysis to determine the dose response for strength development. Med Sci Sports Exerc. 2003;35(3):456–64.

    PubMed  Article  Google Scholar 

  3. 3.

    Rhea MR, Alvar BA, Burkett LN. Single versus multiple sets for strength: a meta-analysis to address the controversy. Res Q Exerc Sport. 2002;73(4):485–8.

    PubMed  Article  Google Scholar 

  4. 4.

    American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  5. 5.

    de Salles BF, Simão R, Miranda F, et al. Rest interval between sets in strength training. Sports Med. 2009;39(9):765–77.

    PubMed  Article  Google Scholar 

  6. 6.

    Willardson JM. A brief review: factors affecting the length of the rest interval between resistance exercise sets. J Strength Cond Res. 2006;20(4):978–84.

    PubMed  Google Scholar 

  7. 7.

    Ahtiainen JP, Pakarinen A, Alen M, et al. Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. J Strength Cond Res. 2005;19(3):572–82.

    PubMed  Google Scholar 

  8. 8.

    Buresh R, Berg K, French J. The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J Strength Cond Res. 2009;23(1):62–71.

    PubMed  Article  Google Scholar 

  9. 9.

    Kraemer WJ, Noble BJ, Clark MJ, et al. Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med. 1987;8(4):247–52.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355–61.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc. 2006;38(11):1939–44.

    PubMed  Article  Google Scholar 

  12. 12.

    de Souza TP, Jr Fleck SJ, Simão R, et al. Comparison between constant and decreasing rest intervals: influence on maximal strength and hypertrophy. J Strength Cond Res. 2010;24(7):1843–50.

    PubMed  Article  Google Scholar 

  13. 13.

    Souza-Junior TP, Willardson JM, Bloomer R, et al. Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation. J Int Soc Sports Nutr. 2011;8(1):17.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Schoenfeld BJ, Ratamess NA, Peterson MD, et al. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res. Epub 2014 Apr 7. doi:10.1519/JSC.0000000000000480.

  15. 15.

    Villanueva MG, Villanueva MG, Lane CJ, et al. Influence of rest interval length on acute testosterone and cortisol responses to volume-load-equated total body hypertrophic and strength protocols. J Strength Cond Res. 2012;26(10):2755–64.

    PubMed  Article  Google Scholar 

  16. 16.

    McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695–704.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Uchida MC, Crewther BT, Ugrinowitsch C, et al. Hormonal responses to different resistance exercise schemes of similar total volume. J Strength Cond Res. 2009;23(7):2003–8.

    PubMed  Article  Google Scholar 

  18. 18.

    Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res. 2013;27(6):1720–30.

    PubMed  Article  Google Scholar 

  19. 19.

    Loenneke JP, Wilson GJ, Wilson JM. A mechanistic approach to blood flow occlusion. Int J Sports Med. 2010;31(1):1–4.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Lu SS, Lau CP, Tung YF, et al. Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of a cAMP-mediated mechanism. Med Sci Sports Exerc. 1997;29(8):1048–54.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol (1985). 1990;69(4):1442–50.

    CAS  Google Scholar 

  22. 22.

    Kraemer WJ, Fleck SJ, Dziados JE, et al. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J Appl Physiol (1985). 1993;75(2):594–604.

    CAS  Google Scholar 

  23. 23.

    Rahimi R, Ghaderi M, Mirzaei B, et al. Acute IGF-1, cortisol and creatine kinase responses to very short rest intervals between sets during resistance exercise to failure in men. World Appl Sci J. 2010;8(10):1287–93.

    CAS  Google Scholar 

  24. 24.

    Rahimi R, Ghaderi M, Mirzaei B, et al. Effects of very short rest periods on immunoglobulin A and cortisol responses to resistance exercise in men. J Hum Sport Exerc. 2010;5(2):146–57.

    Article  Google Scholar 

  25. 25.

    Boroujerdi SS, Rahimi R. Acute GH and IGF-I responses to short vs. long rest period between sets during forced repetitions resistance training system. S Afr J Res Sport Phys Educ Recreat. 2008;30(2):31–8.

    Google Scholar 

  26. 26.

    Bottaro M, Martins B, Gentil P, et al. Effects of rest duration between sets of resistance training on acute hormonal responses in trained women. J Sci Med Sport. 2009;12(1):73–8.

    PubMed  Article  Google Scholar 

  27. 27.

    Rahimi R, Rohani H, Ebrahimi M. Effects of very short rest periods on testosterone to cortisol ratio during heavy resistance exercise in men. Apunt Med l’Esport. 2011;46(171):145–9.

    Article  Google Scholar 

  28. 28.

    Kraemer WJ, Häkkinen K, Newton RU, et al. Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol (1985). 1999;87(3):982–92.

    CAS  Google Scholar 

  29. 29.

    Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol (1985). 1994;76(3):1247–55.

    CAS  Google Scholar 

  30. 30.

    Weltman A, Weltman JY, Womack CJ, et al. Exercise training decreases the growth hormone (GH) response to acute constant-load exercise. Med Sci Sports Exerc. 1997;29(5):669–76.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Goto K, Nagasawa M, Yanagisawa O, et al. Muscular adaptations to combinations of high- and low-intensity resistance exercises. J Strength Cond Res. 2004;18(4):730–7.

    PubMed  Google Scholar 

  32. 32.

    McCall GE, Byrnes WC, Fleck SJ, et al. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol. 1999;24(1):96–107.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Ahtiainen JP, Pakarinen A, Alen M, et al. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    West DW, Phillips SM. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol. 2012;112(7):2693–702.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    Mitchell CJ, Churchward-Venne TA, Bellamy L, et al. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One. 2013;8(10):e78636. doi:10.1371/journal.pone.0078636.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Ronnestad BR, Nygaard H, Raastad T. Physiological elevation of endogenous hormones results in superior strength training adaptation. Eur J Appl Physiol. 2011;111(9):2249–59.

    PubMed  Article  Google Scholar 

  37. 37.

    West DW, Burd NA, Tang JE, et al. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol (1985). 2010;108(1):60–7.

    PubMed Central  Article  Google Scholar 

  38. 38.

    Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008;154(3):557–68.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Rennie MJ. Claims for the anabolic effects of growth hormone: a case of the emperor’s new clothes? Br J Sports Med. 2003;37(2):100–5.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Lange KH, Andersen JL, Beyer N, et al. GH administration changes myosin heavy chain isoforms in skeletal muscle but does not augment muscle strength or hypertrophy, either alone or combined with resistance exercise training in healthy elderly men. J Clin Endocrinol Metab. 2002;87(2):513–23.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    West DW, Phillips SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sportsmed. 2010;38(3):97–104.

    PubMed  Article  Google Scholar 

  42. 42.

    Yarasheski KE, Campbell JA, Smith K, et al. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol. 1992;262(3):261–7.

    Google Scholar 

  43. 43.

    Yarasheski KE, Zachwieja JJ, Campbell JA, et al. Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am J Physiol. 1995;268(2 Pt 1):E268–76.

    CAS  PubMed  Google Scholar 

  44. 44.

    Duclos M. A critical assessment of hormonal methods used in monitoring training status in athletes. Int Sportmed J. 2008;9(2):56–66.

    Google Scholar 

  45. 45.

    Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.

    PubMed  Article  Google Scholar 

  46. 46.

    Lang F, Busch GL, Ritter M, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78(1):247–306.

    CAS  PubMed  Google Scholar 

  47. 47.

    Schoenfeld BJ. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res. 2012;26(5):1441–53.

    PubMed  Article  Google Scholar 

  48. 48.

    Loenneke JP, Thiebaud RS, Abe T. Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence. Scand J Med Sci Sports. Epub 2014 Mar 20. doi:10.1111/sms.12210.

  49. 49.

    Mayhew DL, Thyfault JP, Koch AJ. Rest-interval length affects leukocyte levels during heavy resistance exercise. J Strength Cond Res. 2005;19(1):16–22.

    PubMed  Google Scholar 

  50. 50.

    Freidenreich DJ, Volek JS. Immune responses to resistance exercise. Exerc Immunol Rev. 2012;18:8–41.

    PubMed  Google Scholar 

  51. 51.

    Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med. 1989;7(4):207–34.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ribeiro VDFS, Pereira R, Machado M. Resistance exercise-induced microinjuries do not depend on 1 or 3 min rest time interval between series. Rev Int Cienc Deporte. 2008;13(4):44–53.

    Article  Google Scholar 

  53. 53.

    Ghaderi M, Rahimi R, Ravasi AA, et al. The effect of rest interval between sets on markers of muscle damage in professional bodybuilders. Glob J Sci Eng Technol. 2012;3(1):9–15.

    Google Scholar 

  54. 54.

    Silva LE, Pereira R, Rodrigues VC, et al. Length of rest interval between resistance exercise sets: performance and inter-individual variability of CK activity. J Musculoskelet Res. 2010;13(4):187–95.

    Article  Google Scholar 

  55. 55.

    Rodrigues BM, Dantas E, de Salles BF, et al. Creatine kinase and lactate dehydrogenase responses after upper-body resistance exercise with different rest intervals. J Strength Cond Res. 2010;24(6):1657–62.

    PubMed  Article  Google Scholar 

  56. 56.

    Machado M, Willardson JM, Silva DR, et al. Creatine kinase activity weakly correlates to volume completed following upper body resistance exercise. Res Q Exerc Sport. 2012;83(2):276–81.

    PubMed  Article  Google Scholar 

  57. 57.

    Machado M, Koch AJ, Willardson JM, et al. Effect of varying rest intervals between sets of assistance exercises on creatine kinase and lactate dehydrogenase responses. J Strength Cond Res. 2011;25(5):1339–45.

    PubMed  Article  Google Scholar 

  58. 58.

    Machado M, Willardson JM. Short recovery augments magnitude of muscle damage in high responders. Med Sci Sports Exerc. 2010;42(7):1370–4.

    PubMed  Google Scholar 

  59. 59.

    Machado M, Pereira R, Willardson JM. Short intervals between sets and individuality of muscle damage response. J Strength Cond Res. 2012;26(11):2946–52.

    PubMed  Article  Google Scholar 

  60. 60.

    Gribble PA, Hertel J. Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil. 2004;85(4):589–92.

    PubMed  Article  Google Scholar 

  61. 61.

    Paulsen G, Mikkelsen UR, Raastad T, et al. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;18:42–97.

    PubMed  Google Scholar 

  62. 62.

    Krentz JR, Farthing JP. Neural and morphological changes in response to a 20-day intense eccentric training protocol. Eur J Appl Physiol. 2010;110(2):333–40.

    PubMed  Article  Google Scholar 

  63. 63.

    Sayers SP, Clarkson PM. Force recovery after eccentric exercise in males and females. Eur J Appl Physiol. 2001;84(1–2):122–6.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Ratamess NA, Chiarello CM, Sacco AJ, et al. The effects of rest interval length on acute bench press performance: the influence of gender and muscle strength. J Strength Cond Res. 2012;26(7):1817–26.

    PubMed  Article  Google Scholar 

  65. 65.

    Arazi H, Mirzaei B, Sangdevini M, et al. An interaction between exercise order and rest interval during lower-body resistance exercise. Baltic J Health Phys Act. 2012;4(2):77–83.

    Google Scholar 

  66. 66.

    Tibana RA, Prestes J, Nascimento Dda C, et al. Higher muscle performance in adolescents compared with adults after a resistance training session with different rest intervals. J Strength Cond Res. 2012;26(4):1027–32.

    PubMed  Article  Google Scholar 

  67. 67.

    Myers JB, Guskiewicz KM, Schneider RA, et al. Proprioception and neuromuscular control of the shoulder after muscle fatigue. J Athl Train. 1999;34(4):362–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. 68.

    Granata KP, Slota GP, Wilson SE. Influence of fatigue in neuromuscular control of spinal stability. Hum Factors. 2004;46(1):81–91.

    PubMed Central  PubMed  Article  Google Scholar 

  69. 69.

    Hiemstra LA, Lo IK, Fowler PJ. Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther. 2001;31(10):598–605.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Bergeron MF, Nindl BC, Deuster PA, et al. Consortium for Health and Military Performance and American College of Sports Medicine consensus paper on extreme conditioning programs in military personnel. Curr Sports Med Rep. 2011;10(6):383–9.

    PubMed  Article  Google Scholar 

  71. 71.

    Hooper D, Szivak T. Effects of fatigue from resistance training on barbell back squat biomechanics. J Strength Cond Res. 2014;28(4):1127–34.

    PubMed  Google Scholar 

  72. 72.

    Goessler KF, Polito MD. Effect of fixed and self-suggested rest intervals between sets of resistance exercise on post- exercise cardiovascular behavior. Rev Bras Cineantropom Desempenho Hum. 2013;15(4):467–75.

    Article  Google Scholar 

  73. 73.

    Bird SP, Tarpenning KM. Influence of circadian time structure on acute hormonal responses to a single bout of heavy-resistance exercise in weight-trained men. Chronobiol Int. 2004;21(1):131–46.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Hayes LD, Bickerstaff GF, Baker JS. Interactions of cortisol, testosterone, and resistance training: influence of circadian rhythms. Chronobiol Int. 2010;27(4):675–705.

    CAS  PubMed  Article  Google Scholar 

Download references


The authors have no conflict of interest to declare. No sources of funding were used to assist in the preparation of this review.

Author information



Corresponding author

Correspondence to Menno Henselmans.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henselmans, M., Schoenfeld, B.J. The Effect of Inter-Set Rest Intervals on Resistance Exercise-Induced Muscle Hypertrophy. Sports Med 44, 1635–1643 (2014).

Download citation


  • Growth Hormone
  • Resistance Training
  • Muscle Damage
  • Muscle Hypertrophy
  • Bench Press