Skip to main content

Interference between Concurrent Resistance and Endurance Exercise: Molecular Bases and the Role of Individual Training Variables

Abstract

Concurrent training is defined as simultaneously incorporating both resistance and endurance exercise within a periodized training regime. Despite the potential additive benefits of combining these divergent exercise modes with regards to disease prevention and athletic performance, current evidence suggests that this approach may attenuate gains in muscle mass, strength, and power compared with undertaking resistance training alone. This has been variously described as the interference effect or concurrent training effect. In recent years, understanding of the molecular mechanisms mediating training adaptation in skeletal muscle has emerged and provided potential mechanistic insight into the concurrent training effect. Although it appears that various molecular signaling responses induced in skeletal muscle by endurance exercise can inhibit pathways regulating protein synthesis and stimulate protein breakdown, human studies to date have not observed such molecular ‘interference’ following acute concurrent exercise that might explain compromised muscle hypertrophy following concurrent training. However, given the multitude of potential concurrent training variables and the limitations of existing evidence, the potential roles of individual training variables in acute and chronic interference are not fully elucidated. The present review explores current evidence for the molecular basis of the specificity of training adaptation and the concurrent interference phenomenon. Additionally, insights provided by molecular and performance-based concurrent training studies regarding the role of individual training variables (i.e., within-session exercise order, between-mode recovery, endurance training volume, intensity, and modality) in the concurrent interference effect are discussed, along with the limitations of our current understanding of this complex paradigm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity–from gene to form and function. Rev Physiol Biochem Pharmacol. 2003;146:159–216.

    CAS  PubMed  Google Scholar 

  2. 2.

    Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–63.

    PubMed  Google Scholar 

  3. 3.

    Mahoney DJ, Tarnopolsky MA. Understanding skeletal muscle adaptation to exercise training in humans: contributions from microarray studies. Phys Med Rehabil Clin N Am. 2005;16(4):859–873 vii.

    PubMed  Google Scholar 

  4. 4.

    Stepto NK, Coffey VG, Carey AL, et al. Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc. 2009;41(3):546–65.

    CAS  PubMed  Google Scholar 

  5. 5.

    Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29(3):218–22.

    CAS  PubMed  Google Scholar 

  6. 6.

    Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    PubMed  Google Scholar 

  7. 7.

    Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988;20(5 Suppl):S132–4.

    CAS  PubMed  Google Scholar 

  8. 8.

    Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82.

    CAS  PubMed  Google Scholar 

  9. 9.

    Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56(4):831–8.

    CAS  PubMed  Google Scholar 

  10. 10.

    Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–63.

    CAS  PubMed  Google Scholar 

  11. 11.

    Leveritt M, Abernethy PJ, Barry BK, et al. Concurrent strength and endurance training. A review. Sports Med. 1999;28(6):413–27.

    CAS  PubMed  Google Scholar 

  12. 12.

    Wilson JM, Marin PJ, Rhea MR, et al. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293–307.

    PubMed  Google Scholar 

  13. 13.

    Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc. 2006;38(11):1939–44.

    PubMed  Google Scholar 

  14. 14.

    Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34(3):355–61.

    CAS  PubMed  Google Scholar 

  15. 15.

    Perry CG, Lally J, Holloway GP, et al. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;588(Pt 23):4795–810.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. 16.

    Egan B, O’Connor PL, Zierath JR, et al. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PLoS ONE. 2013;8(9):e74098.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9.

    CAS  PubMed  Google Scholar 

  18. 18.

    Drummond MJ, Fry CS, Glynn EL, et al. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol. 2009;587(Pt 7):1535–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. 19.

    Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002;296(5566):349–52.

    CAS  PubMed  Google Scholar 

  20. 20.

    McGee SL, Hargreaves M. AMPK-mediated regulation of transcription in skeletal muscle. Clin Sci (Lond). 2010;118(8):507–18.

    CAS  Google Scholar 

  21. 21.

    Bolster DR, Crozier SJ, Kimball SR, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002;277(27):23977–80.

    CAS  PubMed  Google Scholar 

  22. 22.

    Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17(15):1829–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. 23.

    Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005;19(7):786–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Apro W, Wang L, Ponten M, et al. Resistance exercise induced mTORC1 signalling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2013;305:E22–32.

    CAS  PubMed  Google Scholar 

  25. 25.

    Carrithers JA, Carroll CC, Coker RH, et al. Concurrent exercise and muscle protein synthesis: implications for exercise countermeasures in space. Aviat Space Environ Med. 2007;78(5):457–62.

    CAS  PubMed  Google Scholar 

  26. 26.

    Donges CE, Burd NA, Duffield R, et al. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J Appl Physiol. 2012;112(12):1992–2001.

    CAS  PubMed  Google Scholar 

  27. 27.

    Coffey VG, Jemiolo B, Edge J, et al. Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1441–51.

    CAS  PubMed  Google Scholar 

  28. 28.

    Coffey VG, Pilegaard H, Garnham AP, et al. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol. 2009;106(4):1187–97.

    CAS  PubMed  Google Scholar 

  29. 29.

    Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, et al. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc. 2012;44(9):1680–8.

    CAS  PubMed  Google Scholar 

  30. 30.

    Wang L, Mascher H, Psilander N, et al. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol. 2011;111(5):1335–44.

    CAS  PubMed  Google Scholar 

  31. 31.

    Evans WJ. What is sarcopenia? J Gerontol A Biol Sci Med Sci. 1995;50:5–8.

    PubMed  Google Scholar 

  32. 32.

    Pijnappels M, van der Burg PJ, Reeves ND, et al. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol. 2008;102(5):585–92.

    PubMed Central  PubMed  Google Scholar 

  33. 33.

    Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96(3):885–92.

    CAS  PubMed  Google Scholar 

  34. 34.

    Kelley DE, Mintun MA, Watkins SC, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996;97(12):2705–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. 35.

    Morino K, Petersen KF, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115(12):3587–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. 36.

    Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.

    CAS  PubMed  Google Scholar 

  37. 37.

    Helgerud J, Rodas G, Kemi OJ, et al. Strength and endurance in elite football players. Int J Sports Med. 2011;32(9):677–82.

    CAS  PubMed  Google Scholar 

  38. 38.

    Bell GJ, Syrotuik D, Martin TP, et al. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol. 2000;81(5):418–27.

    CAS  PubMed  Google Scholar 

  39. 39.

    Dolezal BA, Potteiger JA. Concurrent resistance and endurance training influence basal metabolic rate in nondieting individuals. J Appl Physiol. 1998;85(2):695–700.

    CAS  PubMed  Google Scholar 

  40. 40.

    Hakkinen K, Alen M, Kraemer WJ, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89(1):42–52.

    CAS  PubMed  Google Scholar 

  41. 41.

    Kraemer WJ, Patton JF, Gordon SE, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78(3):976–89.

    CAS  PubMed  Google Scholar 

  42. 42.

    McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002;34(3):511–9.

    PubMed  Google Scholar 

  43. 43.

    Leveritt M, Abernethy P. Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res. 1999;13:47–51.

    Google Scholar 

  44. 44.

    Hennessy L, Watson A. The interference effects of training for strength and endurance simultaneously. J Strength Cond Res. 1994;12:9–12.

    Google Scholar 

  45. 45.

    Hunter G, Demment R, Miller D. Development of strength and maximum oxygen uptake during simultaneous training for strength and endurance. J Sports Med Phys Fitness. 1987;27:269–75.

    CAS  PubMed  Google Scholar 

  46. 46.

    Chromiak JA, Mulvaney DR. A review: the effects of combined strength and endurance training on strength development. J Appl Sport Sci Res. 1990;4:55–60.

    Google Scholar 

  47. 47.

    Aagaard P, Andersen JL. Effects of strength training on endurance capacity in top-level endurance athletes. Scand J Med Sci Sports. 2010;20(Suppl 2):39–47.

    PubMed  Google Scholar 

  48. 48.

    Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports. 2011;21(6):e298–307.

    CAS  PubMed  Google Scholar 

  49. 49.

    Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol. 2003;546(Pt 3):851–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. 50.

    Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.

    CAS  PubMed  Google Scholar 

  51. 51.

    Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663–79.

    PubMed  Google Scholar 

  52. 52.

    Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1 Pt 1):E99–107.

    CAS  PubMed  Google Scholar 

  53. 53.

    Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590(Pt 5):1049–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. 54.

    Leger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576(Pt 3):923–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. 55.

    Baar K. The signaling underlying FITness. Appl Physiol Nutr Metab. 2009;34(3):411–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002;16(14):1879–86.

    CAS  PubMed  Google Scholar 

  57. 57.

    Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In: Peachley LD, editor. Handbook of physiology, skeletal muscle. Bethesda: American Physiological Society; 1983. p. 555–631.

    Google Scholar 

  58. 58.

    Camera DM, Edge J, Short MJ, et al. Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc. 2010;42(10):1843–52.

    CAS  PubMed  Google Scholar 

  59. 59.

    Coffey VG, Shield A, Canny BJ, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab. 2006;290(5):E849–55.

    CAS  PubMed  Google Scholar 

  60. 60.

    Coffey VG, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190–2.

    CAS  PubMed  Google Scholar 

  61. 61.

    Vissing K, McGee SL, Farup J, et al. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. 2011;23(3):355–66.

    Google Scholar 

  62. 62.

    Wilkinson SB, Phillips SM, Atherton PJ, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(Pt 15):3701–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. 63.

    Benziane B, Burton TJ, Scanlan B, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295(6):E1427–38.

    CAS  PubMed  Google Scholar 

  64. 64.

    Mascher H, Andersson H, Nilsson PA, et al. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. Acta Physiol (Oxf). 2007;191(1):67–75.

    CAS  Google Scholar 

  65. 65.

    Mascher H, Ekblom B, Rooyackers O, et al. Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects. Acta Physiol (Oxf). 2011;202(2):175–84.

    CAS  Google Scholar 

  66. 66.

    Bentzinger CF, Romanino K, Cloetta D, et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 2008;8(5):411–24.

    CAS  PubMed  Google Scholar 

  67. 67.

    Cunningham JT, Rodgers JT, Arlow DH, et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450(7170):736–40.

    CAS  PubMed  Google Scholar 

  68. 68.

    Schieke SM, Phillips D, McCoy JP Jr, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem. 2006;281(37):27643–52.

    CAS  PubMed  Google Scholar 

  69. 69.

    Dreyer HC, Fujita S, Cadenas JG, et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. 2006;576(Pt 2):613–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. 70.

    Koopman R, Zorenc AH, Gransier RJ, et al. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab. 2006;290(6):E1245–52.

    CAS  PubMed  Google Scholar 

  71. 71.

    Goodman CA, Miu MH, Frey JW, et al. A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell. 2010;21(18):3258–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. 72.

    Hornberger TA, Sukhija KB, Chien S. Regulation of mTOR by mechanically induced signaling events in skeletal muscle. Cell Cycle. 2006;5(13):1391–6.

    CAS  PubMed  Google Scholar 

  73. 73.

    Deldicque L, Theisen D, Francaux M. Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol. 2005;94(1–2):1–10.

    CAS  PubMed  Google Scholar 

  74. 74.

    Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. 75.

    West DW, Burd NA, Staples AW, et al. Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process. Int J Biochem Cell Biol. 2010;42(9):1371–5.

    CAS  PubMed  Google Scholar 

  76. 76.

    West DW, Kujbida GW, Moore DR, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. 77.

    McConell GK, Lee-Young RS, Chen ZP, et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol. 2005;568(Pt 2):665–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. 78.

    Drummond MJ, Dreyer HC, Pennings B, et al. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol. 2008;104(5):1452–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. 79.

    Fry CS, Drummond MJ, Glynn EL, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1(1):11.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. 80.

    Raue U, Trappe TA, Estrem ST, et al. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol. 2012;112(10):1625–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. 81.

    Timmons JA, Knudsen S, Rankinen T, et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol. 2010;108(6):1487–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. 82.

    Creer A, Gallagher P, Slivka D, et al. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol. 2005;99(3):950–6.

    CAS  PubMed  Google Scholar 

  83. 83.

    Churchley EG, Coffey VG, Pedersen DJ, et al. Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J Appl Physiol. 2007;102(4):1604–11.

    CAS  PubMed  Google Scholar 

  84. 84.

    Yeo WK, McGee SL, Carey AL, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95(2):351–8.

    CAS  PubMed  Google Scholar 

  85. 85.

    Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006;38(11):1965–70.

    PubMed  Google Scholar 

  86. 86.

    Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012;52:381–400.

    CAS  PubMed  Google Scholar 

  87. 87.

    Mounier R, Lantier L, Leclerc J, et al. Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle. 2011;10(16):2640–6.

    CAS  PubMed  Google Scholar 

  88. 88.

    Kimball SR. Interaction between the AMP-activated protein kinase and mTOR signaling pathways. Med Sci Sports Exerc. 2006;38(11):1958–64.

    CAS  PubMed  Google Scholar 

  89. 89.

    Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    CAS  PubMed  Google Scholar 

  90. 90.

    Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.

    CAS  PubMed  Google Scholar 

  91. 91.

    Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. 92.

    Thomson DM, Fick CA, Gordon SE. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol. 2008;104(3):625–32.

    CAS  PubMed  Google Scholar 

  93. 93.

    Katta A, Kakarla SK, Manne ND, et al. Diminished muscle growth in the obese Zucker rat following overload is associated with hyperphosphorylation of AMPK and dsRNA-dependent protein kinase. J Appl Physiol. 2012;113(3):377–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. 94.

    McGee SL, Mustard KJ, Hardie DG, et al. Normal hypertrophy accompanied by phosphorylation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol. 2008;586(6):1731–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. 95.

    Hahn-Windgassen A, Nogueira V, Chen CC, et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280(37):32081–9.

    CAS  PubMed  Google Scholar 

  96. 96.

    Mounier R, Lantier L, Leclerc J, et al. Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy. FASEB J. 2009;23(7):2264–73.

    CAS  PubMed  Google Scholar 

  97. 97.

    Jorgensen SB, Viollet B, Andreelli F, et al. Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem. 2004;279(2):1070–9.

    CAS  PubMed  Google Scholar 

  98. 98.

    Sanchez AM, Candau RB, Csibi A, et al. The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Am J Physiol Cell Physiol. 2012;303(5):C475–85.

    CAS  PubMed  Google Scholar 

  99. 99.

    Sanchez AM, Csibi A, Raibon A, et al. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J Cell Biochem. 2012;113(2):695–710.

    CAS  PubMed  Google Scholar 

  100. 100.

    Tong JF, Yan X, Zhu MJ, et al. AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. J Cell Biochem. 2009;108(2):458–68.

    CAS  PubMed  Google Scholar 

  101. 101.

    Nakashima K, Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem. 2007;71(7):1650–6.

    CAS  PubMed  Google Scholar 

  102. 102.

    Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. 103.

    Weigl LG. Lost in translation: regulation of skeletal muscle protein synthesis. Curr Opin Pharmacol. 2012;12(3):377–82.

    CAS  PubMed  Google Scholar 

  104. 104.

    Kapp LD, Lorsch JR. The molecular mechanics of eukaryotic translation. Annu Rev Biochem. 2004;73:657–704.

    CAS  PubMed  Google Scholar 

  105. 105.

    Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002;269(22):5360–8.

    CAS  PubMed  Google Scholar 

  106. 106.

    Rose AJ, Frosig C, Kiens B, et al. Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. J Physiol. 2007;583(Pt 2):785–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. 107.

    Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol. 2006;574(Pt 3):889–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. 108.

    Browne GJ, Finn SG, Proud CG. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem. 2004;279(13):12220–31.

    CAS  PubMed  Google Scholar 

  109. 109.

    Browne GJ, Proud CG. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol. 2004;24(7):2986–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. 110.

    Wang X, Li W, Williams M, et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20(16):4370–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. 111.

    Sofer A, Lei K, Johannessen CM, et al. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol. 2005;25(14):5834–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. 112.

    Kimball SR, Do AN, Kutzler L, et al. Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis. J Biol Chem. 2008;283(6):3465–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. 113.

    Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893–904.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. 114.

    DeYoung MP, Horak P, Sofer A, et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22(2):239–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. 115.

    Favier FB, Costes F, Defour A, et al. Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1659–66.

    CAS  PubMed  Google Scholar 

  116. 116.

    Murakami T, Hasegawa K, Yoshinaga M. Rapid induction of REDD1 expression by endurance exercise in rat skeletal muscle. Biochem Biophys Res Commun. 2011;405(4):615–9.

    CAS  PubMed  Google Scholar 

  117. 117.

    Hulmi JJ, Silvennoinen M, Lehti M, et al. Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy. Am J Physiol Endocrinol Metab. 2012;302(3):E307–15.

    CAS  PubMed  Google Scholar 

  118. 118.

    Drummond MJ, Fujita S, Abe T, et al. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc. 2008;40(4):691–8.

    CAS  PubMed  Google Scholar 

  119. 119.

    Philp A, Chen A, Lan D, et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem. 2011;286(35):30561–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. 120.

    Philp A, Schenk S. Unraveling the complexities of SIRT1-mediated mitochondrial regulation in skeletal muscle. Exerc Sport Sci Rev. 2013;41(3):174–81.

    PubMed  Google Scholar 

  121. 121.

    Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE. 2010;5(2):e9199.

    PubMed Central  PubMed  Google Scholar 

  122. 122.

    Hamilton DL, Philp A. Can AMPK mediated suppression of mTORC1 explain the concurrent training effect? Cell Mol Exp Physiol. 2013;2(1).

  123. 123.

    Yang Y, Creer A, Jemiolo B, et al. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol. 2005;98(5):1745–52.

    CAS  PubMed  Google Scholar 

  124. 124.

    Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, et al. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol. 2013;114(1):81–9.

    PubMed  Google Scholar 

  125. 125.

    de Souza EO, Tricoli V, Roschel H, et al. Molecular adaptations to concurrent training. Int J Sports Med. 2013;34(3):207–13.

    PubMed  Google Scholar 

  126. 126.

    Atherton PJ, Etheridge T, Watt PW, et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010;92(5):1080–8.

    CAS  PubMed  Google Scholar 

  127. 127.

    Phillips BE, Williams JP, Gustafsson T, et al. Molecular networks of human muscle adaptation to exercise and age. PLOS Genet. 2013;9(3):1–15.

    Google Scholar 

  128. 128.

    Crozier SJ, Kimball SR, Emmert SW, et al. Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr. 2005;135(3):376–82.

    CAS  PubMed  Google Scholar 

  129. 129.

    Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999;276(1 Pt 1):C120–7.

    CAS  PubMed  Google Scholar 

  130. 130.

    Terzis G, Georgiadis G, Stratakos G, et al. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol. 2008;102(2):145–52.

    CAS  PubMed  Google Scholar 

  131. 131.

    Mayhew DL, Hornberger TA, Lincoln HC, et al. Eukaryotic initiation factor 2B epsilon induces cap-dependent translation and skeletal muscle hypertrophy. J Physiol. 2011;589(Pt 12):3023–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. 132.

    Drummond MJ, Fry CS, Glynn EL, et al. Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol. 2011;111(1):135–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. 133.

    Deldicque L, Atherton P, Patel R, et al. Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. Eur J Appl Physiol. 2008;104(1):57–65.

    CAS  PubMed  Google Scholar 

  134. 134.

    Ogasawara R, Kobayashi K, Tsutaki A, et al. mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. J Appl Physiol. 2013;114(7):934–40.

    CAS  PubMed  Google Scholar 

  135. 135.

    Hawley JA, Burke LM, Phillips SM, et al. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol. 2011;110(3):834–45.

    CAS  PubMed  Google Scholar 

  136. 136.

    Beelen M, Burke LM, Gibala MJ, et al. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.

    CAS  PubMed  Google Scholar 

  137. 137.

    Cochran AJ, Little JP, Tarnopolsky MA, et al. Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. J Appl Physiol. 2010;108(3):628–36.

    CAS  PubMed  Google Scholar 

  138. 138.

    Psilander N, Frank P, Flockhart M, et al. Exercise with low glycogen increases PGC-1alpha gene expression in human skeletal muscle. Eur J Appl Physiol. 2012;113(4):951–63.

    PubMed  Google Scholar 

  139. 139.

    Camera DM, West DW, Burd NA, et al. Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. J Appl Physiol. 2012;113(2):206–14.

    CAS  PubMed  Google Scholar 

  140. 140.

    Hulston CJ, Venables MC, Mann CH, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42(11):2046–55.

    CAS  PubMed  Google Scholar 

  141. 141.

    Ortenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;15(591 (Pt 18)):4405–13.

    Google Scholar 

  142. 142.

    Derave W, Hansen BF, Lund S, et al. Muscle glycogen content affects insulin-stimulated glucose transport and protein kinase B activity. Am J Physiol Endocrinol Metab. 2000;279(5):E947–55.

    CAS  PubMed  Google Scholar 

  143. 143.

    Blomstrand E, Eliasson J, Karlsson HK, et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1 Suppl):269S–73S.

    CAS  PubMed  Google Scholar 

  144. 144.

    Rennie MJ, Bohe J, Smith K, et al. Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr. 2006;136(1 Suppl):264S–8S.

    CAS  PubMed  Google Scholar 

  145. 145.

    Jamart C, Naslain D, Gilson H, et al. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol Endocrinol Metab. 2013;305:E964–74.

    CAS  PubMed  Google Scholar 

  146. 146.

    Coffey VG, Moore DR, Burd NA, et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111(7):1473–83.

    CAS  PubMed  Google Scholar 

  147. 147.

    Areta JL, Burke LM, Ross ML, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591(Pt 9):2319–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. 148.

    Lambert CP, Frank LL, Evans WJ. Macronutrient considerations for the sport of bodybuilding. Sports Med. 2004;34(5):317–27.

    PubMed  Google Scholar 

  149. 149.

    Blomstrand E, Saltin B. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol. 1999;514(Pt 1):293–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. 150.

    Chtara M, Chaouachi A, Levin GT, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res. 2008;22(4):1037–45.

    PubMed  Google Scholar 

  151. 151.

    Collins MA, Snow TK. Are adaptations to combined endurance and strength training affected by the sequence of training? J Sports Sci. 1993;11(6):485–91.

    CAS  PubMed  Google Scholar 

  152. 152.

    Gravelle BL, Blessing DL. Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res. 2000;14:5–13.

    Google Scholar 

  153. 153.

    Cadore EL, Izquierdo M, Alberton CL, et al. Strength prior to endurance intra-session exercise sequence optimizes neuromuscular and cardiovascular gains in elderly men. Exp Gerontol. 2012;47(2):164–9.

    PubMed  Google Scholar 

  154. 154.

    Cadore EL, Izquierdo M, Goncalves Dos Santos M, et al. Hormonal responses to concurrent strength and endurance training with different exercise orders. J Strength Cond Res. 2012;26(12):3281–8.

    PubMed  Google Scholar 

  155. 155.

    Cadore EL, Izquierdo M, Pinto SS, et al. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age (Dordr). 2012;35(3):891–903.

    Google Scholar 

  156. 156.

    Craig B, Lucas J, Pohlman R. Effects of running, weightlifting and a combination of both on growth hormone release. J Appl Sport Sci Res. 1991;5:198–203.

    Google Scholar 

  157. 157.

    Wojtaszewski JF, MacDonald C, Nielsen JN, et al. Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 2003;284(4):E813–22.

    CAS  PubMed  Google Scholar 

  158. 158.

    Lee-Young RS, Koufogiannis G, Canny BJ, et al. Acute exercise does not cause sustained elevations in AMPK signaling or expression. Med Sci Sports Exerc. 2008;40(8):1490–4.

    CAS  PubMed  Google Scholar 

  159. 159.

    Bentley DJ, Smith PA, Davie AJ, et al. Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol. 2000;81(4):297–302.

    CAS  PubMed  Google Scholar 

  160. 160.

    Bentley DJ, Zhou S, Davie AJ. The effect of endurance exercise on muscle force generating capacity of the lower limbs. J Sci Med Sport. 1998;1(3):179–88.

    CAS  PubMed  Google Scholar 

  161. 161.

    Sporer BC, Wenger HA. Effects of aerobic exercise on strength performance following various periods of recovery. J Strength Cond Res. 2003;17(4):638–44.

    PubMed  Google Scholar 

  162. 162.

    Henneman E. Relation between size of neurons and their susceptibility to discharge. Science. 1957;126(3287):1345–7.

    CAS  PubMed  Google Scholar 

  163. 163.

    Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15:95–151.

    CAS  PubMed  Google Scholar 

  164. 164.

    Tannerstedt J, Apro W, Blomstrand E. Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol. 2009;106(4):1412–8.

    CAS  PubMed  Google Scholar 

  165. 165.

    Parkington JD, Siebert AP, LeBrasseur NK, et al. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R1086–90.

    CAS  PubMed  Google Scholar 

  166. 166.

    Rose AJ, Alsted TJ, Jensen TE, et al. A Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. J Physiol. 2009;587(Pt 7):1547–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. 167.

    Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.

    PubMed  Google Scholar 

  168. 168.

    Atherton PJ, Rennie MJ. Protein synthesis a low priority for exercising muscle. J Physiol. 2006;573(Pt 2):288–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. 169.

    Sale DG, Jacobs I, MacDougall JD, et al. Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc. 1990;22(3):348–56.

    CAS  PubMed  Google Scholar 

  170. 170.

    Bartlett JD, Hwa Joo C, Jeong TS, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1alpha mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112(7):1135–43.

    CAS  PubMed  Google Scholar 

  171. 171.

    Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. 172.

    Gibala MJ, Little JP, Macdonald MJ, et al. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(Pt 5):1077–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. 173.

    Gibala MJ, McGee SL, Garnham AP, et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol. 2009;106(3):929–34.

    CAS  PubMed  Google Scholar 

  174. 174.

    Little JP, Safdar A, Bishop D, et al. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1303–10.

    CAS  PubMed  Google Scholar 

  175. 175.

    Little JP, Safdar A, Wilkin GP, et al. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(Pt 6):1011–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. 176.

    Little JP, Gillen JB, Percival ME, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol. 2011;111(6):1554–60.

    CAS  PubMed  Google Scholar 

  177. 177.

    Silva RF, Cadore EL, Kothe G, et al. Concurrent training with different aerobic exercises. Int J Sports Med. 2012;33(8):627–34.

    CAS  PubMed  Google Scholar 

  178. 178.

    Ronnestad BR, Hansen EA, Raastad T. High volume of endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur J Appl Physiol. 2012;112(4):1457–66.

    PubMed  Google Scholar 

  179. 179.

    Jones TW, Howatson G, Russell M, et al. Performance and neuromuscular adaptations following differing ratios of concurrent strength and endurance training. J Strength Cond Res. 2013;27(12):3342–51.

    PubMed  Google Scholar 

  180. 180.

    Metcalfe RS, Babraj JA, Fawkner SG, et al. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112(7):2767–75.

    PubMed  Google Scholar 

  181. 181.

    Rose AJ, Bisiani B, Vistisen B, et al. Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R326–33.

    CAS  PubMed  Google Scholar 

  182. 182.

    Chen ZP, McConell GK, Michell BJ, et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab. 2000;279(5):E1202–6.

    CAS  PubMed  Google Scholar 

  183. 183.

    Wojtaszewski JF, Mourtzakis M, Hillig T, et al. Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun. 2002;298(3):309–16.

    CAS  PubMed  Google Scholar 

  184. 184.

    Leveritt M, MacLaughlin H, Abernethy PJ. Changes in leg strength 8 and 32 h after endurance exercise. J Sports Sci. 2000;18(11):865–71.

    CAS  PubMed  Google Scholar 

  185. 185.

    Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. 186.

    Thomson JA, Green HJ, Houston ME. Muscle glycogen depletion patterns in fast twitch fibre subgroups of man during submaximal and supramaximal exercise. Pflugers Arch. 1979;379(1):105–8.

    CAS  PubMed  Google Scholar 

  187. 187.

    Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. 188.

    Glowacki SP, Martin SE, Maurer A, et al. Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc. 2004;36(12):2119–27.

    PubMed  Google Scholar 

  189. 189.

    Gergley JC. Comparison of two lower-body modes of endurance training on lower-body strength development while concurrently training. J Strength Cond Res. 2009;23(3):979–87.

    PubMed  Google Scholar 

Download references

Acknowledgments

No funding was used to assist in the preparation of this review. The authors have no conflicts of interest to declare that are directly relevant to the contents of this review. The authors would like to thank Keith Baar (University of California Davis) for providing insightful comments on drafts of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jackson J. Fyfe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fyfe, J.J., Bishop, D.J. & Stepto, N.K. Interference between Concurrent Resistance and Endurance Exercise: Molecular Bases and the Role of Individual Training Variables. Sports Med 44, 743–762 (2014). https://doi.org/10.1007/s40279-014-0162-1

Download citation

Keywords

  • Resistance Exercise
  • Endurance Training
  • Endurance Exercise
  • Training Adaptation
  • Protein Synthesis Rate