Coordination Pattern Variability Provides Functional Adaptations to Constraints in Swimming Performance


In a biophysical approach to the study of swimming performance (blending biomechanics and bioenergetics), inter-limb coordination is typically considered and analysed to improve propulsion and propelling efficiency. In this approach, ‘opposition’ or ‘continuous’ patterns of inter-limb coordination, where continuity between propulsive actions occurs, are promoted in the acquisition of expertise. Indeed a ‘continuous’ pattern theoretically minimizes intra-cyclic speed variations of the centre of mass. Consequently, it may also minimize the energy cost of locomotion. However, in skilled swimming performance there is a need to strike a delicate balance between inter-limb coordination pattern stability and variability, suggesting the absence of an ‘ideal’ pattern of coordination toward which all swimmers must converge or seek to imitate. Instead, an ecological dynamics framework advocates that there is an intertwined relationship between the specific intentions, perceptions and actions of individual swimmers, which constrains this relationship between coordination pattern stability and variability. This perspective explains how behaviours emerge from a set of interacting constraints, which each swimmer has to satisfy in order to achieve specific task performance goals and produce particular task outcomes. This overview updates understanding on inter-limb coordination in swimming to analyse the relationship between coordination variability and stability in relation to interacting constraints (related to task, environment and organism) that swimmers may encounter during training and performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;3:363–406.

    Article  Google Scholar 

  2. 2.

    Chollet D, Chalies S, Chatard JC. A new index of coordination for the crawl: description and usefulness. Int J Sports Med. 2000;21:54–9.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Leblanc H, Seifert L, Baudry L, et al. Arm-leg coordination in flat breaststroke: a comparative study between elite and non-elite swimmers. Int J Sports Med. 2005;26:787–97.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Chollet D, Seifert L, Leblanc H, et al. Evaluation of arm-leg coordination in flat breaststroke. Int J Sports Med. 2004;25:486–95.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Chollet D, Seifert L, Carter M. Arm coordination in elite backstroke swimmers. J Sports Sci. 2008;26:675–82.

    PubMed  Article  Google Scholar 

  6. 6.

    Seifert L, Chollet D, Bardy BG. Effect of swimming velocity on arm coordination in the front crawl: a dynamic analysis. J Sports Sci. 2004;22:651–60.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Seifert L, Boulesteix L, Chollet D. Effect of gender on the adaptation of arm coordination in front crawl. Int J Sports Med. 2004;25:217–23.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Seifert L, Chollet D. A new index of flat breaststroke propulsion: a comparison of elite men and women. J Sports Sci. 2005;23:309–20.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Davids K, Shuttleworth R, Button C, et al. “Essential noise”—enhancing variability of informational constraints benefits movement control: a comment on Waddington and Adams (2003). Br J Sports Med. 2004;38:601–5.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Newell KM, Deutsch KM, Sosnoff JJ, et al. Variability in motor output as noise: a default and erroneous proposition? In: Davids K, Bennet SJ, Newell KM, editors. Mov. Syst. Var. Champaign: Human Kinetics; 2006. p. 3–23.

    Google Scholar 

  11. 11.

    Slifkin AB, Newell KM. Is variability in human performance a reflection of system noise? Curr Dir Psychol Sci. 1998;7:170–7.

    Article  Google Scholar 

  12. 12.

    Billat VL, Slawinski J, Danel M, et al. Effect of free versus constant pace on performance and oxygen kinetics in running. Med Sci Sports Exerc. 2001;33:2082–8.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Hellard P, Dekerle J, Avalos M, et al. Kinematic measures and stroke rate variability in elite female 200-m swimmers in the four swimming techniques: Athens 2004 Olympic semi-finalists and French National 2004 Championship semi-finalists. J Sports Sci. 2008;26:35–46.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Seifert L, Boulesteix L, Carter M, et al. The spatial-temporal and coordinative structures in elite male 100-m front crawl swimmers. Int J Sports Med. 2005;26:286–93.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Seifert L, Chollet D, Chatard JC. Kinematic changes during a 100-m front crawl: effects of performance level and gender. Med Sci Sport Exerc. 2007;39:1784–93.

    Article  Google Scholar 

  16. 16.

    Davids K, Bennett SJ, Newell KM, editors. Movement system variability. Champaign: Human Kinetics; 2006.

  17. 17.

    Seifert L, Button C, Davids K. Key properties of expert movement systems in sport: an ecological dynamics perspective. Sports Med. 2013;43:167–78.

    PubMed  Article  Google Scholar 

  18. 18.

    Davids K, Button C, Bennett SJ, editors. Dynamics of skill acquisition: a constraints-led approach. Champaign: Human Kinetics; 2008.

  19. 19.

    Glazier PS, Davids K. On analysing and interpreting variability in motor output. J Sci Med Sport. 2009;12:e.2–3.

    Article  Google Scholar 

  20. 20.

    Newell KM. Constraints on the development of coordination. In: Wade MG, Whiting HTA, editors. Mot. Dev. Child. Asp. Coord. Control. Dordrecht: Martinus Nijhoff; 1986. p. 341–60.

    Google Scholar 

  21. 21.

    Seifert L, Davids K. Intentions, perceptions and actions constrain functional intra- and inter-individual variability in the acquisition of expertise in individual sports. Open Sports Sci J. 2012;5:68–75.

    Article  Google Scholar 

  22. 22.

    Davids K, Glazier PS. Deconstructing neurobiological coordination: the role of the biomechanics-motor control nexus. Exerc Sport Sci Rev. 2010;38:86–90.

    PubMed  Article  Google Scholar 

  23. 23.

    Chow JY, Davids K, Hristovski R, et al. Nonlinear pedagogy: learning design for self-organizing neurobiological systems. New Ideas Psychol. 2011;29:189–200.

    Article  Google Scholar 

  24. 24.

    Barbosa T, Bragada J, Reis VM, et al. Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport. 2010;13:262–9.

    PubMed  Article  Google Scholar 

  25. 25.

    Pelayo P, Alberty M, Sidney M, et al. Aerobic potential, stroke parameters, and coordination in swimming front-crawl performance. Int J Sports Physiol Perform. 2007;2:347–59.

    Google Scholar 

  26. 26.

    Vilas-Boas JP, Fernandes RJ, Barbosa T. Intra-cyclic velocity variations, swimming economy, performance, and training in swimming. In: Seifert L, Chollet D, Mujika I, editors. World Book of Swimming: From Science to Performance. New York: Nova Science Publishers, Hauppauge; 2011. p. 119–34.

    Google Scholar 

  27. 27.

    Toussaint HM, Truijens MJ. Biomechanical aspects of peak performance in human swimming. Anim Biol. 2005;55:17–40.

    Article  Google Scholar 

  28. 28.

    Nigg B. Selected methodology in biomechanics with respect to swimming. In: Hollander A, Huijing P, de Groot G, editors. Biomechanics and medicine in swimming: V. Champaign: Human Kinetics; 1983. p. 72–80.

  29. 29.

    Fujishima M, Miyashita M. Velocity degradation caused by its fluctuation in swimming and guidelines for improvement of average velocity. In: Keskinen K, Komi P, Hollander P, editors. Biomechanics and Medicine in Swimming: VIII. Jyvaskyla: University of Jyvaskyla; 1998. p. 41–5.

    Google Scholar 

  30. 30.

    Schnitzler C, Seifert L, Alberty M, et al. Hip velocity and arm coordination in front crawl swimming. Int J Sports Med. 2010;31:875–81.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Chollet D, Seifert L. Inter-limb coordination in the four competitive strokes. In: Seifert L, Chollet D, Mujika I, editors. World Book of Swimming: From Science to Performance. New York: Nova Science Publishers, Hauppauge; 2011. p. 153–72.

  32. 32.

    Alberty M, Sidney M, Huot-Marchand F, et al. Intracyclic velocity variations and arm coordination during exhaustive exercise in front crawl stroke. Int J Sports Med. 2004;26:471–5.

    Article  Google Scholar 

  33. 33.

    Alberty M, Sidney M, Pelayo P, et al. Stroking characteristics during time to exhaustion tests. Med Sci Sport Exerc. 2009;41:637–44.

    Article  Google Scholar 

  34. 34.

    Bideault G, Hérault R, Seifert L. Data modelling reveals inter-individual variability of front crawl swimming. J Sci Med Sport. 2013;16:281–5.

    PubMed  Article  Google Scholar 

  35. 35.

    Seifert L, Schnitzler C, Alberty M, et al. Arm coordination, active drag and propelling efficiency in front crawl. In: Stallman R, Cabri J, Kjendlie P, editors. Biomechanics and Medicine in Swimming: XI. Norway: University. Oslo; 2010. p. 115–7.

    Google Scholar 

  36. 36.

    Seifert L, Toussaint HM, Alberty M, et al. Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Hum Mov Sci. 2010;29:426–39.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Seifert L, Chollet D. Modelling spatial-temporal and coordinative parameters in swimming. J Sci Med Sport. 2009;12:495–9.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Barbosa T, Keskinen KL, Fernandes RJ, et al. Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. Eur J Appl Physiol. 2005;93:519–23.

    PubMed  Article  Google Scholar 

  39. 39.

    Chollet D, Seifert L, Boulesteix L, et al. Arm to leg coordination in elite butterfly swimmers. Int J Sports Med. 2006;27:322–9.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Seifert L, Boulesteix L, Chollet D, et al. Differences in spatial-temporal parameters and arm-leg coordination in butterfly stroke as a function of race pace, skill and gender. Hum Mov Sci. 2008;27:96–111.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Komar J, Sanders RH, Chollet D, et al. Do qualitative changes in inter-limb coordination lead to effectiveness of aquatic locomotion rather than efficiency? J Appl Biomech. Epub 22 Jul 2013.

  42. 42.

    Seifert L, Komar J, Lemaitre F, et al. Swim specialty affects energy cost and motor organization. Int J Sports Med. 2010;3:624–30.

    Article  Google Scholar 

  43. 43.

    Seifert L, Chollet D, Rouard A. Swimming constraints and arm coordination. Hum Mov Sci. 2007;26:68–86.

    PubMed  Article  Google Scholar 

  44. 44.

    Seifert L, Leblanc H, Hérault R, et al. Inter-individual variability in the upper–lower limb breaststroke coordination. Hum Mov Sci. 2011;30:550–65.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Schnitzler C, Seifert L, Chollet D. Arm coordination and performance level in the 400-m front crawl. Res Q Exerc Sport. 2011;82:1–8.

    PubMed  Article  Google Scholar 

  46. 46.

    Bartlett RM, Wheat J, Robins M. Is movement variability important for sports biomechanists? Sports Biomech. 2007;6:224–43.

    PubMed  Article  Google Scholar 

  47. 47.

    Edelman GM, Gally J. Degeneracy and complexity in biological systems. Proc Natl Acad Sci U S A. 2001;98:13763–8.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  48. 48.

    Mason PH. Degeneracy at multiple levels of complexity. Biol Theory. 2010;5:277–88.

    Article  Google Scholar 

  49. 49.

    Tononi G, Sporns O, Edelman GM. Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci U S A. 1999;96:3257–62.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  50. 50.

    Price CJ, Friston KJ. Degeneracy and cognitive anatomy. Trends Cogn Sci. 2002;6:416–21.

    PubMed  Article  Google Scholar 

  51. 51.

    Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Cambridge: MIT; 1995.

    Google Scholar 

  52. 52.

    Seifert L, Button C, Brazier T. Interacting constraints and inter-limb co-ordination in swimming. In: Davids K, Savelsbergh GJP, Renshaw I, editors. Motor Learning in Practice. London: Routledge; 2011. p. 83–98.

    Google Scholar 

  53. 53.

    Glazier PS, Wheat J, Pease D, et al. The interface of biomechanics and motor control: dynamics systems theory and the functional role of movement variability. In: Davids K, Bennett SJ, Newell KM, editors. Movement System Variability. Champaign: Human Kinetics; 2006. p. 49–70.

    Google Scholar 

  54. 54.

    Hamill J, Haddad JM, Mcdermott WJ. Issues in quantifying variability from a dynamical systems perspective. J Appl Biomech. 2000;16:407–18.

    Google Scholar 

  55. 55.

    Nikodelis T, Kollias I, Hatzitaki V. Bilateral inter-arm coordination in freestyle swimming: effect of skill level and swimming speed. J Sports Sci. 2005;23:737–45.

    PubMed  Article  Google Scholar 

  56. 56.

    Seifert L, Leblanc H, Chollet D, et al. Inter-limb coordination in swimming: effect of speed and skill level. Hum Mov Sci. 2010;29:103–13.

    PubMed  Article  Google Scholar 

  57. 57.

    Figuereido P, Seifert L, Vilas-Boas JP, et al. Individual profiles of spatio-temporal coordination in high intensity swimming. Hum Mov Sci. 2012;31:1200–12.

    Article  Google Scholar 

  58. 58.

    Rein R. Measurement methods to analyse changes in coordination during motor learning from a non-linear perspective. Open Sports Sci J. 2012;5:36–48.

    Article  Google Scholar 

  59. 59.

    Toussaint HM, Carol A, Kranenborg H, et al. Effect of fatigue on stroking characteristics in an arms-only 100-m front-crawl race. Med Sci Sport Exerc. 2006;38:1635–42.

    Article  Google Scholar 

  60. 60.

    Aujouannet YA, Bonifazi M, Hintzy F, et al. Effects of a high-intensity swim test on kinematic parameters in high-level athletes. Appl Physiol Nutr Metab. 2006;31:150–8.

    PubMed  Article  Google Scholar 

  61. 61.

    Ikuta Y, Matsuda Y, Yamada Y, et al. Relationship between decreased swimming velocity and muscle activity during 200-m front crawl. Eur J Appl Physiol. 2012;12(9):3417–29.

    Article  Google Scholar 

  62. 62.

    Stirn I, Jarm T, Kapus V, et al. Evaluation of muscle fatigue during 100-m front crawl. Eur J Appl Physiol. 2011;111:101–13.

    PubMed  Article  Google Scholar 

  63. 63.

    Dadashi F, Arami A, Crettenand F, et al. A hidden Markov model of the breaststroke swimming temporal phases using wearable inertial measurement units. 10th International IEEE Body Sensor Networks Conference. Cambridge: MIT Press; 2013.

  64. 64.

    Dadashi F, Crettenand F, Millet GP, et al. Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. J Sports Sci. 2013;31:1251–60.

    PubMed  Article  Google Scholar 

  65. 65.

    Madgwick SOH, Harrison AJL, Vaidyanathan A. Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE International Conference on Rehabilitation Robotics; 2011. p. 5975346.

  66. 66.

    Sabatini AM. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors. 2011;11:1489–525.

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Komar J. Dynamique de l’apprentissage moteur: apprendre loin de l’équilibre [Dynamic of motor learning: learning far from equilibrium]. Saarbrücken: Presse Académique Francophone; 2013.

    Google Scholar 

  68. 68.

    Komar J, Hérault R, Seifert L. Key point selection and clustering of swimmer coordination through Sparse Fisher-EM. Prague: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases; 2013.

    Google Scholar 

  69. 69.

    Button C, Chow JY, Rein R. Exploring the perceptual-motor workspace: new approaches to skill acquisition and training. In: Hong Y, Barlett RM, editors. Handbook of Biomechanics and Human Movement Science. New York: Routledge; 2008. p. 538–53.

    Google Scholar 

  70. 70.

    Rein R, Button C, Davids K, et al. Cluster analysis of movement patterns in multiarticular actions: a tutorial. Motor Control. 2010;14:211–39.

    PubMed  Google Scholar 

  71. 71.

    Dutt-Mazumder A, Button C, Robins A, et al. Neural network modelling and dynamical system theory: are they relevant to study the governing dynamics of association football players? Sports Med. 2011;41:1003–17.

    PubMed  Article  Google Scholar 

  72. 72.

    Lamb PF, Bartlett RM, Robins A. Artificial neural networks for analyzing inter-limb coordination: the golf chip shot. Hum Mov Sci. 2011;30:1129–43.

    PubMed  Article  Google Scholar 

  73. 73.

    Daffertshofer A, Lamoth CJC, Meijer OG, et al. PCA in studying coordination and variability: a tutorial. Clin Biomech. 2004;19:415–28.

    Article  Google Scholar 

  74. 74.

    Forner-Cordero A, Levin O, Li Y, et al. Principal component analysis of complex multijoint coordinative movements. Biol Cybern. 2005;93:63–78.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Chow JY, Davids K, Button C. Variation in coordination of a discrete multiarticular action as a function of skill level. J Mot Behav. 2007;39:463–79.

    PubMed  Article  Google Scholar 

  76. 76.

    Chow JY, Davids K, Button C, et al. Dynamics of movement patterning in learning a discrete multiarticular action. Motor Control. 2008;12:219–40.

    PubMed  Google Scholar 

  77. 77.

    Rein R, Davids K, Button C. Adaptive and phase transition behavior in performance of discrete multi-articular actions by degenerate neurobiological systems. Exp Brain Res. 2010;201:307–22.

    PubMed  Article  Google Scholar 

  78. 78.

    Wilson B, Howard A. The use of cluster analysis in movement description and classification of the backstroke swim start. In: Matsui H, Kobayashi K, editors. Biomechanics: VIII-B. Champaign: Human Kinetics; 1983. p. 1223–30.

    Google Scholar 

  79. 79.

    Seifert L, Vantorre J, Lemaitre F, et al. Different profiles of the aerial start phase in front crawl. J Strength Cond Res. 2010;24:507–16.

    PubMed  Article  Google Scholar 

  80. 80.

    Vantorre J, Seifert L, Fernandes RJ, et al. Kinematical profiling of the front crawl start. Int J Sports Med. 2010;31:16–21.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Kolmogorov SV, Duplishcheva OA. Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity. J Biomech. 1992;25:311–8.

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Kolmogorov SV, Rumyantseva OA, Gordon BJ, et al. Hydrodynamic characteristics of competitive swimmers of different genders and performance levels. J Appl Biomech. 1997;13:88–97.

    Google Scholar 

  83. 83.

    Kent M, Atha J. Intracycle kinematics and body configuration changes in the breaststroke. In: Lewillie L, Clarys JP, editors. Swimming Science II. Baltimore: University Park Press; 1975. p. 125–9.

    Google Scholar 

  84. 84.

    Schnitzler C, Brazier T, Button C, et al. Effect of velocity and added resistance on selected coordination and force parameters in front crawl. J Strength Cond Res. 2011;25:2681–90.

    PubMed  Article  Google Scholar 

  85. 85.

    Leblanc H, Seifert L, Chollet D. Does floatation influence breaststroke technique? J Appl Biomech. 2010;26:150–8.

    PubMed  Google Scholar 

  86. 86.

    Hue O, Benavente H, Chollet D. The effect of wet suit use by triathletes: an analysis of the different phases of arm movement. J Sports Sci. 2003;21:1025–30.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Seifert L, Chollet D, Allard P. Arm coordination symmetry and breathing effect in front crawl. Hum Mov Sci. 2005;24:234–56.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Seifert L, Chehensse A, Tourny-Chollet C, et al. Effect of breathing pattern on arm coordination symmetry in front crawl. J Strength Cond Res. 2008;22:1670–6.

    PubMed  Article  Google Scholar 

  89. 89.

    Tourny-Chollet C, Seifert L, Chollet D. Effect of force symmetry on coordination in crawl. Int J Sports Med. 2009;30:182–7.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Seifert L, Barbosa T, Kjendlie P. Biophysical approach in swimming: gender effect. In: Davies S, editor. Gender Gap: Causes, Experiences and Effects. New York: Nova Science Publishers, Hauppauge; 2011. p. 59–80.

    Google Scholar 

  91. 91.

    McCabe CB, Psycharakis SG, Sanders RH. Kinematic differences between front crawl sprint and distance swimmers at sprint pace. J Sports Sci. 2011;29:115–23.

    PubMed  Article  Google Scholar 

  92. 92.

    McCabe CB, Sanders RH. Kinematic differences between front crawl sprint and distance swimmers at a distance pace. J Sports Sci. 2012;30:601–8.

    PubMed  Article  Google Scholar 

  93. 93.

    Komar J, Leprêtre PM, Alberty M, et al. Effect of increasing energy cost on arm coordination in elite sprint swimmers. Hum Mov Sci. 2011;31(3):620–9.

    PubMed  Article  Google Scholar 

  94. 94.

    Millet GP, Chollet D, Chalies S, et al. Coordination in front crawl in elite triathletes and elite swimmers. Int J Sports Med. 2002;23:99–104.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Marques-Aleixo I, Querido AJ, Figuereido P, et al. Intracyclic velocity variation and arm coordination assessment in swimmers with Down syndrome. Adapt Phys Activ Q. 2013;30:70–84.

    PubMed  Google Scholar 

  96. 96.

    Querido AJ, Marques-Aleixo I, Figuereido P, et al. Front crawl and backstroke arm coordination in swimmers with down syndrome. In: Kjendlie P, Stallman R, Cabri J, editors. Biomechanics and Medicine in Swimming: XI. Oslo: University of Oslo; 2010. p. 157–9.

    Google Scholar 

  97. 97.

    Osborough CD, Payton CJ, Daly D. Influence of swimming speed on inter-arm coordination in competitive unilateral arm amputee front crawl swimmers. Hum Mov Sci. 2010;29:921–31.

    PubMed  Article  Google Scholar 

  98. 98.

    Satkunskiene D, Schega L, Kunze K, et al. Coordination in arm movements during crawl stroke in elite swimmers with a loco-motor disability. Hum Mov Sci. 2005;24:54–65.

    PubMed  Article  Google Scholar 

  99. 99.

    González-Agüero A, Vicente-Rodríguez G, Moreno LA, et al. Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports. 2010;20:716–24.

    PubMed  Article  Google Scholar 

  100. 100.

    Lerda R, Cardelli C. Breathing and propelling in crawl as a function of skill and swim velocity. Int J Sports Med. 2003;24:75–80.

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Seifert L, Komar J, Crettenand F, et al. Inter-limb coordination and energy cost in swimming. J Sci Med Sport. Epub 7 Aug 2013.

  102. 102.

    Figuereido P, Morais PA, Vilas-Boas JP, et al. Changes in arm coordination and stroke parameters on transition through the lactate threshold. Eur J Appl Physiol. 2013;113:1957–64.

    Article  Google Scholar 

  103. 103.

    Alberty M, Potdevin F, Dekerle J, et al. Changes in swimming technique during time to exhaustion at freely chosen and controlled stroke rates. J Sports Sci. 2008;26:1191–200.

    PubMed  Article  Google Scholar 

  104. 104.

    Guerin S, Kunkle D. Emergence of constraint in self-organizing systems: nonlinear dynamics. Psychol Life Sci. 2004;8:131–46.

    Google Scholar 

  105. 105.

    Harbourne RT, Stergiou N. Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Phys Ther. 2009;89:267–82.

    PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Reed E, Bril B. The primacy of action in development. A commentary of N. Bernstein. In: Latash ML, editor. Dexterity and its Development. Hillsdale: Erlbaum; 1996. p. 431–51.

    Google Scholar 

Download references


Ludovic Seifert, John Komar, Tiago Barbosa, Huub Toussaint, Grégoire Millet and Keith Davids declare no conflicts of interest. This project received the funding of the CPER/GRR1880 Logistic Transport and Information Processing 2007–2013. The authors thank Christophe Schnitzler and Didier Chollet for their advice during the writing of this manuscript.

Author information



Corresponding author

Correspondence to Ludovic Seifert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seifert, L., Komar, J., Barbosa, T. et al. Coordination Pattern Variability Provides Functional Adaptations to Constraints in Swimming Performance. Sports Med 44, 1333–1345 (2014).

Download citation


  • Swimming Speed
  • Coordination Pattern
  • Front Crawl
  • Stroke Cycle
  • Mechanical Power Output