Skip to main content

Short-Term Heat Acclimation Training Improves Physical Performance: A Systematic Review, and Exploration of Physiological Adaptations and Application for Team Sports

Abstract

Background

Studies have demonstrated that longer-term heat acclimation training (≥8 heat exposures) improves physical performance. The physiological adaptations gained through short-term heat acclimation (STHA) training suggest that physical performance can be enhanced within a brief timeframe.

Objective

The aim of this systematic review was to determine if STHA training (≤7 heat exposures) can improve physical performance in healthy adults.

Data Sources

MEDLINE, PubMed, and SPORTDiscus™ databases were searched for available literature.

Study Selection

Studies were included if they met the following criteria: STHA intervention, performance measure outcome, apparently healthy participants, adult participants (≥18 years of age), primary data, and human participants.

Study Appraisal

A modified McMaster critical appraisal tool determined the level of bias in each included study.

Results

Eight papers met the inclusion criteria. Studies varied from having a low to a high risk of bias. The review identified aerobic-based tests of performance benefit from STHA training. Peak anaerobic power efforts have not been demonstrated to improve.

Limitations

At the review level, this systematic review did not include tolerance time exercise tests; however, certain professions may be interested in this type of exercise (e.g. fire-fighters). At the outcome level, the review was limited by the moderate level of bias that exists in the field. Only two randomized controlled trials were included. Furthermore, a limited number of studies could be identified (eight), and only one of these articles focused on women participants.

Conclusions

The review identified that aerobic-based tests of performance benefit from STHA training. This is possibly through a number of cardiovascular, thermoregulatory, and metabolic adaptations improving the perception of effort and fatigue through a reduction in anaerobic energy release and elevation of the anaerobic threshold. These results should be viewed with caution due to the level of available evidence, and the limited number of papers that met the inclusion criteria of the review. STHA training can be applied in the team-sport environment during a range of instances within the competitive season. A mixed high-intensity protocol may only require five sessions with a duration of 60 min to potentially improve aerobic-based performance in trained athletes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Maughan RJ, Shirreffs SM, Ozgünen KT, et al. Living, training and playing in the heat: challenges to the football player and strategies for coping with environmental extremes. Scand J Med Sci Sports. 2010;20(Suppl 3):117–24.

    PubMed  Google Scholar 

  2. González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol (Lond). 2008;586(1):45–53.

    Google Scholar 

  3. Garrett A, Rehrer N, Patterson M. Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Med. 2011;41(9):757–71.

    PubMed  Google Scholar 

  4. Taylor N, Cotter J. Heat adaptation: guidelines for the optimisation of human performance. Int Sportsmed J. 2006;7(1):33–57.

    Google Scholar 

  5. Brade C, Dawson B, Wallman K. Effect of precooling and acclimation on repeat-sprint performance in heat. J Sports Sci. 2013;31(7):779–86.

    PubMed  Google Scholar 

  6. Chen T-I, Tsai P-H, Lin J-H, et al. Effect of short-term heat acclimation on endurance time and skin blood flow in trained athletes. Open Access J Sports Med. 2013;4:161–70.

    PubMed Central  PubMed  Google Scholar 

  7. Garrett A, Creasy R, Rehrer N, et al. Effectiveness of short-term heat acclimation for highly trained athletes. Eur J Appl Physiol. 2012;112:1827–37.

    PubMed  Google Scholar 

  8. Garrett A, Goosens N, Rehrer N, et al. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107(6):659–70.

    PubMed  Google Scholar 

  9. Buchheit M, Voss S, Nybo L, et al. Physiological and performance adaptations to an in-season soccer camp in the heat: associations with heart rate and heart rate variability. Scand J Med Sci Sports. 2011;21(6):e477–85.

    CAS  PubMed  Google Scholar 

  10. Petersen C, Portus M, Pyne D, et al. Partial heat acclimation in cricketers using a 4-day high intensity cycling protocol. Int J Sports Physiol Perform. 2010;5(4):535–45.

    PubMed  Google Scholar 

  11. Brazaitis M, Skurvydas A. Heat acclimation does not reduce the impact of hyperthermia on central fatigue. Eur J Appl Physiol. 2010;109(4):771–8.

    PubMed  Google Scholar 

  12. Sunderland C, Morris J, Nevill M. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42(5):327–33.

    CAS  PubMed  Google Scholar 

  13. Febbraio M, Snow R, Hargreaves M, et al. Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J Appl Physiol. 1994;76(2):589–97.

    CAS  PubMed  Google Scholar 

  14. Fujii N, Honda Y, Ogawa T, et al. Short-term exercise-heat acclimation enhances skin vasodilation but not hyperthermic hyperpnea in humans exercising in a hot environment. Eur J Appl Physiol. 2012;112(1):295–307.

    PubMed  Google Scholar 

  15. Aoyagi Y, McLellan T, Shephard R. Effects of 6 versus 12 days of heat acclimation on heat tolerance in lightly exercising men wearing protective clothing. Eur J Appl Physiol. 1995;71(2–3):187–96.

    CAS  Google Scholar 

  16. Lorenzo S, Halliwill J, Sawka M, et al. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):1140–7.

    PubMed Central  PubMed  Google Scholar 

  17. Daanen HAM, Jonkman AG, Layden JD, et al. Optimising the acquisition and retention of heat acclimation. Int J Sports Med. 2011;32(11):822–8.

    CAS  PubMed  Google Scholar 

  18. Weller AS, Linnane DM, Jonkman AG, et al. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress. Eur J Appl Physiol. 2007;102(1):57–66.

    PubMed  Google Scholar 

  19. Castle P, Mackenzie R, Maxwell N, et al. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. J Sports Sci. 2011;29(11):1125–34.

    PubMed  Google Scholar 

  20. Gill N, Sleivert G. Effect of daily versus intermittent exposure on heat acclimation. Aviat Space Environ Med. 2001;72(4):385–90.

    CAS  PubMed  Google Scholar 

  21. Patterson M, Stocks JM, Taylor N. Sustained and generalized extracellular fluid expansion following heat acclimation. J Physiol (Lond). 2004;559(1):327–34.

    CAS  Google Scholar 

  22. Höfler W. Changes in regional distribution of sweating during acclimatization to heat. J Appl Physiol. 1968;25(5):503–6.

    PubMed  Google Scholar 

  23. Fox R, Goldsmith R, Hampton I, Lewis H. The nature of the increase in sweating capacity produced by heat acclimatization. J Physiol. 1964;171:368–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Armstrong LW, Maresh CM. The induction and decay of heat acclimatisation in trained athletes. Sports Med. 1991;12(5):302–12.

    CAS  PubMed  Google Scholar 

  25. Burk A, Timpmann S, Kreegipuu K, et al. Effects of heat acclimation on endurance capacity and prolactin response to exercise in the heat. Eur J Appl Physiol. 2012;112(12):4091–101.

    CAS  PubMed  Google Scholar 

  26. Hue O, Antoine-Jonville S, Sara F. The effect of 8 days of training in tropical environment on performance in neutral climate in swimmers. Int J Sports Med. 2007;28(1):48–52.

    CAS  PubMed  Google Scholar 

  27. Racinais S, Mohr M, Buchheit M, et al. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. Br J Sports Med. 2012;46(11):810–5.

    PubMed  Google Scholar 

  28. Wyndham CH, Benade AJ, Williams CG, et al. Changes in central circulation and body fluid spaces during acclimatization to heat. J Appl Physiol. 1968;25(5):586–93.

    CAS  PubMed  Google Scholar 

  29. Cotter J, Patterson M, Taylor N. Sweat distribution before and after repeated heat exposure. Eur J Appl Physiol. 1997;76(2):181–6.

    CAS  Google Scholar 

  30. Yamazaki F, Hamasaki K. Heat acclimation increases skin vasodilation and sweating but not cardiac baroreflex responses in heat-stressed humans. J Appl Physiol. 2003;95(4):1567–74.

    PubMed  Google Scholar 

  31. Buono MJ, Heaney JH, Canine KM. Acclimation to humid heat lowers resting core temperature. Am J Physiol. 1998;274(5 Pt 2):R1295–9.

    CAS  PubMed  Google Scholar 

  32. Hessemer V, Zeh A, Bruck K. Effects of passive heat adaptation and moderate sweatless conditioning on responses to cold and heat. Eur J Appl Physiol. 1986;55(3):281–9.

    CAS  Google Scholar 

  33. Patterson MJ, Stocks JM, Taylor NA. Humid heat acclimation does not elicit a preferential sweat redistribution toward the limbs. Am J Physiol Regul Integr Comp Physiol. 2004;286(3):R512–8.

    CAS  PubMed  Google Scholar 

  34. Gray AJ, Jenkins DG. Match analysis and the physiological demands of Australian football. Sports Med. 2010;40(4):347–60.

    PubMed  Google Scholar 

  35. Gabbett T, King T, Jenkins D. Applied physiology of rugby league. Sports Med. 2008;38(2):119–38.

    PubMed  Google Scholar 

  36. Carling C, Bloomfield J, Nelsen L, et al. The role of motion analysis in elite soccer: contemporary performance measurement techniques and work rate data. Sports Med. 2008;38(10):839–62.

    PubMed  Google Scholar 

  37. Wisbey B, Montgomery PG, Pyne DB, et al. Quantifying movement demands of AFL football using GPS tracking. J Sci Med Sport. 2010;13(5):531–6.

    PubMed  Google Scholar 

  38. Gabbett TJ, Jenkins DG, Abernethy B. Physical demands of professional rugby league training and competition using microtechnology. J Sci Med Sport. 2012;15(1):80–6.

    PubMed  Google Scholar 

  39. Pandolf KB. Time course of heat acclimation and its decay. Int J Sports Med. 1998;19(Suppl. 2):S157–60.

    PubMed  Google Scholar 

  40. Cedaro R. Environmental factors and exercise performance: a review. 1. Heat and acclimatization. Excel. 1992;8:61–72.

    Google Scholar 

  41. Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211–34.

    CAS  PubMed  Google Scholar 

  42. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  43. Law M, Stewart D, Pollock N, et al. Guidelines for critical review form—quantitative studies. McMaster University: Occupational Therapy Evidence-Based Practice Research Group; 1998. http://www.srs-mcmaster.ca/Portals/20/pdf/ebp/quanreview.pdf. Accessed 17 Aug 2012.

  44. Senay LC, Mitchell D, Wyndham CH. Acclimatization in a hot, humid environment: body fluid adjustments. J Appl Physiol. 1976;40(5):786–96.

    CAS  PubMed  Google Scholar 

  45. Nielsen B, Hales J, Strange S, et al. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol (Lond). 1993;460:467–85.

    CAS  PubMed Central  Google Scholar 

  46. Nielsen B, Strange S, Christensen N, et al. Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflugers Arch. 1997;434(1):49–56.

    CAS  PubMed  Google Scholar 

  47. Kirwan JP, Costill DL, Kuipers H. Substrate utilization in leg muscle of men after heat acclimation. J Appl Physiol. 1987;63(1):31–5.

    CAS  PubMed  Google Scholar 

  48. Fortney SM, Nadel ER, Wenger CB, et al. Effect of acute alterations of blood volume on circulatory performance in humans. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(2):292–8.

    CAS  PubMed  Google Scholar 

  49. Convertino VA. Heart rate and sweat rate responses associated with exercise-induced hypervolemia. Med Sci Sports Exerc. 1983;15(1):77–82.

    CAS  PubMed  Google Scholar 

  50. Rowell LB, Kraning KK II, Kennedy JW, et al. Central circulatory responses to work in dry heat before and after acclimatization. J Appl Physiol. 1967;22(3):509–18.

    CAS  PubMed  Google Scholar 

  51. Wyndham CH, Rogers GG, Senay LC, et al. Acclimization in a hot, humid environment: cardiovascular adjustments. J Appl Physiol. 1976;40(5):779–85.

    CAS  PubMed  Google Scholar 

  52. Levi E, Vivi A, Hasin Y, et al. Heat acclimation improves cardiac mechanics and metabolic performance during ischemia and reperfusion. J Appl Physiol. 1993;75(2):833–9.

    CAS  PubMed  Google Scholar 

  53. Horowitz M, Shimoni Y, Parnes S, et al. Heat acclimation: cardiac performance of isolated rat heart. J Appl Physiol. 1986;60(1):9–13.

    CAS  PubMed  Google Scholar 

  54. Hodge D, Jones D, Martinez R, et al. Time course of the attenuation of sympathetic nervous activity during active heat acclimation. Auton Neurosci. 2013;177(2):101–3.

    PubMed  Google Scholar 

  55. Edwards AM, Mann ME, Marfell-Jones MJ, et al. Influence of moderate dehydration on soccer performance: physiological responses to 45 min of outdoor match-play and the immediate subsequent performance of sport-specific and mental concentration tests. Br J Sports Med. 2007;41(6):385–91.

    PubMed Central  PubMed  Google Scholar 

  56. Edwards AM, Noakes TD. Dehydration: cause of fatigue or sign of pacing in elite soccer? Sports Med. 2009;39(1):1–13.

    PubMed  Google Scholar 

  57. McGregor SJ, Nicholas CW, Lakomy HKA, et al. The influence of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. J Sports Sci. 1999;17(11):895–903.

    CAS  PubMed  Google Scholar 

  58. Nadel ER, Cafarelli E, Roberts MF, et al. Circulatory regulation during exercise in different ambient temperatures. J Appl Physiol. 1979;46(3):430–7.

    CAS  PubMed  Google Scholar 

  59. Finberg J, Berlyne G. Modification of renin and aldosterone response to heat by acclimatization in man. J Appl Physiol Respir Environ Exerc Physiol. 1977;42(4):554–8.

    CAS  PubMed  Google Scholar 

  60. Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med. 2005;39(2):120–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Noakes T. The central governor model of exercise regulation applied to the marathon. Sports Med. 2007;37(4–5):374–7.

    PubMed  Google Scholar 

  62. Gonzalez RR, Pandolf KB, Gagge AP. Heat acclimation and decline in sweating during humidity transients. J Appl Physiol. 1974;36(4):419–25.

    CAS  PubMed  Google Scholar 

  63. Shvartz E, Benor D, Saar E. Acclimatization to severe dry heat by brief exposures to humid heat. Ergonomics. 1972;15(5):563–71.

    CAS  PubMed  Google Scholar 

  64. Aoyagi Y, McLellan T, Shephard R. Effects of training and acclimation on heat tolerance in exercising men wearing protective clothing. Eur J Appl Physiol. 1994;68(3):234–45.

    CAS  Google Scholar 

  65. Shido O, Sugimoto N, Tanabe M, et al. Core temperature and sweating onset in humans acclimated to heat given at a fixed daily time. Am J Physiol. 1999;276:R1095–101.

    CAS  PubMed  Google Scholar 

  66. Armstrong CG, Kenney WL. Effects of age and acclimation on responses to passive heat exposure. J Appl Physiol. 1993;75(5):2162–7.

    CAS  PubMed  Google Scholar 

  67. Roberts MF, Wenger CB, Stolwijk JAJ, et al. Skin blood flow and sweating changes following exercise training and heat acclimation. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(1):133–7.

    CAS  PubMed  Google Scholar 

  68. Nadel ER, Pandolf KB, Roberts MF, et al. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol. 1974;37(4):515–20.

    CAS  PubMed  Google Scholar 

  69. Inoue Y, Shibasaki M, Hirata K, et al. Relationship between skin blood flow and sweating rate, and age related regional differences. Eur J Appl Physiol. 1998;79(1):17–23.

    CAS  Google Scholar 

  70. Takeno Y, Kamijo YI, Nose H. Thermoregulatory and aerobic changes after endurance training in a hypobaric hypoxic and warm environment. J Appl Physiol. 2001;91(4):1520–8.

    CAS  PubMed  Google Scholar 

  71. Fortney SM, Vroman NB, Beckett WS, et al. Effect of exercise hemoconcentration and hyperosmolality on exercise responses. J Appl Physiol. 1988;65(2):519–24.

    CAS  PubMed  Google Scholar 

  72. Convertino VA. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc. 1991;23(12):1338–48.

    CAS  PubMed  Google Scholar 

  73. Simmons GH, Wong BJ, Holowatz LA, et al. Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? Exp Physiol. 2011;96(9):822–8.

    PubMed Central  PubMed  Google Scholar 

  74. Shvartz E, Saar E, Meyerstein N, et al. A comparison of three methods of acclimatization to dry heat. J Appl Physiol. 1973;34(2):214–9.

    CAS  PubMed  Google Scholar 

  75. Piwonka RW, Robinson S. Acclimatization of highly trained men to work in severe heat. J Appl Physiol. 1967;22(1):9–12.

    CAS  PubMed  Google Scholar 

  76. Regan JM, Macfarlane DJ, Taylor NAS. An evaluation of the role of skin temperature during heat adaptation. Acta Physiol Scand. 1996;158(4):365–75.

    CAS  PubMed  Google Scholar 

  77. Austin DJ, Gabbett TJ, Jenkins DJ. Repeated high-intensity exercise in a professional rugby league. J Strength Cond Res. 2011;25(7):1898–904.

    PubMed  Google Scholar 

  78. Thomas MM, Cheung SS, Elder GC, et al. Voluntary muscle activation is impaired by core temperature rather than local muscle temperature. J Appl Physiol. 2006;100(4):1361–9.

    PubMed  Google Scholar 

  79. Aughey RJ, Goodman CA, McKenna MJ. Greater chance of high core temperatures with modified pacing strategy during team sport in the heat. J Sci Med Sport. 2014;17(1):113–8.

    PubMed  Google Scholar 

  80. Duffield R, Coutts AJ, Quinn J. Core temperature responses and match running performance during intermittent-sprint exercise competition in warm conditions. J Strength Cond Res. 2009;23(4):1238–44.

    PubMed  Google Scholar 

  81. González-Alonso J, Calbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824–30.

    PubMed  Google Scholar 

  82. Young AJ, Sawka MN, Levine L. Skeletal muscle metabolism during exercise is influenced by heat acclimation. J Appl Physiol. 1985;59(6):1929–35.

    CAS  PubMed  Google Scholar 

  83. Febbraio MA. Alterations in energy metabolism during exercise and heat stress. Sports Med. 2001;31(1):47–59.

    CAS  PubMed  Google Scholar 

  84. King DS, Costill DL, Fink WJ, et al. Muscle metabolism during exercise in the heat in unacclimatized and acclimatized humans. J Appl Physiol. 1985;59(5):1350–4.

    CAS  PubMed  Google Scholar 

  85. Houmard J, Costill D, Davis J, et al. The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc. 1990;22(5):615–20.

    CAS  PubMed  Google Scholar 

  86. Sawka MN, Pandolf KB, Avellini BA, et al. Does heat acclimation lower the rate of metabolism elicited by muscular exercise? Aviat Space Environ Med. 1983;54(1):27–31.

    CAS  PubMed  Google Scholar 

  87. Givoni B, Goldman RF. Predicting rectal temperature response to work, environment, and clothing. J Appl Physiol. 1972;32(6):812–22.

    CAS  PubMed  Google Scholar 

  88. Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.

    CAS  PubMed  Google Scholar 

  89. Ali A, Williams C, Nicholas CW, et al. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc. 2007;39(11):1969–76.

    CAS  PubMed  Google Scholar 

  90. Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol. 1989;66(1):8–13.

    CAS  PubMed  Google Scholar 

  91. Aoyagi Y, McLellan TM, Shephard RJ. Interactions of physical training and heat acclimation. The thermophysiology of exercising in a hot climate. Sports Med. 1997;23(3):173–210.

    CAS  PubMed  Google Scholar 

  92. Pandolf KB, Burse RL, Goldman RF. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics. 1977;20(4):399–408.

    CAS  PubMed  Google Scholar 

  93. Pandolf KB, Cadarette BS, Sawka MN, et al. Thermoregulatory responses of middle-aged and young men during dry-heat acclimation. J Appl Physiol. 1988;65(1):65–71.

    CAS  PubMed  Google Scholar 

  94. Best S, Thompson M, Caillaud C, et al. Exercise-heat acclimation in young and older trained cyclists. J Sci Med Sport. 2013 Oct 31 [Epub ahead of print].

  95. Dawson B, Pyke FS, Morton AR. Improvements in heat tolerance induced by interval running training in the heat and in sweat clothing in cool conditions. J Sports Sci. 1989;7(3):189–203.

    CAS  PubMed  Google Scholar 

  96. Chinevere TD, Kenefick RW, Cheuvront SN, et al. Effect of heat acclimation on sweat minerals. Med Sci Sports Exerc. 2008;40(5):886–91.

    PubMed  Google Scholar 

  97. Buono MJ, Ball KD, Kolkhorst FW. Sodium ion concentration vs. sweat rate relationship in humans. J Appl Physiol. 2007;103(3):990–4.

    CAS  PubMed  Google Scholar 

  98. Horstman D, Christensen E. Acclimatization to dry heat: active men vs. active women. J Appl Physiol Respir Environ Exerc Physiol. 1982;52(4):825–31.

    CAS  PubMed  Google Scholar 

  99. Shapiro Y, Hubbard R, Kimbrough C, et al. Physiological and hematologic responses to summer and winter dry-heat acclimation. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(4):792–8.

    CAS  PubMed  Google Scholar 

  100. Taylor N. Principles and practices of heat adaptation. J Hum Environ Syst. 2000;4(1):11–22.

    Google Scholar 

  101. Pandolf K, Sawka M, Gonzalez R. Human performance physiology and environmental medicine at terrestrial extremes. United States of America: Benchmark Press Inc.; 1988.

    Google Scholar 

  102. Mujika I. Intense training: The key to optimal performance before and during the taper. Scand J Med Sci Sports. 2010;20(Suppl 2):24–31.

    PubMed  Google Scholar 

  103. Le Meur Y, Hausswirth C, Mujika I. Tapering for competition: a review. Sci Sports. 2012;27(2):77–87.

    Google Scholar 

  104. Pyne DB, Mujika I, Reilly T. Peaking for optimal performance: research limitations and future directions. J Sports Sci. 2009;27(3):195–202.

    PubMed  Google Scholar 

  105. Montain SJ, Sawka MN, Cadarette BS, et al. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol. 1994;77(1):216–22.

    CAS  PubMed  Google Scholar 

  106. Aoyagi Y, McLellan T, Shephard R. Effects of endurance training and heat acclimation on psychological strain in exercising men wearing protective clothing. Ergonomics. 1998;41(3):328–57.

    CAS  PubMed  Google Scholar 

  107. Barnett A, Maughan R. Response of unacclimatized males to repeated weekly bouts of exercise in the heat. Br J Sports Med. 1993;27(1):39–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Fein JT, Haymes EM, Buskirk ER. Effects of daily and intermittent exposures on heat acclimation of women. Int J Biometeorol. 1975;19(1):41–52.

    CAS  PubMed  Google Scholar 

  109. Buchheit M, Racinais S, Bilsborough J, et al. Adding heat to the live-high train-low altitude model: a practical insight from professional football. Br J Sports Med. 2013;47(Suppl 1):i59–69.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors report no conflict of interest. No financial assistance was obtained for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Chalmers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chalmers, S., Esterman, A., Eston, R. et al. Short-Term Heat Acclimation Training Improves Physical Performance: A Systematic Review, and Exploration of Physiological Adaptations and Application for Team Sports. Sports Med 44, 971–988 (2014). https://doi.org/10.1007/s40279-014-0178-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0178-6

Keywords

  • Physical Performance
  • Thermal Comfort
  • Heat Exposure
  • Skin Blood Flow
  • Sweat Rate