de Geus B, Van Hoof E, Aerts I, et al. Cycling to work: influence on indexes of health in untrained men and women in Flanders. Coronary heart disease and quality of life. Scand J Med Sci Sports. 2008;18(4):498–510. doi:10.1111/j.1600-0838.2007.00729.x.
PubMed
Google Scholar
Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9. doi:10.1503/cmaj.051351.
PubMed
PubMed Central
Google Scholar
Macera CA, Hootman JM, Sniezek JE. Major public health benefits of physical activity. Arthritis Rheum. 2003;49(1):122–8. doi:10.1002/art.10907.
PubMed
Google Scholar
US DHHS. Physical activity and health: a report of the Surgeon General. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.
Masley S, Roetzheim R, Gualtieri T. Aerobic exercise enhances cognitive flexibility. J Clin Psychol Med Settings. 2009;16(2):186–93. doi:10.1007/s10880-009-9159-6.
PubMed
Google Scholar
Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.
PubMed
Google Scholar
Antunes HK, Stella SG, Santos RF, et al. Depression, anxiety and quality of life scores in seniors after an endurance exercise program. Rev Bras Psiquiatr. 2005;27(4):266–71 S1516-44462005000400003.
PubMed
Google Scholar
Erickson KI, Weinstein AM, Lopez OL. Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res. 2012;43(8):615–21. doi:10.1016/j.arcmed.2012.09.008.
PubMed
PubMed Central
Google Scholar
Winchester J, Dick MB, Gillen D, et al. Walking stabilizes cognitive functioning in Alzheimer’s disease (AD) across one year. Arch Gerontol Geriatr. 2013;56(1):96–103. doi:10.1016/j.archger.2012.06.016.
PubMed
CAS
PubMed Central
Google Scholar
Nabkasorn C, Miyai N, Sootmongkol A, et al. Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. Eur J Public Health. 2006;16(2):179–84. doi:10.1093/eurpub/cki159.
PubMed
Google Scholar
Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580–90. doi:10.1111/j.1460-9568.2004.03720.x.
PubMed
Google Scholar
Chen B, Kan H. Air pollution and population health: a global challenge. Environ Health Prev Med. 2008;13(2):94–101. doi:10.1007/s12199-007-0018-5.
PubMed
CAS
PubMed Central
Google Scholar
Calderón-Garcidueñas L, Mora-Tiscareno A, Ontiveros E, et al. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn. 2008;68(2):117–27. doi:10.1016/j.bandc.2008.04.008.
PubMed
Google Scholar
Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506–16. doi:10.1016/j.tins.2009.05.009.
PubMed
CAS
PubMed Central
Google Scholar
Genc S, Zadeoglulari Z, Fuss SH, et al. The adverse effects of air pollution on the nervous system. J Toxicol. 2012;2012:782462. doi:10.1155/2012/782462.
PubMed
PubMed Central
Google Scholar
Guxens M, Sunyer J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med Wkly. 2012;141:w13322. doi:10.4414/smw.2011.13322.
PubMed
Google Scholar
Int Panis L, de Geus B, Vandenbulcke G, et al. Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ. 2010;44:2263–70.
CAS
Google Scholar
Bos I, De Boever P, Vanparijs J, et al. Subclinical effects of aerobic training in urban environment. Med Sci Sports Exerc. 2013;45(3):439–47. doi:10.1249/MSS.0b013e31827767fc.
PubMed
Google Scholar
Bos I, De Boever P, Int Panis L, et al. Negative effects of ultrafine particle exposure during forced exercise on the expression of brain-derived neurotrophic factor in the hippocampus of rats. Neuroscience. 2012;223:131–9. doi:10.1016/j.neuroscience.2012.07.057.
PubMed
CAS
Google Scholar
Bos I, Jacobs L, Nawrot TS, et al. No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett. 2011;500(2):129–32. doi:10.1016/j.neulet.2011.06.019.
PubMed
CAS
Google Scholar
Air quality guidelines for Europe. 2nd ed. WHO Regional Publications, European Series. Vol. 91. World Health Organization; 2000.
World Urbanization Prospects: the 2011 Revision. United Nations, Department of Economic and Social Affairs PD; 2012.
Brook RD, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004;109(21):2655–71. doi:10.1161/01.CIR.0000128587.30041.C8.
PubMed
Google Scholar
Brook RD, Rajagopalan S, Pope CA 3rd, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. doi:10.1161/CIR.0b013e3181dbece1.
PubMed
CAS
Google Scholar
Mills NL, Donaldson K, Hadoke PW, et al. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009;6(1):36–44. doi:10.1038/ncpcardio1399.
PubMed
CAS
Google Scholar
Ostro B. Outdoor air pollution: assessing the environmental burden of disease at national and local levels. Geneva: World Health Organization; 2004.
Google Scholar
Cohen A, Anderson R, Ostro B, et al. Urban air pollution. In: Ezzati M, Lopez AD, Rodgers A, Murray CJ, editors. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization; 2004. p. 1353–433.
Google Scholar
Seaton A, MacNee W, Donaldson K, et al. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.
PubMed
CAS
Google Scholar
Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42.
PubMed
CAS
Google Scholar
Zhu Y, Hinds WC, Kim S, et al. Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manag Assoc. 2002;52(9):1032–42.
PubMed
Google Scholar
Hagler GSW, Baldauf RW, Thoma ED, et al. Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants. Atmos Environ. 2009;43(6):1229–34. doi:10.1016/j.atmosenv.2008.11.024.
CAS
Google Scholar
Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60. doi:10.1016/S0140-6736(12)61766-8.
PubMed
PubMed Central
Google Scholar
Brook RD, Rajagopalan S. Can what you breathe trigger a stroke within hours? Comment on “ambient air pollution and the risk of acute ischemic stroke”. Arch Intern Med. 2012;172(3):235–6. doi:10.1001/archinternmed.2011.1214.
PubMed
Google Scholar
Li XY, Yu XB, Liang WW, et al. Meta-analysis of association between particulate matter and stroke attack. CNS Neurosci Ther. 2012;18(6):501–8. doi:10.1111/j.1755-5949.2012.00325.x.
PubMed
Google Scholar
Corea F, Silvestrelli G, Baccarelli A, et al. Airborne pollutants and lacunar stroke: a case cross-over analysis on stroke unit admissions. Neurol Int. 2012;4(2):e11. doi:10.4081/ni.2012.e11.
PubMed
PubMed Central
Google Scholar
Mateen FJ, Brook RD. Air pollution as an emerging global risk factor for stroke. JAMA. 2011;305(12):1240–1. doi:10.1001/jama.2011.352.
PubMed
CAS
Google Scholar
Calderón-Garcidueñas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol. 2002;30(3):373–89.
PubMed
Google Scholar
Calderón-Garcidueñas L, Maronpot RR, Torres-Jardon R, et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol. 2003;31(5):524–38.
PubMed
Google Scholar
Calderón-Garcidueñas L, Solt AC, Henriquez-Roldan C, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289–310. doi:10.1177/0192623307313011.
PubMed
Google Scholar
Calderón-Garcidueñas L, Reed W, Maronpot RR, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol. 2004;32(6):650–8. doi:10.1080/01926230490520232.
PubMed
Google Scholar
Suglia SF, Gryparis A, Wright RO, et al. Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol. 2008;167(3):280–6. doi:10.1093/aje/kwm308.
PubMed
Google Scholar
Chen JC, Schwartz J. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology. 2009;30(2):231–9. doi:10.1016/j.neuro.2008.12.011.
PubMed
CAS
Google Scholar
Ranft U, Schikowski T, Sugiri D, et al. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004–11. doi:10.1016/j.envres.2009.08.003.
PubMed
CAS
Google Scholar
Wellenius GA, Boyle LD, Coull BA, et al. Residential proximity to nearest major roadway and cognitive function in community-dwelling seniors: results from the MOBILIZE Boston Study. J Am Geriatr Soc. 2012;60(11):2075–80. doi:10.1111/j.1532-5415.2012.04195.x.
PubMed
PubMed Central
Google Scholar
Weuve J, Puett RC, Schwartz J, et al. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012;172(3):219–27. doi:10.1001/archinternmed.2011.683.
PubMed
PubMed Central
Google Scholar
Bos I, De Boever P, Emmerechts J, et al. Changed gene expression in brains of mice exposed to traffic in a highway tunnel. Inhal Toxicol. 2012;24(10):676–86. doi:10.3109/08958378.2012.714004.
PubMed
CAS
Google Scholar
Farina F, Sancini G, Battaglia C, et al. Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice. PLoS One. 2013;8(2):e56636. doi:10.1371/journal.pone.0056636.
PubMed
CAS
PubMed Central
Google Scholar
Campbell A, Oldham M, Becaria A, et al. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology. 2005;26(1):133–40. doi:10.1016/j.neuro.2004.08.003.
PubMed
CAS
Google Scholar
Guo L, Zhu N, Guo Z, et al. Particulate matter (PM10) exposure induces endothelial dysfunction and inflammation in rat brain. J Hazard Mater. 2012;213–214:28–37. doi:10.1016/j.jhazmat.2012.01.034.
PubMed
Google Scholar
Gerlofs-Nijland ME, van Berlo D, Cassee FR, et al. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol. 2010;7:12. doi:10.1186/1743-8977-7-12.
PubMed
PubMed Central
Google Scholar
Tin Tin Win S, Yamamoto S, Ahmed S, et al. Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett. 2006;163(2):153–60. doi:10.1016/j.toxlet.2005.10.006.
Google Scholar
Win-Shwe TT, Yamamoto S, Fujitani Y, et al. Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology. 2008;29(6):940–7. doi:10.1016/j.neuro.2008.09.007.
PubMed
CAS
Google Scholar
Levesque S, Taetzsch T, Lull ME, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect. 2011;119(8):1149–55. doi:10.1289/ehp.1002986.
PubMed
CAS
PubMed Central
Google Scholar
Campbell A, Araujo JA, Li H, et al. Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. J Nanosci Nanotechnol. 2009;9(8):5099–104.
PubMed
CAS
Google Scholar
Kleinman MT, Araujo JA, Nel A, et al. Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicol Lett. 2008;178(2):127–30. doi:10.1016/j.toxlet.2008.03.001.
PubMed
CAS
PubMed Central
Google Scholar
Guerra R, Vera-Aguilar E, Uribe-Ramirez M, et al. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum. Toxicol Lett. 2013;222(2):146–54. doi:10.1016/j.toxlet.2013.07.012.
PubMed
CAS
Google Scholar
Morgan TE, Davis DA, Iwata N, et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect. 2011;119(7):1003–9. doi:10.1289/ehp.1002973.
PubMed
CAS
PubMed Central
Google Scholar
Win-Shwe TT, Yamamoto S, Fujitani Y, et al. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology. 2012;6(5):543–53. doi:10.3109/17435390.2011.590904.
PubMed
CAS
Google Scholar
Win-Shwe TT, Fujimaki H, Fujitani Y, et al. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol Appl Pharmacol. 2012;262(3):355–62. doi:10.1016/j.taap.2012.05.015.
PubMed
CAS
Google Scholar
Veronesi B, Makwana O, Pooler M, et al. Effects of subchronic exposures to concentrated ambient particles. VII. Degeneration of dopaminergic neurons in Apo E-/- mice. Inhal Toxicol. 2005;17(4–5):235–41. doi:10.1080/08958370590912888.
PubMed
CAS
Google Scholar
Levesque S, Surace MJ, McDonald J, et al. Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 2011;8:105. doi:10.1186/1742-2094-8-105.
PubMed
CAS
PubMed Central
Google Scholar
Fonken LK, Xu X, Weil ZM, et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry. 2011;16(10):987–95, 973. doi:10.1038/mp.2011.76.
Hougaard KS, Saber AT, Jensen KA, et al. Diesel exhaust particles: effects on neurofunction in female mice. Basic Clin Pharmacol Toxicol. 2009;105(2):139–43. doi:10.1111/j.1742-7843.2009.00407.x.
PubMed
CAS
Google Scholar
Allen JL, Conrad K, Oberdörster G, et al. Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ Health Perspect. 2013;121(1):32–8. doi:10.1289/ehp.1205505.
PubMed
CAS
PubMed Central
Google Scholar
Zanchi AC, Venturini CD, Saiki M, et al. Chronic nasal instillation of residual-oil fly ash (ROFA) induces brain lipid peroxidation and behavioral changes in rats. Inhal Toxicol. 2008;20(9):795–800. doi:10.1080/08958370802009060.
PubMed
CAS
Google Scholar
Zanchi AC, Saiki M, Saldiva PH, et al. Hippocampus lipid peroxidation induced by residual oil fly ash intranasal instillation versus habituation to the open field. Inhal Toxicol. 2010;22(1):84–8. doi:10.3109/08958370902936931.
PubMed
CAS
Google Scholar
Yokota S, Takashima H, Ohta R, et al. Nasal instillation of nanoparticle-rich diesel exhaust particles slightly affects emotional behavior and learning capability in rats. J Toxicol Sci. 2011;36(3):267–76.
PubMed
CAS
Google Scholar
Win-Shwe TT, Mitsushima D, Yamamoto S, et al. Extracellular glutamate level and NMDA receptor subunit expression in mouse olfactory bulb following nanoparticle-rich diesel exhaust exposure. Inhal Toxicol. 2009;21(10):828–36. doi:10.1080/08958370802538068.
PubMed
CAS
Google Scholar
Zhang H, Liu H, Davies KJ, et al. Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radic Biol Med. 2012;52(9):2038–46. doi:10.1016/j.freeradbiomed.2012.02.042.
PubMed
CAS
PubMed Central
Google Scholar
Ljubimova JY, Kleinman MT, Karabalin NM, et al. Gene expression changes in rat brain after short and long exposures to particulate matter in Los Angeles basin air: comparison with human brain tumors. Exp Toxicol Pathol. 2013;65(7–8):1063–71. doi:10.1016/j.etp.2013.04.002.
PubMed
CAS
Google Scholar
van Berlo D, Albrecht C, Knaapen AM, et al. Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain. Arch Toxicol. 2010;84(7):553–62. doi:10.1007/s00204-010-0551-7.
PubMed
PubMed Central
Google Scholar
Sirivelu MP, MohanKumar SM, Wagner JG, et al. Activation of the stress axis and neurochemical alterations in specific brain areas by concentrated ambient particle exposure with concomitant allergic airway disease. Environ Health Perspect. 2006;114(6):870–4.
PubMed
CAS
PubMed Central
Google Scholar
Tin Tin Win S, Mitsushima D, Yamamoto S, et al. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol Appl Pharmacol. 2008;226(2):192–8. doi:10.1016/j.taap.2007.09.009.
Google Scholar
Voss MW, Nagamatsu LS, Liu-Ambrose T, et al. Exercise, brain, and cognition across the life span. J Appl Physiol. 2011;111(5):1505–13. doi:10.1152/japplphysiol.00210.2011.
PubMed
PubMed Central
Google Scholar
Hillman CH, Motl RW, Pontifex MB, et al. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol. 2006;25(6):678–87. doi:10.1037/0278-6133.25.6.678.
PubMed
Google Scholar
Yaffe K, Barnes D, Nevitt M, et al. A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern Med. 2001;161(14):1703–8.
PubMed
CAS
Google Scholar
Singh-Manoux A, Hillsdon M, Brunner E, et al. Effects of physical activity on cognitive functioning in middle age: evidence from the Whitehall II prospective cohort study. Am J Public Health. 2005;95(12):2252–8. doi:10.2105/AJPH.2004.055574.
PubMed
PubMed Central
Google Scholar
Brown AD, McMorris CA, Longman RS, et al. Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiol Aging. 2010;31(12):2047–57. doi:10.1016/j.neurobiolaging.2008.11.002.
PubMed
Google Scholar
Stroth S, Hille K, Spitzer M, et al. Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol Rehabil. 2009;19(2):223–43. doi:10.1080/09602010802091183.
PubMed
Google Scholar
Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. doi:10.1073/pnas.1015950108.
PubMed
CAS
PubMed Central
Google Scholar
Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52. doi:10.1097/PSY.0b013e3181d14633.
PubMed
PubMed Central
Google Scholar
Kulak W, Sobaniec W. Molecular mechanisms of brain plasticity: neurophysiologic and neuroimaging studies in the developing patients. Rocz Akad Med Bialymst. 2004;49:227–36.
PubMed
CAS
Google Scholar
van Praag H, Christie BR, Sejnowski TJ, et al. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427–31.
PubMed
PubMed Central
Google Scholar
van Praag H. Neurogenesis and exercise: past and future directions. Neuromolecular Med. 2008;10(2):128–40. doi:10.1007/s12017-008-8028-z.
PubMed
Google Scholar
Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and Entorhinal cortex. Hippocampus. 2007;17(11):1017–22. doi:10.1002/Hipo.20348.
PubMed
PubMed Central
Google Scholar
Dietrich MO, Andrews ZB, Horvath TL. Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci. 2008;28(42):10766–71. doi:10.1523/JNEUROSCI.2744-08.2008.
PubMed
CAS
PubMed Central
Google Scholar
Burdette JH, Laurienti PJ, Espeland MA, et al. Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci. 2010;2:23. doi:10.3389/fnagi.2010.00023.
PubMed
PubMed Central
Google Scholar
Voss MW, Prakash RS, Erickson KI, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010;2. doi:10.3389/fnagi.2010.00032.
Chaddock L, Erickson KI, Prakash RS, et al. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol. 2012;89(1):260–8. doi:10.1016/j.biopsycho.2011.10.017.
PubMed
Google Scholar
Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39(4):728–34. doi:10.1249/mss.0b013e31802f04c7.
PubMed
CAS
Google Scholar
Vaynman S, Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair. 2005;19(4):283–95. doi:10.1177/1545968305280753.
PubMed
Google Scholar
Griffin EW, Bechara RG, Birch AM, et al. Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus. 2009;19(10):973–80. doi:10.1002/hipo.20631.
PubMed
CAS
Google Scholar
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol. 2001;63(1):71–124.
PubMed
CAS
Google Scholar
Numakawa T, Suzuki S, Kumamaru E, et al. BDNF function and intracellular signaling in neurons. Histol Histopathol. 2010;25(2):237–58.
PubMed
CAS
Google Scholar
Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003;91(4):267–70.
PubMed
CAS
Google Scholar
Levine ES, Dreyfus CF, Black IB, et al. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc Natl Acad Sci U S A. 1995;92(17):8074–7.
PubMed
CAS
PubMed Central
Google Scholar
Figurov A, Pozzo-Miller LD, Olafsson P, et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature. 1996;381(6584):706–9. doi:10.1038/381706a0.
PubMed
CAS
Google Scholar
Patterson SL, Abel T, Deuel TA, et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996;16(6):1137–45.
PubMed
CAS
Google Scholar
Allen SJ, Watson JJ, Shoemark DK, et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–75. doi:10.1016/j.pharmthera.2013.01.004.
PubMed
CAS
Google Scholar
Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10(12):850–60. doi:10.1038/nrn2738.
PubMed
CAS
Google Scholar
Noble EE, Billington CJ, Kotz CM, et al. The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1053–69. doi:10.1152/ajpregu.00776.2010.
PubMed
CAS
PubMed Central
Google Scholar
Linnarsson S, Bjorklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci. 1997;9(12):2581–7.
PubMed
CAS
Google Scholar
Nockher WA, Renz H. Neurotrophins in allergic diseases: from neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol. 2006;117(3):583–9. doi:10.1016/j.jaci.2005.11.049.
PubMed
CAS
Google Scholar
Pan W, Banks WA, Fasold MB, et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):1553–61.
PubMed
CAS
Google Scholar
Rasmussen P, Brassard P, Adser H, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062–9. doi:10.1113/expphysiol.2009.048512.
PubMed
CAS
Google Scholar
Huang AM, Jen CJ, Chen HF, et al. Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm. 2006;113(7):803–11. doi:10.1007/s00702-005-0359-4.
PubMed
CAS
Google Scholar
Soya H, Nakamura T, Deocaris CC, et al. BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun. 2007;358(4):961–7. doi:10.1016/j.bbrc.2007.04.173.
PubMed
CAS
Google Scholar
Adlard PA, Perreau VM, Engesser-Cesar C, et al. The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise. Neurosci Lett. 2004;363(1):43–8. doi:10.1016/j.neulet.2004.03.058.
PubMed
CAS
Google Scholar
Berchtold NC, Chinn G, Chou M, et al. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133(3):853–61. doi:10.1016/j.neuroscience.2005.03.026.
PubMed
CAS
Google Scholar
Seifert T, Brassard P, Wissenberg M, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R372–7. doi:10.1152/ajpregu.00525.2009.
PubMed
CAS
Google Scholar
Cassilhas RC, Lee KS, Fernandes J, et al. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 2012;202:309–17. doi:10.1016/j.neuroscience.2011.11.029.
PubMed
CAS
Google Scholar
Oliff HS, Berchtold NC, Isackson P, et al. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res. 1998;61(1–2):147–53.
PubMed
CAS
Google Scholar
Knaepen K, Goekint M, Heyman EM, et al. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40(9):765–801. doi:10.2165/11534530-000000000-00000.
PubMed
Google Scholar
Griffin EW, Mullally S, Foley C, et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104(5):934–41. doi:10.1016/j.physbeh.2011.06.005.
PubMed
CAS
Google Scholar
Zoladz JA, Pilc A, Majerczak J, et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59(Suppl 7):119–32.
PubMed
Google Scholar
Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9. doi:10.1001/archneurol.2009.307.
PubMed
PubMed Central
Google Scholar
Castellano V, White LJ. Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. J Neurol Sci. 2008;269(1–2):85–91. doi:10.1016/j.jns.2007.12.030.
PubMed
CAS
Google Scholar
Schiffer T, Schulte S, Hollmann W, et al. Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm Metab Res. 2009;41(3):250–4. doi:10.1055/s-0028-1093322.
PubMed
CAS
Google Scholar
Schulz KH, Gold SM, Witte J, et al. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J Neurol Sci. 2004;225(1–2):11–8. doi:10.1016/j.jns.2004.06.009.
PubMed
CAS
Google Scholar
Bus BA, Molendijk ML, Penninx BJ, et al. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology. 2011;36(2):228–39. doi:10.1016/j.psyneuen.2010.07.013.
PubMed
CAS
Google Scholar
Atkinson G. Air pollution and exercise. Sports Exerc Inj. 1997;3(1):2–8.
Google Scholar
Daigle CC, Chalupa DC, Gibb FR, et al. Ultrafine particle deposition in humans during rest and exercise. Inhal Toxicol. 2003;15(6):539–52. doi:10.1080/08958370304468.
PubMed
CAS
Google Scholar
Londahl J, Massling A, Pagels J, et al. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal Toxicol. 2007;19(2):109–16. doi:10.1080/08958370601051677.
PubMed
Google Scholar
Florida-James G, Donaldson K, Stone V. Athens 2004: the pollution climate and athletic performance. J Sports Sci. 2004;22(10):967–80. doi:10.1080/02640410400000272 (discussion 80).
PubMed
Google Scholar
Peiser B, Reilly T. Environmental factors in the summer Olympics in historical perspective. J Sports Sci. 2004;22(10):981–1001. doi:10.1080/02640410400000298 (discussion 2).
PubMed
Google Scholar
Strak M, Boogaard H, Meliefste K, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118–24. doi:10.1136/oem.2009.046847.
PubMed
Google Scholar
McCreanor J, Cullinan P, Nieuwenhuijsen MJ, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med. 2007;357(23):2348–58. doi:10.1056/NEJMoa071535.
PubMed
CAS
Google Scholar
Chimenti L, Morici G, Paterno A, et al. Environmental conditions, air pollutants, and airway cells in runners: a longitudinal field study. J Sports Sci. 2009;27(9):925–35. doi:10.1080/02640410902946493.
PubMed
Google Scholar
Rundell KW, Hoffman JR, Caviston R, et al. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal Toxicol. 2007;19(2):133–40. doi:10.1080/08958370601051727.
PubMed
CAS
Google Scholar
Marr LC, Ely MR. Effect of air pollution on marathon running performance. Med Sci Sports Exerc. 2010;42(3):585–91. doi:10.1249/MSS.0b013e3181b84a85.
PubMed
CAS
Google Scholar
Cutrufello PT, Smoliga JM, Rundell KW. Small things make a big difference: particulate matter and exercise. Sports Med. 2012;42(12):1041–58. doi:10.2165/11635170-000000000-00000.
PubMed
Google Scholar
Giles LV, Koehle MS. The health effects of exercising in air pollution. Sports Med. 2013;. doi:10.1007/s40279-013-0108-z.
Google Scholar
Zoladz JA, Pilc A. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol. 2010;61(5):533–41.
PubMed
CAS
Google Scholar
Goekint M, Roelands B, Heyman E, et al. Influence of citalopram and environmental temperature on exercise-induced changes in BDNF. Neurosci Lett. 2011;494(2):150–4. doi:10.1016/j.neulet.2011.03.001.
PubMed
CAS
Google Scholar
Oberdörster G, Elder A, Rinderknecht A. Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol. 2009;9(8):4996–5007.
PubMed
PubMed Central
Google Scholar
Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6–7):437–45. doi:10.1080/08958370490439597.
PubMed
Google Scholar
Czerniawska A. Experimental investigations on the penetration of 198Au from nasal mucous membrane into cerebrospinal fluid. Acta Otolaryngol. 1970;70(1):58–61.
PubMed
CAS
Google Scholar
Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.
PubMed
CAS
Google Scholar
Oberdörster G, Sharp Z, Atudorei V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65(20):1531–43. doi:10.1080/00984100290071658.
PubMed
Google Scholar
Geiser M, Rothen-Rutishauser B, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005;113(11):1555–60.
PubMed
PubMed Central
Google Scholar
Van Amsterdam JG, Verlaan BP, Van Loveren H, et al. Air pollution is associated with increased level of exhaled nitric oxide in nonsmoking healthy subjects. Arch Environ Health. 1999;54(5):331–5. doi:10.1080/00039899909602496.
PubMed
Google Scholar
Salvi S, Blomberg A, Rudell B, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999;159(3):702–9. doi:10.1164/ajrccm.159.3.9709083.
PubMed
CAS
Google Scholar
Adar SD, Adamkiewicz G, Gold DR, et al. Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip. Environ Health Perspect. 2007;115(4):507–12. doi:10.1289/ehp.9386.
PubMed
CAS
PubMed Central
Google Scholar
Jacobs L, Nawrot TS, de Geus B, et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health. 2010;9:64. doi:10.1186/1476-069X-9-64.
PubMed
PubMed Central
Google Scholar
Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56. doi:10.1038/nrn2297.
PubMed
CAS
PubMed Central
Google Scholar
Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9(6):418–28. doi:10.1038/nri2566.
PubMed
CAS
Google Scholar
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi:10.1038/nrn2038.
PubMed
CAS
Google Scholar
Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29(8):357–65. doi:10.1016/j.it.2008.05.002.
PubMed
CAS
Google Scholar
Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213. doi:10.1016/j.bbi.2010.10.015.
PubMed
CAS
Google Scholar
Karlsson H, Ahlborg B, Dalman C, et al. Association between erythrocyte sedimentation rate and IQ in Swedish males aged 18–20. Brain Behav Immun. 2010;24(6):868–73. doi:10.1016/j.bbi.2010.02.009.
PubMed
Google Scholar
Eriksson I, Gustafson Y, Fagerstrom L, et al. Urinary tract infection in very old women is associated with delirium. Int Psychogeriatr. 2011;23(3):496–502. doi:10.1017/S1041610210001456.
PubMed
Google Scholar
Stromberg L, Lindgren U, Nordin C, et al. The appearance and disappearance of cognitive impairment in elderly patients during treatment for hip fracture. Scand J Caring Sci. 1997;11(3):167–75.
PubMed
CAS
Google Scholar
Barrientos RM, Higgins EA, Biedenkapp JC, et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging. 2006;27(5):723–32. doi:10.1016/j.neurobiolaging.2005.03.010.
PubMed
Google Scholar
Cortese GP, Barrientos RM, Maier SF, et al. Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCgamma1, and ERK in hippocampal synaptoneurosomes. J Neurosci. 2011;31(11):4274–9. doi:10.1523/JNEUROSCI.5818-10.2011.
PubMed
CAS
PubMed Central
Google Scholar
MohanKumar SM, Campbell A, Block M, et al. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology. 2008;29(3):479–88. doi:10.1016/j.neuro.2007.12.004.
PubMed
CAS
Google Scholar
Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci. 2004;19(7):1699–707. doi:10.1111/j.1460-9568.2004.03246.x.
PubMed
Google Scholar
Vaynman S, Ying Z, Wu A, et al. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience. 2006;139(4):1221–34. doi:10.1016/j.neuroscience.2006.01.062.
PubMed
CAS
Google Scholar
Barrientos RM. Voluntary exercise as an anti-neuroinflammatory therapeutic. Brain Behav Immun. 2011;25(6):1061–2. doi:10.1016/j.bbi.2011.05.004.
PubMed
Google Scholar
Radak Z, Kaneko T, Tahara S, et al. Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int. 2001;38(1):17–23.
PubMed
CAS
Google Scholar
Leem YH, Lee YI, Son HJ, et al. Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun. 2011;406(3):359–65. doi:10.1016/j.bbrc.2011.02.046.
PubMed
CAS
Google Scholar
Ghelfi E, Rhoden CR, Wellenius GA, et al. Cardiac oxidative stress and electrophysiological changes in rats exposed to concentrated ambient particles are mediated by TRP-dependent pulmonary reflexes. Toxicol Sci. 2008;102(2):328–36. doi:10.1093/toxsci/kfn005.
PubMed
CAS
Google Scholar
Gackière F, Saliba L, Baude A, et al. Ozone inhalation activates stress-responsive regions of the CNS. J Neurochem. 2011;117(6):961–72. doi:10.1111/j.1471-4159.2011.07267.x.
PubMed
Google Scholar
Wheeler A, Zanobetti A, Gold DR, et al. The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease. Environ Health Perspect. 2006;114(4):560–6.
PubMed
CAS
PubMed Central
Google Scholar
Follesa P, Biggio F, Gorini G, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 2007;1179:28–34. doi:10.1016/j.brainres.2007.08.045.
PubMed
CAS
Google Scholar
Osharina V, Bagaev V, Wallois F, et al. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: importance of pulse frequency. Auton Neurosci. 2006;126–127:72–80. doi:10.1016/j.autneu.2006.03.011.
PubMed
Google Scholar
Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science. 1994;263(5153):1618–23.
PubMed
CAS
Google Scholar
Chen MJ, Russo-Neustadt AA. Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sci. 2007;81(16):1280–90. doi:10.1016/j.lfs.2007.09.003.
PubMed
CAS
PubMed Central
Google Scholar
Foley TE, Brooks LR, Gilligan LJ, et al. Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity. PLoS One. 2012;7(9):e45415. doi:10.1371/journal.pone.0045415.
PubMed
CAS
PubMed Central
Google Scholar
Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20(2):78–84.
PubMed
CAS
Google Scholar
Hartog JJ, Boogaard H, Nijland H, et al. Do the health benefits of cycling outweigh the risks? Cien Saude Colet. 2011;16(12):4731–44.
PubMed
Google Scholar
Rojas-Rueda D, de Nazelle A, Tainio M, et al. The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ. 2011;343:d4521. doi:10.1136/bmj.d4521.
PubMed
PubMed Central
Google Scholar
Int Panis L. Cycling: health benefits and risks. Environ Health Perspect. 2011;119(3):a114. doi:10.1289/ehp.1103227 (author reply a114–5).
Google Scholar