Skip to main content
Log in

The Effects of Statin Medications on Aerobic Exercise Capacity and Training Adaptations

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The incidence of myopathy increases dramatically in statin users who also exercise, likely limiting the positive impact of this lifesaving medication. New evidence also indicates that statin use can directly compromise aerobic exercise capacity; however, we are just beginning to understand the interactions of statins with exercise training and adaptations. This review focuses on the interactions of statins with aerobic exercise capacity and training adaptations to summarize the available information and draw attention to the gaps in our current knowledge in this area. PubMed, Web of knowledge, and Google scholar databases were searched between January 2000 and December 2013 using the following terms and their combinations: statins, exercise, aerobic capacity, endurance training, adaptations. The reference lists of the relevant articles were also scanned for additional information. Considering the widespread use of statins and the need for exercise for cardiovascular health, a better understanding of the interactions of these interventions as well as practical solutions are needed to reduce statin adverse effects associated with exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bhardwaj S, Selvarajah S, Schneider EB. Muscular effects of statins in the elderly female: a review. Clin Interv Aging. 2013;8:47–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Health, United States 2010 [homepage on the Internet]. CDC. 2010 [cited 2013]. Available from: http://www.cdc.gov/nchs/data/hus/2010/fig17.pdf.

  3. Stone NJ, Robinson J, Lichtenstein AH, Bairey Merz CN, Lloyd-Jones DM, Blum CB, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013.

  4. Baker SK, Tarnopolsky MA. Statin myopathies: pathophysiologic and clinical perspectives. Clin Invest Med. 2001;24(5):258–72.

    PubMed  CAS  Google Scholar 

  5. Bruckert E, Hayem G, Dejager S, Yau C, Begaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients: the PRIMO study. Cardiovasc Drugs Ther. 2005;19(6):403–14.

    Article  PubMed  CAS  Google Scholar 

  6. Buettner C, Lecker SH. Molecular basis for statin-induced muscle toxicity: implications and possibilities. Pharmacogenomics. 2008;9(8):1133–42.

    Article  PubMed  CAS  Google Scholar 

  7. Di Stasi SL, MacLeod TD, Winters JD, Binder-Macleod SA. Effects of statins on skeletal muscle: a perspective for physical therapists. Phys Ther. 2010;90(10):1530–42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dirks AJ, Jones KM. Statin-induced apoptosis and skeletal myopathy. Am J Physiol Cell Physiol. 2006;291(6):C1208–12.

    Article  PubMed  CAS  Google Scholar 

  9. El-Salem K, Ababneh B, Rudnicki S, Malkawi A, Alrefai A, Khader Y, et al. Prevalence and risk factors of muscle complications secondary to statins. Muscle Nerve. 2011;44(6):877–81.

    Article  PubMed  Google Scholar 

  10. Franc S, Dejager S, Bruckert E, Chauvenet M, Giral P, Turpin G. A comprehensive description of muscle symptoms associated with lipid-lowering drugs. Cardiovasc Drugs Ther. 2003;17(5–6):459–65.

    Article  PubMed  CAS  Google Scholar 

  11. Kearns AK, Bilbie CL, Clarkson PM, White CM, Sewright KA, O’Fallon KS, et al. The creatine kinase response to eccentric exercise with atorvastatin 10 mg or 80 mg. Atherosclerosis. 2008;200(1):121–5.

    Article  PubMed  CAS  Google Scholar 

  12. Mallinson JE, Constantin-Teodosiu D, Sidaway J, Westwood FR, Greenhaff PL. Blunted akt/FOXO signalling and activation of genes controlling atrophy and fuel use in statin myopathy. J Physiol. 2009;587(Pt 1):219–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Mohaupt MG, Karas RH, Babiychuk EB, Sanchez-Freire V, Monastyrskaya K, Iyer L, et al. Association between statin-associated myopathy and skeletal muscle damage. CMAJ. 2009;181(1–2):E11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reust CS, Curry SC, Guidry JR. Lovastatin use and muscle damage in healthy volunteers undergoing eccentric muscle exercise. West J Med. 1991;154(2):198–200.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Sacher J, Weigl L, Werner M, Szegedi C, Hohenegger M. Delineation of myotoxicity induced by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors in human skeletal muscle cells. J Pharmacol Exp Ther. 2005;314(3):1032–41.

    Article  PubMed  CAS  Google Scholar 

  16. Sinzinger H, Wolfram R, Peskar BA. Muscular side effects of statins. J Cardiovasc Pharmacol. 2002;40(2):163–71.

    Article  PubMed  CAS  Google Scholar 

  17. Sirvent P, Mercier J, Lacampagne A. New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol. 2008;8(3):333–8.

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka S, Sakamoto K, Yamamoto M, Mizuno A, Ono T, Waguri S, et al. Mechanism of statin-induced contractile dysfunction in rat cultured skeletal myofibers. J Pharmacol Sci. 2010;114(4):454–63.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 2003;289(13):1681–90.

    Article  PubMed  CAS  Google Scholar 

  20. Tomlinson SS, Mangione KK. Potential adverse effects of statins on muscle. Phys Ther. 2005;85(5):459–65.

    PubMed  Google Scholar 

  21. Charlton-Menys V, Durrington PN. Human cholesterol metabolism and therapeutic molecules. Exp Physiol. 2008;93(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi M, Chisaki I, Narumi K, Hidaka K, Kagawa T, Itagaki S, et al. Association between risk of myopathy and cholesterol-lowering effect: a comparison of all statins. Life Sci. 2008;82(17–18):969–75.

    Article  PubMed  CAS  Google Scholar 

  23. Mascitelli L, Pezzetta F. Physical activity in statin-treated patients. Int J Cardiol. 2009;134(1):136–7.

    Article  PubMed  Google Scholar 

  24. Parker BA, Thompson PD. Effect of statins on skeletal muscle: exercise, myopathy, and muscle outcomes. Exerc Sport Sci Rev. 2012;40(4):188–94.

    PubMed  PubMed Central  Google Scholar 

  25. Bouitbir J, Charles AL, Rasseneur L, Dufour S, Piquard F, Geny B, et al. Atorvastatin treatment reduces exercise capacities in rats: involvement of mitochondrial impairments and oxidative stress. J Appl Physiol. 2011;111(5):1477–83.

    Article  PubMed  CAS  Google Scholar 

  26. Opie LH. Exercise-induced myalgia may limit the cardiovascular benefits of statins. Cardiovasc Drugs Ther. 2013;27(6):569–72.

    Article  PubMed  CAS  Google Scholar 

  27. Meador BM, Huey KA. Statin-associated myopathy and its exacerbation with exercise. Muscle Nerve. 2010;42(4):469–79.

    Article  PubMed  CAS  Google Scholar 

  28. Meador BM, Huey KA. Statin-associated changes in skeletal muscle function and stress response after novel or accustomed exercise. Muscle Nerve. 2011;44(6):882–9.

    Article  PubMed  CAS  Google Scholar 

  29. Semple SJ. Statin therapy, myopathy and exercise: a case report. Lipids Health Dis. 2012;16(11):40.

    Article  Google Scholar 

  30. Sinzinger H, O’Grady J. Professional athletes suffering from familial hypercholesterolaemia rarely tolerate statin treatment because of muscular problems. Br J Clin Pharmacol. 2004;57(4):525–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Thompson PD, Zmuda JM, Domalik LJ, Zimet RJ, Staggers J, Guyton JR. Lovastatin increases exercise-induced skeletal muscle injury. Metabolism. 1997;46(10):1206–10.

    Article  PubMed  CAS  Google Scholar 

  32. Thompson PD, Parker B. Statins, exercise, and exercise training. J Am Coll Cardiol. 2013;62(8):715–6.

    Article  PubMed  Google Scholar 

  33. Lim S, Despres JP, Koh KK. Prevention of atherosclerosis in overweight/obese patients: in need of novel multi-targeted approaches. Circ J. 2011;75(5):1019–27.

    Article  PubMed  CAS  Google Scholar 

  34. Monda KL, Ballantyne CM, North KE. Longitudinal impact of physical activity on lipid profiles in middle-aged adults: the atherosclerosis risk in communities study. J Lipid Res. 2009;50(8):1685–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Chomistek AK, Chiuve SE, Jensen MK, Cook NR, Rimm EB. Vigorous physical activity, mediating biomarkers, and risk of myocardial infarction. Med Sci Sports Exerc. 2011;43(10):1884–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Veiga OL, Gomez-Martinez S, Martinez-Gomez D, Villagra A, Calle ME, Marcos A, et al. Physical activity as a preventive measure against overweight, obesity, infections, allergies and cardiovascular disease risk factors in adolescents: AFINOS study protocol. BMC Public Health. 2009;9:475 2458-9-475.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cotter KA, Lachman ME. No strain, no gain: psychosocial predictors of physical activity across the adult lifespan. J Phys Act Health. 2010;7(5):584–94.

    PubMed  PubMed Central  Google Scholar 

  38. Stamatakis E, Hamer M, Primatesta P. Cardiovascular medication, physical activity and mortality: cross-sectional population study with ongoing mortality follow-up. Heart. 2009;95(6):448–53.

    Article  PubMed  CAS  Google Scholar 

  39. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;122(16):1637–48.

    Article  PubMed  Google Scholar 

  40. Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ. Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER database. J Lipid Res. 2010;51(6):1546–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet. 2013;381(9864):394–9.

    Article  PubMed  CAS  Google Scholar 

  42. Kokkinos P, Faselis C, Myers J, Kokkinos JP, Doumas M, Pittaras A, et al. Statin therapy, fitness, and mortality risk in middle-aged hypertensive male veterans. Am J Hypertens. 2014;27(3):422–30.

    Article  PubMed  CAS  Google Scholar 

  43. Mikus CR, Boyle LJ, Borengasser SJ, Oberlin DJ, Naples SP, Fletcher J, et al. Simvastatin impairs exercise training adaptations. J Am Coll Cardiol. 2013;62(8):709–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Muraki A, Miyashita K, Mitsuishi M, Tamaki M, Tanaka K, Itoh H. Coenzyme Q10 reverses mitochondrial dysfunction in atorvastatin-treated mice and increases exercise endurance. J Appl Physiol. 2012;113(3):479–86.

    Article  PubMed  CAS  Google Scholar 

  45. Panayiotou G, Paschalis V, Nikolaidis MG, Theodorou AA, Deli CK, Fotopoulou N, et al. No adverse effects of statins on muscle function and health-related parameters in the elderly: an exercise study. Scand J Med Sci Sports. 2013;23(5):556–67.

    PubMed  CAS  Google Scholar 

  46. Traustadottir T, Stock AA, Harman SM. High-dose statin use does not impair aerobic capacity or skeletal muscle function in older adults. Age (Dordr). 2008;30(4):283–91.

    Article  Google Scholar 

  47. Krishnan GM, Thompson PD. The effects of statins on skeletal muscle strength and exercise performance. Curr Opin Lipidol. 2010;21(4):324–8.

    Article  PubMed  CAS  Google Scholar 

  48. Thompson PD, Parker BA, Clarkson PM, Pescatello LS, White CM, Grimaldi AS, et al. A randomized clinical trial to assess the effect of statins on skeletal muscle function and performance: rationale and study design. Prev Cardiol. 2010;13(3):104–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Parker BA, Capizzi JA, Grimaldi AS, Clarkson PM, Cole SM, Keadle J, et al. The effect of statins on skeletal muscle function. Circulation. 2013;127(1):96–103.

  50. Fuzi M, Palicz Z, Vincze J, Cseri J, Szombathy Z, Kovacs I, et al. Fluvastatin-induced alterations of skeletal muscle function in hypercholesterolaemic rats. J Muscle Res Cell Motil. 2012;32(6):391–401.

    Article  PubMed  Google Scholar 

  51. Parker BA, Augeri AL, Capizzi JA, Ballard KD, Troyanos C, Baggish AL, et al. Effect of statins on creatine kinase levels before and after a marathon run. Am J Cardiol. 2012;109(2):282–7.

    Article  PubMed  CAS  Google Scholar 

  52. Thompson PD, Clarkson PM, Rosenson RS. National lipid association statin safety task force muscle safety expert panel: an assessment of statin safety by muscle experts. Am J Cardiol. 2006;97(8A):69C–76C.

    Article  PubMed  CAS  Google Scholar 

  53. Scott D, Blizzard L, Fell J, Jones G. Statin therapy, muscle function and falls risk in community-dwelling older adults. QJM. 2009;102(9):625–33.

    Article  PubMed  CAS  Google Scholar 

  54. Coen PM, Flynn MG, Markofski MM, Pence BD, Hannemann RE. Adding exercise training to rosuvastatin treatment: influence on serum lipids and biomarkers of muscle and liver damage. Metabolism. 2009;58(7):1030–8.

    Article  PubMed  CAS  Google Scholar 

  55. Draeger A, Monastyrskaya K, Mohaupt M, Hoppeler H, Savolainen H, Allemann C, et al. Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J Pathol. 2006;210(1):94–102.

    Article  PubMed  CAS  Google Scholar 

  56. Ballard KD, Parker BA, Capizzi JA, Grimaldi AS, Clarkson PM, Cole SM, et al. Increases in creatine kinase with atorvastatin treatment are not associated with decreases in muscular performance. Atherosclerosis. 2013;230(1):121–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Chung J, Brass EP, Ulrich RG, Hiatt WR. Effect of atorvastatin on energy expenditure and skeletal muscle oxidative metabolism at rest and during exercise. Clin Pharmacol Ther. 2008;83(2):243–50.

    Article  PubMed  CAS  Google Scholar 

  58. Robinson MM, Hamilton KL, Miller BF. The interactions of some commonly consumed drugs with mitochondrial adaptations to exercise. J Appl Physiol. 2009;107(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  59. SEARCH Collaborative Group, Link E, Parish S, Armitage J, Bowman L, Heath S. SLCO1B1 variants and statin-induced myopathy: a genomewide study. N Engl J Med. 2008;359:789–99.

    Article  PubMed  CAS  Google Scholar 

  60. Ghatak A, Faheem O, Thompson PD. The genetics of statin-induced myopathy. Atherosclerosis. 2010;210(2):337–43.

    Article  PubMed  CAS  Google Scholar 

  61. Mangravite LM, Engelhardt BE, Medina MW, Smith JD, Brown CD, Chasman DI, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature. 2013;502(7471):377–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol. 2011;110(1):264–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Di Napoli P, Antonio Taccardi A, Grilli A, Spina R, Felaco M, Barsotti A. Simvastatin reduces reperfusion injury by modulating nitric oxide synthase expression: an ex vivo study in isolated working rat hearts. Cardiovasc Res. 2001;51(2):283–93.

    Article  PubMed  CAS  Google Scholar 

  64. Jones SP, Teshima Y, Akao M, Marban E. Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res. 2003;93(8):697–9.

    Article  PubMed  CAS  Google Scholar 

  65. Wright DG, Lefer DJ. Statin mediated protection of the ischemic myocardium. Vascul Pharmacol. 2005;42(5–6):265–70.

    Article  PubMed  CAS  Google Scholar 

  66. Bouitbir J, Charles AL, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, et al. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J. 2012;33(11):1397–407.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Keller-Pinter A, Murlasits Z, Szucs G, Menesi D, Puskas L, Ferdinandy P, et al. Upregulation of squalene synthase in type IIB fibers is an early response for statin treatment. Neuromusc Disord. 2011;21(9–10):744–5.

    Article  Google Scholar 

  68. Westwood FR, Bigley A, Randall K, Marsden AM, Scott RC. Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity. Toxicol Pathol. 2005;33(2):246–57.

    Article  PubMed  CAS  Google Scholar 

  69. Sirvent P, Bordenave S, Vermaelen M, Roels B, Vassort G, Mercier J, et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem Biophys Res Commun. 2005;338(3):1426–34.

    Article  PubMed  CAS  Google Scholar 

  70. Baker SK. Molecular clues into the pathogenesis of statin-mediated muscle toxicity. Muscle Nerve. 2005;31(5):572–80.

    Article  PubMed  CAS  Google Scholar 

  71. Flint OP, Masters BA, Gregg RE, Durham SK. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicol Appl Pharmacol. 1997;145(1):91–8.

    Article  PubMed  CAS  Google Scholar 

  72. Casey PJ. Biochemistry of protein prenylation. J Lipid Res. 1992;33(12):1731–40.

    PubMed  CAS  Google Scholar 

  73. Liao JK. Isoprenoids as mediators of the biological effects of statins. J Clin Invest. 2002;110(3):285–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. McTaggart SJ. Isoprenylated proteins. Cell Mol Life Sci. 2006;63(3):255–67.

    Article  PubMed  CAS  Google Scholar 

  75. Welti M. Regulation of dolichol-linked glycosylation. Glycoconj J. 2013;30(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  76. McCarty MF. Suppression of dolichol synthesis with isoprenoids and statins may potentiate the cancer-retardant efficacy of IGF-I down-regulation. Med Hypotheses. 2001;56(1):12–6.

    Article  PubMed  CAS  Google Scholar 

  77. Atil B, Sieczkowsky E, Hohenegger M. Statins reduce endogenous dolichol levels in the neuroblastoma cell line SH-SY5Y. BMC Pharmacol Toxicol. 2012;13(Suppl 1):A51.

    Article  PubMed Central  Google Scholar 

  78. Laaksonen R, Jokelainen K, Sahi T, Tikkanen MJ, Himberg JJ. Decreases in serum ubiquinone concentrations do not result in reduced levels in muscle tissue during short-term simvastatin treatment in humans. Clin Pharmacol Ther. 1995;57(1):62–6.

    Article  PubMed  CAS  Google Scholar 

  79. Paiva H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, et al. High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther. 2005;78(1):60–8.

    Article  PubMed  Google Scholar 

  80. Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49(23):2231–7.

    Article  PubMed  CAS  Google Scholar 

  81. Passi S, Stancato A, Aleo E, Dmitrieva A, Littarru GP. Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. Biofactors. 2003;18(1–4):113–24.

    Article  PubMed  CAS  Google Scholar 

  82. Schaefer WH, Lawrence JW, Loughlin AF, Stoffregen DA, Mixson LA, Dean DC, et al. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats. Toxicol Appl Pharmacol. 2004;194(1):10–23.

    Article  PubMed  CAS  Google Scholar 

  83. Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA. Ubiquinol rescues simvastatin-suppression of mitochondrial content, function and metabolism: implications for statin-induced rhabdomyolysis. Eur J Pharmacol. 2013;711(1–3):1–9.

    Article  PubMed  CAS  Google Scholar 

  84. Caso G, Kelly P, McNurlan MA, Lawson WE. Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. Am J Cardiol. 2007;99(10):1409–12.

    Article  PubMed  CAS  Google Scholar 

  85. Deichmann RE, Lavie CJ, Dornelles AC. Impact of coenzyme Q-10 on parameters of cardiorespiratory fitness and muscle performance in older athletes taking statins. Phys Sportsmed. 2012;40(4):88–95.

    Article  PubMed  Google Scholar 

  86. Ownby SE, Hohl RJ. Farnesol and geranylgeraniol: prevention and reversion of lovastatin-induced effects in NIH3T3 cells. Lipids. 2002;37(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  87. Nishimoto T, Ishikawa E, Anayama H, Hamajyo H, Nagai H, Hirakata M, et al. Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs. Toxicol Appl Pharmacol. 2007;223(1):39–45.

    Article  PubMed  CAS  Google Scholar 

  88. Johnson TE, Zhang X, Bleicher KB, Dysart G, Loughlin AF, Schaefer WH, et al. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone. Toxicol Appl Pharmacol. 2004;200(3):237–50.

    Article  PubMed  CAS  Google Scholar 

  89. Sirvent P, Fabre O, Bordenave S, Hillaire-Buys D, De Raynaud Mauverger E, Lacampagne A. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol Appl Pharmacol. 2012;259(2):263–8.

    Article  PubMed  CAS  Google Scholar 

  90. Hubal MJ, Reich KA, De Biase A, Bilbie C, Clarkson PM, Hoffman EP, et al. Transcriptional deficits in oxidative phosphorylation with statin myopathy. Muscle Nerve. 2011;44(3):393–401.

    PubMed  CAS  Google Scholar 

  91. De Pinieux G, Chariot P, Ammi-Said M, Louarn F, Lejonc JL, Astier A, et al. Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol. 1996;42(3):333–7.

    Article  PubMed  CAS  Google Scholar 

  92. Phillips PS, Phillips CT, Sullivan MJ, Naviaux RK, Haas RH. Statin myotoxicity is associated with changes in the cardiopulmonary function. Atherosclerosis. 2004;177(1):183–8.

    Article  PubMed  CAS  Google Scholar 

  93. Schick BA, Laaksonen R, Frohlich JJ, Paiva H, Lehtimaki T, Humphries KH, et al. Decreased skeletal muscle mitochondrial DNA in patients treated with high-dose simvastatin. Clin Pharmacol Ther. 2007;81(5):650–3.

    Article  PubMed  CAS  Google Scholar 

  94. Stringer HA, Sohi GK, Maguire JA, Cote HC. Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy. J Neurol Sci. 2013;325(1–2):142–7.

    Article  PubMed  CAS  Google Scholar 

  95. Bouitbir J, Daussin F, Charles AL, Rasseneur L, Dufour S, Richard R, et al. Mitochondria of trained skeletal muscle are protected from deleterious effects of statins. Muscle Nerve. 2012;46(3):367–73.

    Article  PubMed  CAS  Google Scholar 

  96. Bell DS. Resolution of statin-induced myalgias by correcting vitamin D deficiency. South Med J. 2010;103(7):690–2.

    Article  PubMed  Google Scholar 

  97. Gupta A, Thompson PD. The relationship of vitamin D deficiency to statin myopathy. Atherosclerosis. 2011;215(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  98. Shewmon DA, Craig JM. Creatine supplementation prevents statin-induced muscle toxicity. Ann Intern Med. 2010;153(10):690–2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors, Z. Murlasits and Z. Radák have not received any funding for the preparation of this manuscript and declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Murlasits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murlasits, Z., Radák, Z. The Effects of Statin Medications on Aerobic Exercise Capacity and Training Adaptations. Sports Med 44, 1519–1530 (2014). https://doi.org/10.1007/s40279-014-0224-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0224-4

Keywords

Navigation