Skip to main content

The Effect of Strength Training on Performance in Endurance Athletes



Economy, velocity/power at maximal oxygen uptake (\( {\text {v}} \dot{V}{\text{O}}_{2 \, \hbox{max} } /{\text w}\dot{V}{\text{O}}_{2 \, \hbox{max} } \)) and endurance-specific muscle power tests (i.e. maximal anaerobic running velocity; vMART), are now thought to be the best performance predictors in elite endurance athletes. In addition to cardiovascular function, these key performance indicators are believed to be partly dictated by the neuromuscular system. One technique to improve neuromuscular efficiency in athletes is through strength training.


The aim of this systematic review was to search the body of scientific literature for original research investigating the effect of strength training on performance indicators in well-trained endurance athletes—specifically economy, \( {\text{v}}\dot{V}{\text{O}}_{2 \, \hbox{max} } /\,{\text{w}}\dot{V}{\text{O}}_{2 \, \hbox{max} } \) and muscle power (vMART).


A search was performed using the MEDLINE, PubMed, ScienceDirect, SPORTDiscus and Web of Science search engines. Twenty-six studies met the inclusion criteria (athletes had to be trained endurance athletes with ≥6 months endurance training, training ≥6 h per week OR \( \dot{V}{\text{O}}_{2 \, \hbox{max} } \) ≥50 mL/min/kg, the strength interventions had to be ≥5 weeks in duration, and control groups used). All studies were reviewed using the PEDro scale.


The results showed that strength training improved time-trial performance, economy, \( {\text{v}}\dot{V}{\text{O}}_{2 \, \hbox{max} } /{\text{w}}\dot{V}{\text{O}}_{2 \, \hbox{max} } \) and vMART in competitive endurance athletes.


The present research available supports the addition of strength training in an endurance athlete’s programme for improved economy, \( {\text{v}}\dot{V}{\text{O}}_{2 \, \hbox{max} } /{\text{w}}\dot{V}{\text{O}}_{2 \, \hbox{max} } \), muscle power and performance. However, it is evident that further research is needed. Future investigations should include valid strength assessments (i.e. squats, jump squats, drop jumps) through a range of velocities (maximal-strength ↔ strength-speed ↔ speed-strength ↔ reactive-strength), and administer appropriate strength programmes (exercise, load and velocity prescription) over a long-term intervention period (>6 months) for optimal transfer to performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.

    PubMed  Article  Google Scholar 

  2. 2.

    Paavolainen L, Nummela A, Rusko H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand J Med Sci Sports. 2000;10:286–91.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37(4–5):316–9.

    PubMed  Article  Google Scholar 

  4. 4.

    Fletcher JR, Esau SP, MacIntosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107:1918–22.

    PubMed  Article  Google Scholar 

  5. 5.

    Paavolainen L, Hakkinen K, Hamalainen I, et al. Explosive strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86:1527–33.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Nummela A, Alberts M, Rijntjes RP, et al. Reliability and validity of the maximal anaerobic running test. Int J Sports Med. 1996;17(2 Suppl):97–102.

    Article  Google Scholar 

  7. 7.

    McLaughlin JE, Howley ET, Bassett DR, et al. Test of the classic model for predicting endurance running performance. Med Sci Sports Exerc. 2010;42(5):991–7.

    PubMed  Article  Google Scholar 

  8. 8.

    Millet GP, Dréano P, Bentley DJ. Physiological characteristics of elite short- and long-distance triathletes. Eur J Appl Physiol. 2003;88:427–30.

    PubMed  Article  Google Scholar 

  9. 9.

    Zatsiorsky VM. Science and practice of strength training. Champaign: Human Kinetics; 1995.

    Google Scholar 

  10. 10.

    Karp JR. Training characteristics of qualifiers for the U.S. Olympic Marathon Trials. Int J Sports Physiol Perform. 2007;2:72–92.

    PubMed  Google Scholar 

  11. 11.

    Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    PubMed  Google Scholar 

  12. 12.

    Johnston RE, Quinn TJ, Kertzer R, et al. Strength training in female distance runners: impact on running economy. J Strength Cond Res. 1997;11(4):224–9.

    Google Scholar 

  13. 13.

    Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89:1–7.

    PubMed  Article  Google Scholar 

  14. 14.

    Saunders PU, Telford RD, Pyne DB, et al. Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res. 2006;20(4):947–54.

    PubMed  Google Scholar 

  15. 15.

    Berryman N, Maurel D, Bosquet L. Effect of plyometric vs. dynamic weight training on the energy cost of running. J Strength Cond Res. 2010;24(7):1818–25.

    PubMed  Article  Google Scholar 

  16. 16.

    Fletcher JR, Esau SP, MacIntosh BR. Changes in tendon stiffness and running economy in highly trained distance runners. Eur J Appl Physiol. 2010;110:1037–46.

    PubMed  Article  Google Scholar 

  17. 17.

    Jackson NP, Matthew SH, Reiser RF. High resistance/low repetition vs. low resistance/high repetition training: effects on performance of trained cyclists. J Strength Cond Res. 2007;21(1):289–95.

    PubMed  Google Scholar 

  18. 18.

    Levin GT, McGuigan MR, Laursen PB. Effect of concurrent resistance and endurance training on physiologic and performance parameters of well-trained endurance cyclists. J Strength Cond Res. 2009;23(8):2280–6.

    PubMed  Article  Google Scholar 

  19. 19.

    Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young cyclists. Scand J Med Sci Sports. 2011;21:298–307.

    Article  Google Scholar 

  20. 20.

    Hoff J, Helgerud J, Wisløff U. Maximal strength training improves work economy in trained female cross-country skiers. Med Sci Sports Exerc. 1999;31(6):870–7.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Hoff J, Gran A, Helgerud J. Maximal strength training improves aerobic performance. Scand J Med Sci Sports. 2002;12:288–95.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Østerås H, Helgerud J, Hoff J. Maximal strength-training effects on force–velocity and force–power relationships explain increases in aerobic performance in humans. Eur J Appl Physiol. 2002;88:255–63.

    PubMed  Article  Google Scholar 

  23. 23.

    Millet GP, Jaouen B, Borrani F, et al. Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med Sci Sports Exerc. 2002;34(8):1351–9.

    PubMed  Article  Google Scholar 

  24. 24.

    Hausswirth C, Argentin S, Bieuzen Y, et al. Endurance and strength training effects on physiological and muscular parameters during prolonged cycling. J Electromyogr Kinesiol. 2009;20:330–9.

    PubMed  Article  Google Scholar 

  25. 25.

    Bonacci J, Green D, Saunders PU, et al. Plyometric training as an intervention to correct altered neuromotor control during running after cycling in triathletes: a preliminary randomized controlled trial. Phys Ther Sport. 2011;12:15–21.

    PubMed  Article  Google Scholar 

  26. 26.

    Mikkola JS, Rusko HK, Nummela AT, et al. Concurrent endurance and explosive type strength training increases activation and fast force production of leg extensor muscles in endurance athletes. J Strength Cond Res. 2007;21(2):613–20.

    PubMed  Google Scholar 

  27. 27.

    Mikkola J, Rusko H, Nummela A, et al. Concurrent endurance and explosive type strength training improves neuromuscular and anaerobic characteristics in young distance runners. Int J Sports Med. 2007;28(7):602–11.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Rønnestad BR, Hansen EA, Raastad T. In-season strength maintenance training increases well-trained cyclists’ performance. Eur J Appl Physiol. 2010;110(6):1269–82.

    PubMed  Article  Google Scholar 

  29. 29.

    Rønnestad BR, Hansen EA, Raastad T. Strength training affects tendon cross-sectional area and freely chosen cadence differently in non-cyclists and well-trained cyclists. J Strength Cond Res. 2012;26(1):158–66.

    PubMed  Article  Google Scholar 

  30. 30.

    Rønnestad BR, Hansen EA, Raastad T. Strength training improves 5-min all out performance following 185 min of cycling. Scand J Med Sci Sports. 2011;21(2):250–9.

    PubMed  Article  Google Scholar 

  31. 31.

    Rønnestad BR, Hansen EA, Raastad T. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol. 2010;108:965–75.

    PubMed  Article  Google Scholar 

  32. 32.

    Rønnestad BR, Kojedal Ø, Losnegard T, et al. Effect of heavy strength training on muscle thickness, strength, jump performance, and endurance performance in well-trained Nordic Combined athletes. Eur J Appl Physiol. 2012;112:2241–352.

    Google Scholar 

  33. 33.

    Losnegard T, Mikkelson K, Rønnestad BR, et al. The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. Scand J Med Sci Sports. 2011;21:389–401.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Sunde A, Støren Ø, Bjerkaas M, et al. Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res. 2010;24(8):2157–65.

    PubMed  Article  Google Scholar 

  35. 35.

    Bastiaans JJ, Van Diemen AB, Veneberg T, et al. The effects of replacing a portion of endurance training by explosive strength training on performance in trained cyclists. Eur J Appl Physiol. 2001;86:79–84.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Støren O, Helgerud J, Støa EM, et al. Maximal strength training improves running economy in distance runners. Med Sci Sports Exerc. 2008;40:1089–94.

    Article  Google Scholar 

  37. 37.

    Newton RU, Cormie P, Cardinale M. Principles of athletic testing. In: Cardinale M, Newton R, Nosaka K, editors. Strength and conditioning: biological principles and practical application. Oxford: Wiley-Blackwell; 2011. p. 255–70.

    Google Scholar 

  38. 38.

    Siff M. Supertraining. 2nd ed. Denver (CO): Supertraining Institute; 2003. p. 20.

    Google Scholar 

  39. 39.

    Brughelli M, Cronin J. Influence of running velocity on vertical, leg and joint stiffness: modelling and recommendations for future research. Sports Med. 2008;38(8):647–67.

    PubMed  Article  Google Scholar 

  40. 40.

    Schmidtbleicher D. Training for power events. In: Komi PV, editor. The encyclopedia of sports medicine. Vol. 3: strength and power in sport. Oxford: Blackwell; 1992. p. 169–79.

    Google Scholar 

  41. 41.

    Flanagan EP, Comyns TM. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J. 2008;30(5):32–8.

    Article  Google Scholar 

  42. 42.

    Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of world class cycling. J Sci Med Sports. 2000;3(4):414–33.

    CAS  Article  Google Scholar 

  43. 43.

    Saunders PU, Pyne DB, Telford RD, et al. Factors affecting running economy in trained distance runners. Sports Med. 2004;34(7):465–85.

    PubMed  Article  Google Scholar 

  44. 44.

    Noakes TD. Lore of running. 4th ed. Champaign: Human kinetics; 2003. p. 19–21.

    Google Scholar 

  45. 45.

    Berg K. Endurance training and performance in runners: research limitations and unanswered questions. Sports Med. 2003;33(1):59–73.

    PubMed  Article  Google Scholar 

  46. 46.

    Paavolainen LM, Nummela AT, Rusko HK. Neuromuscular characteristics and muscle power as determinants of 5 km running performance. Med Sci Sports Exerc. 1999;31:124–30.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc. 1988;20:319–30.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.

    PubMed  Article  Google Scholar 

  49. 49.

    Appleby B, Newton RU, Cormie P. Changes in strength over a 2-year period in professional rugby union players. J Strength Cond Res. 2012;26(9):2538–46.

    PubMed  Article  Google Scholar 

  50. 50.

    Stone MH, Stone ME. Resistance training modes: a practical perspective. In: Cardinale M, Newton R, Nosaka K, editors. Strength and conditioning: biological principles and practical application. Oxford: Wiley-Blackwell; 2011. p. 353.

    Google Scholar 

  51. 51.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Part 2: training considerations for improving maximal power production. Sports Med. 2011;41(2):125–46.

    PubMed  Article  Google Scholar 

  52. 52.

    Stensdotter AK, Hodges PW, Mellor R, et al. Quadriceps activation in closed and in open kinetic chain exercise. Med Sci Sports Exerc. 2003;35(12):2043–7.

    PubMed  Article  Google Scholar 

  53. 53.

    Cormie R, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42(8):1582–98.

    PubMed  Article  Google Scholar 

  54. 54.

    Kaneko M, Fuchimoto T, Toji H, et al. Training effect of different loads on the force–velocity relationship and mechanical power output in human muscle. Scand J Med Sci Sports. 1983;5(2):50–5.

    Google Scholar 

  55. 55.

    Dymond C, Flanagan EP, Turner AP. The relationship between maximal strength and plyometric ability in rugby players. Rev Port Cein Desp. 2011;11 Suppl. 2:77–80.

    Google Scholar 

  56. 56.

    Hawley J. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009;34:355–61.

    CAS  PubMed  Article  Google Scholar 

Download references


The authors have no potential conflicts of interest that are directly relevant to the content of this review. This research is supported by funding from the University of Limerick Physical Education and Sport Science (PESS) Scholarship 2012.

Author information



Corresponding author

Correspondence to Kris Beattie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beattie, K., Kenny, I.C., Lyons, M. et al. The Effect of Strength Training on Performance in Endurance Athletes. Sports Med 44, 845–865 (2014).

Download citation


  • Strength Training
  • Endurance Athlete
  • Jump Squat
  • Drop Jump
  • PEDro Scale