Skip to main content

A Brief Review of Strength and Ballistic Assessment Methodologies in Sport

Abstract

An athletic profile should encompass the physiological, biomechanical, anthropometric and performance measures pertinent to the athlete’s sport and discipline. The measurement systems and procedures used to create these profiles are constantly evolving and becoming more precise and practical. This is a review of strength and ballistic assessment methodologies used in sport, a critique of current maximum strength [one-repetition maximum (1RM) and isometric strength] and ballistic performance (bench throw and jump capabilities) assessments for the purpose of informing practitioners and evolving current assessment methodologies. The reliability of the various maximum strength and ballistic assessment methodologies were reported in the form of intra-class correlation coefficients (ICC) and coefficient of variation (%CV). Mean percent differences \( \left( {M_{\text{diff}} = \left[ {\frac{{{\mid }X_{{{\text{method}}1}} - X_{{{\text{method}}2}} {\mid }}}{{(X_{{{\text{method}}1}} + X_{{{\text{method}}2}} )}}} \right] \times 100} \right) \) and effect size (ES = [X method2 − X method1] ÷ SDmethod1) calculations were used to assess the magnitude and spread of methodological differences for a given performance measure of the included studies. Studies were grouped and compared according to their respective performance measure and movement pattern. The various measurement systems (e.g. force plates, position transducers, accelerometers, jump mats, optical motion sensors and jump-and-reach apparatuses) and assessment procedures (i.e. warm-up strategies, loading schemes and rest periods) currently used to assess maximum isometric squat and mid-thigh pull strength (ICC > 0.95; CV < 2.0 %), 1RM bench press, back squat and clean strength (ICC > 0.91; CV < 4.3 %), and ballistic (vertical jump and bench throw) capabilities (ICC > 0.82; CV < 6.5 %) were deemed highly reliable. The measurement systems and assessment procedures employed to assess maximum isometric strength [M Diff = 2–71 %; effect size (ES) = 0.13–4.37], 1RM strength (M Diff = 1–58 %; ES = 0.01–5.43), vertical jump capabilities (M Diff = 2–57 %; ES = 0.02–4.67) and bench throw capabilities (M Diff = 7–27 %; ES = 0.49–2.77) varied greatly, producing trivial to very large effects on these respective measures. Recreational to highly trained athletes produced maximum isometric squat and mid-thigh pull forces of 1,000–4,000 N; and 1RM bench press, back squat and power clean values of 80–180 kg, 100–260 kg and 70–140 kg, respectively. Mean and peak power production across the various loads (body mass to 60 % 1RM) were between 300 and 1,500 W during the bench throw and between 1,500 and 9,000 W during the vertical jump. The large variations in maximum strength and power can be attributed to the wide range in physical characteristics between different sports and athletic disciplines, training and chronological age as well as the different measurement systems of the included studies. The reliability and validity outcomes suggest that a number of measurement systems and testing procedures can be implemented to accurately assess maximum strength and ballistic performance in recreational and elite athletes, alike. However, the reader needs to be cognisant of the inherent differences between measurement systems, as selection will inevitably affect the outcome measure. The strength and conditioning practitioner should also carefully consider the benefits and limitations of the different measurement systems, testing apparatuses, attachment sites, movement patterns (e.g. direction of movement, contraction type, depth), loading parameters (e.g. no load, single load, absolute load, relative load, incremental loading), warm-up strategies, inter-trial rest periods, dependent variables of interest (i.e. mean, peak and rate dependent variables) and data collection and processing techniques (i.e. sampling frequency, filtering and smoothing options).

This is a preview of subscription content, access via your institution.

References

  1. Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51.

    PubMed  Google Scholar 

  2. Cunniffe B, Proctor W, Baker JS, Davies B. An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. J Strength Cond Res. 2009;23(4):1195–203.

    PubMed  Google Scholar 

  3. Foster CD, Twist C, Lamb KL, Nicholas CW. Heart rate responses to small-sided games among elite junior rugby league players. J Strength Cond Res. 2009;24(4):906–11.

    Google Scholar 

  4. Buchheit M, Rabbani A. 30-15 intermittent fitness test vs. yo-yo intermittent recovery test level 1: relationship and sensitivity to training. Int J Sports Physiol Perform. 2013 Mar 8.

  5. Atkins SJ. Performance of the yo-yo intermittent recovery test by elite professional and semiprofessional rugby league players. J Strength Cond Res. 2006;20(1):222–5.

    PubMed  Google Scholar 

  6. Durocher JJ, Leetun DT, Carter JR. Sport-specific assessment of lactate threshold and aerobic capacity throughout a collegiate hockey season. Appl Physiol Nutr Metab. 2008;33(6):1165–71.

    CAS  PubMed  Google Scholar 

  7. Dumke CL, Brock DW, Helms BH, Haff GG. Heart rate at lactate threshold and cycling time trials. J Strength Cond Res. 2006;20(3):601–7.

    PubMed  Google Scholar 

  8. Barbero-Alvarez JC, Coutts A, Granda J, Barbero-Alvarez V, Castagna C. The validity and reliability of a global positioning satellite system device to assess speed and repeated sprint ability (RSA) in athletes. J Sci Med Sport. 2010;13(2):232–5.

    PubMed  Google Scholar 

  9. Kilduff LP, West DJ, Williams N, Cook CJ. The influence of passive heat maintenance on lower body power output and repeated sprint performance in professional rugby league players. J Sci Med Sport. 2013;16(5):482–6.

    PubMed  Google Scholar 

  10. Johnston RD, Gabbett TJ. Repeated-sprint and effort ability in rugby league players. J Strength Cond Res. 2011;25(10):2789–95.

    PubMed  Google Scholar 

  11. Keir DA, Theriault F, Serresse O. Evaluation of the running-based anaerobic sprint test as a measure of repeated sprint ability in collegiate level soccer players. J Strength Cond Res. 2013;27(6):1671–8.

    PubMed  Google Scholar 

  12. Psotta R, Bunc V, Hendl J, Tenney D, Heller J. Is repeated-sprint ability of soccer players predictable from field-based or laboratory physiological tests? J Sports Med Phys Fitness. 2011;51(1):18–25.

    CAS  PubMed  Google Scholar 

  13. Buchheit M, Mendez-villanueva A, Simpson BM, Bourdon PC. Repeated-sprint sequences during youth soccer matches. Int J Sports Med. 2010;31(10):709–16.

    CAS  PubMed  Google Scholar 

  14. da Silva JF, Guglielmo LG, Bishop D. Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. J Strength Cond Res. 2010;24(8):2115–21.

    PubMed  Google Scholar 

  15. Buchheit M, Mendez-Villanueva A, Delhomel G, Brughelli M, Ahmaidi S. Improving repeated sprint ability in young elite soccer players: repeated shuttle sprints vs. explosive strength training. J Strength Cond Res. 2010;24(10):2715–22.

    PubMed  Google Scholar 

  16. Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab. 2009;34(6):1048–54.

    PubMed  Google Scholar 

  17. Wragg CB, Maxwell NS, Doust JH. Evaluation of the reliability and validity of a soccer-specific field test of repeated sprint ability. Eur J Appl Physiol. 2000;83(1):77–83.

    CAS  PubMed  Google Scholar 

  18. Black W, Roundy E. Comparsions of size, strength, speed and power in NCAA division 1-A football players. J Strength Cond Res. 1994;8(2):80–5.

    Google Scholar 

  19. Grant SJ, Oommen G, McColl G, Taylor J, Watkins L, Friel N, et al. The effect of ball carrying method on sprint speed in rugby union football players. J Sports Sci. 2003;21(12):1009–15.

    CAS  PubMed  Google Scholar 

  20. Cronin J, Hansen K. Resisted sprint training for the acceleration phases of sprinting. Strength Cond J. 2006;28(4):42–51.

    Google Scholar 

  21. Cronin JB, Green JP, Levin GT, Brughelli ME, Frost DM. Effect of starting stance on initial sprint performance. J Strength Cond Res. 2007;21(3):990–2.

    PubMed  Google Scholar 

  22. Cronin JB, Hansen KT. Strength and power predictors of sports speed. J Strength Cond Res. 2005;19(2):349–57.

    PubMed  Google Scholar 

  23. Cronin JB, Templeton RL. Timing light height affects sprint times. J Strength Cond Res. 2008;22(1):318–20.

    PubMed  Google Scholar 

  24. Duthie GM, Pyne DB, Marsh DJ, Hooper SL. Sprint patterns in rugby union players during competition. J Strength Cond Res. 2006;20(1):208–14.

    PubMed  Google Scholar 

  25. Gabbett TJ, Kelly JN, Sheppard JM. Speed, change of direction speed, and reactive agility of rugby league players. J Strength Cond Res. 2008;22(1):174–81.

    PubMed  Google Scholar 

  26. Harrison AJ, Bourke G. The effect of resisted sprint training on speed and strength performance in male rugby players. J Strength Cond Res. 2009;23(1):275–83.

    PubMed  Google Scholar 

  27. Hasegawa H. The relationship between sprint speed, 1RM, power and reactive strength in collegiate football players. Minneapolis: Natl Strength Cond Assoc Conf; 2004.

    Google Scholar 

  28. Haugen TA, Tonnessen E, Seiler SK. The difference is in the start: impact of timing and start procedure on sprint running performance. J Strength Cond Res. 2012;26(2):473–9.

    PubMed  Google Scholar 

  29. Maio Alves JM, Rebelo AN, Abrantes C, Sampaio J. Short-term effects of complex and contrast training in soccer players’ vertical jump, sprint, and agility abilities. J Strength Cond Res. 2010;24(4):936–41.

    PubMed  Google Scholar 

  30. Mayhew JL, Houser JJ, Briney BB, Williams TB, Piper FC, Brechue WF. Comparison between hand and electronic timing of 40-yd dash performance in college football players. J Strength Cond Res. 2010;24(2):447–51.

    PubMed  Google Scholar 

  31. Walsh M, Young B, Hill B, Kittredge K, Horn T. The effect of ball-carrying technique and experience on sprinting in rugby union. J Sports Sci. 2007;25(2):185–92.

    PubMed  Google Scholar 

  32. Wheeler K. Transfer of straight line speed to agility in rugby union: a review. J Austral Strength Cond. 2009;17(2):46.

    Google Scholar 

  33. Wisloff U, Costagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38:285–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Young W, Duthie G, Pryor J. Resistance training for short sprints and maximum-speed sprints. Strength Cond J. 2001;23(2):7–13.

    Google Scholar 

  35. Young W, McLean B, Ardagna J. Relationship between strength qualities and sprinting performance. J Sports Med Phys Fitness. 1995;35(1):13–9.

    CAS  PubMed  Google Scholar 

  36. Ronnestad BR, Kvamme NH, Sunde A, Raastad T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J Strength Cond Res. 2008;22(3):773–80.

    PubMed  Google Scholar 

  37. Gabbett T, Benton D. Reactive agility of rugby league players. J Sci Med Sport. 2009;12(1):212–4.

    PubMed  Google Scholar 

  38. Caldwell BP, Peters DM. Seasonal variation in physiological fitness of a semiprofessional soccer team. J Strength Cond Res. 2009;23(5):1370–7.

    PubMed  Google Scholar 

  39. Gabbett TJ. Performance changes following a field conditioning program in junior and senior rugby league players. J Strength Cond Res. 2006;20(1):215–21.

    PubMed  Google Scholar 

  40. Jougla A, Micallef JP, Mottet D. Effects of active vs. passive recovery on repeated rugby-specific exercises. J Sci Med Sport. 2009;13(3):350–5.

    PubMed  Google Scholar 

  41. Mayhew JL, Piper F, Schwegler T. Contributions of speed, agility and body composition to anaerobic power measurements in college football players. J Appl Sport Sci Res. 1989;3(4):101–6.

    Google Scholar 

  42. Roberts SP, Stokes KA, Weston L, Trewartha G. The Bath University Rugby Shuttle Test (BURST): a pilot study. Int J Sports Physiol Perform. 2010;5(1):64–74.

    PubMed  Google Scholar 

  43. Serpell BG, Ford M, Young WB. The development of a new test of agility for rugby league. J Strength Cond Res. 2010;24:3270–7.

    PubMed  Google Scholar 

  44. Appleby B, Newton R, Cormie P. Changes in strength over a 2-year period in professional rugby union players. J Strength Cond Res. 2012;26(9):2538–46.

    PubMed  Google Scholar 

  45. Argus CK, Gill ND, Keogh JW, Hopkins WG, Beaven CM. Changes in strength, power, and steroid hormones during a professional rugby union competition. J Strength Cond Res. 2009;23(5):1583–92.

    PubMed  Google Scholar 

  46. Atkins SJ. Normalizing expressions of strength in elite rugby league players. J Strength Cond Res. 2004;18(1):53–8.

    PubMed  Google Scholar 

  47. Baker D, Newton R. Observation of 4-year adaptations in lower body maximal strength and power output in professional rugby league players. J Austral Strength Cond. 2008;16(1):3–10.

    Google Scholar 

  48. Baker DG. 10-year changes in upper body strength and power in elite professional rugby league players: the effect of training age, stage, and content. J Strength Cond Res. 2013;27(2):285–92.

    PubMed  Google Scholar 

  49. Comfort P, Graham-Smith P, Matthews M, Bamber C. Strength and power characteristics of English elite rugby league players. J Strength Cond Res. 2011;25(2):1374–84.

    PubMed  Google Scholar 

  50. Duthie G, Pyne D, Hooper S. Applied physiology and game analysis of rugby union. Sports Med. 2003;33(13):973–91.

    PubMed  Google Scholar 

  51. Quarrie KL, Wilson BD. Force production in the rugby union scrum. J Sports Sci. 2000;18(4):237–46.

    CAS  PubMed  Google Scholar 

  52. Roberts SP, Trewartha G, Higgitt RJ, El-Abd J, Stokes KA. The physical demands of elite English rugby union. J Sports Sci. 2008;26(8):825–33.

    PubMed  Google Scholar 

  53. Usman J, McIntosh A, Best J. The investigation of shoulder forces in rugby union. J Sci Med Sport. 2010;13(S1):63.

    Google Scholar 

  54. West DJ, Owen NJ, Jones MR, Bracken RM, Cook CJ, Cunningham DJ, et al. Relationships between force–time characteristics of the isometric midthigh pull and dynamic performance in professional rugby league players. J Strength Cond Res. 2011;25(11):3070–5.

    PubMed  Google Scholar 

  55. Preatoni E, Stokes K, England M, Trewartha G. Forces generated in rugby union machine scrummaging at various playing levels. Dublin: Internat Res Counc Biomech Inj Conf Proc; 2012.

    Google Scholar 

  56. Argus CK, Gill ND, Keogh JW, Blazevich AJ, Hopkins WG. Kinetic and training comparisons between assisted, resisted, and free countermovement jumps. J Strength Cond Res. 2011;25(8):2219–27.

    PubMed  Google Scholar 

  57. Argus CK, Gill ND, Keogh JW, Hopkins WG. Assessing lower body peak power in elite rugby-union players. J Strength Cond Res. 2011;25(6):1616–21.

    PubMed  Google Scholar 

  58. Baker D. A series of studies on the training of high-intensity muscle power in rugby league football players. J Strength Cond Res. 2001;15(2):198–209.

    CAS  PubMed  Google Scholar 

  59. Baker D. Acute and long-term power responses to power training: observations on the training of an elite power athlete. Strength Cond J. 2001;23(1):47–56.

    Google Scholar 

  60. Baker D. Acute effect of alternating heavy and light resistances on power output during upper-body complex power training. J Strength Cond Res. 2003;17(3):493–7.

    PubMed  Google Scholar 

  61. Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during jump squats in power-trained athletes. J Strength Cond Res. 2001;15(1):92–7.

    CAS  PubMed  Google Scholar 

  62. Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. J Strength Cond Res. 2001;15(1):20–4.

    CAS  PubMed  Google Scholar 

  63. Baker D, Newton R. Change in power output across a high-repetition set of bench throws and jump squats in highly trained athletes. J Strength Cond Res. 2007;21(4):1007–11.

    PubMed  Google Scholar 

  64. Bevan HR, Bunce PJ, Owen NJ, Bennett MA, Cook CJ, Cunningham DJ, et al. Optimal loading for the development of peak power output in professional rugby players. J Strength Cond Res. 2010;24(1):43–7.

    PubMed  Google Scholar 

  65. Crewther BT, Lowe T, Weatherby RP, Gill N, Keogh J. Neuromuscular performance of elite rugby union players and relationships with salivary hormones. J Strength Cond Res. 2009;23(7):2046–53.

    PubMed  Google Scholar 

  66. Crewther BT, McGuigan MR, Gill ND. The ratio and allometric scaling of speed, power, and strength in elite male rugby union players. J Strength Cond Res. 2011;25(7):1968–75.

    PubMed  Google Scholar 

  67. Cronin JB, McNair PJ, Marshall RN. Force–velocity analysis of strength-training techniques and load: implications for training strategy and research. J Strength Cond Res. 2003;17(1):148–55.

    PubMed  Google Scholar 

  68. Drinkwater EJ, Galna B, McKenna MJ, Hunt PH, Pyne DB. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue. J Strength Cond Res. 2007;21(2):510–7.

    PubMed  Google Scholar 

  69. Duthie GM, Warren YB, Aitken DA. The acute effects of heavy loads on jump squat performance: an evaluation of the complex and contrast methods of power development. J Strength Cond Res. 2002;16(4):530–8.

    PubMed  Google Scholar 

  70. Hansen K, Cronin J, Pickering S, Newton M. Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players. J Strength Cond Res. 2011;25(8):2118–26.

    PubMed  Google Scholar 

  71. Harris NK, Cronin JB, Hopkins WG. Power outputs of a machine squat-jump across a spectrum of loads. J Strength Cond Res. 2007;21(4):1260–4.

    PubMed  Google Scholar 

  72. Hoffman JR, Ratamess NA, Cooper JJ, Kang J, Chilakos A, Faigenbaum AD. Comparison of loaded and unloaded jump squat training on strength/power performance in college football players. J Strength Cond Res. 2005;19(4):810–5.

    PubMed  Google Scholar 

  73. Kilduff LP, Bevan H, Owen N, Kingsley MI, Bunce P, Bennett M, et al. Optimal loading for peak power output during the hang power clean in professional rugby players. Int J Sports Physiol Perform. 2007;2(3):260–9.

    PubMed  Google Scholar 

  74. Mayhew JL, Bird M, Cole ML, Koch AJ, Jacques JA, Ware JS, et al. Comparison of the backward overhead medicine ball throw to power production in college football players. J Strength Cond Res. 2005;19(3):514–8.

    PubMed  Google Scholar 

  75. McGuigan MR, Cormack S, Newton RU. Long-term power performance of elite Australian Rules Football players. J Strength Cond Res. 2009;23(1):26–32.

    PubMed  Google Scholar 

  76. Clark RA, Bryant AL, Humphries B. A comparison of force curve profiles between the bench press and ballistic bench throws. J Strength Cond Res. 2008;22(6):1755–9.

    PubMed  Google Scholar 

  77. Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro and micro level research. Cells Tissues Organs. 2005;181:1–10.

    PubMed  Google Scholar 

  78. Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance following ballistic power vs strength training. Med Sci Sport Exerc. 2010;42:1582–98.

    Google Scholar 

  79. Gans C, Gaunt AS. Muscle architecture in relation to function. J Biomech. 1991;24(Suppl 1):53–65.

    PubMed  Google Scholar 

  80. Kawakami Y. The effects of strength training on muscle architecture in humans. Int J Sport Health Sci. 2005;3:208–17.

    Google Scholar 

  81. Duthie GM, Pyne DB, Hopkins WG, Livingstone S, Hooper SL. Anthropometry profiles of elite rugby players: quantifying changes in lean mass. Br J Sports Med. 2006;40(3):202–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Corcoran G. Analysis of the anatomical, functional, physiological and morphological requirements of athlete’s in rugby union. J Austral Strength Cond. 2010;18(1):24–8.

    Google Scholar 

  83. Duthie GM. A framework for the physical development of elite rugby union players. Int J Sports Physiol Perform. 2006;1(1):2–13.

    PubMed  Google Scholar 

  84. Lee AJ, Myers JL, Garraway WM. Influence of players’ physique on rugby football injuries. Br J Sports Med. 1997;31(2):135–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Meir RA, Halliday AJ. Pre- and post-game body mass changes during an international rugby tournament: a practical perspective. J Strength Cond Res. 2005;19(3):713–6.

    PubMed  Google Scholar 

  86. Quarrie KL, Handcock P, Toomey MJ, Waller AE. The New Zealand rugby injury and performance project: IV. Anthropometric and physical performance comparisons between positional categories of senior A rugby players. Br J Sports Med. 1996;30(1):53–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Quarrie KL, Handcock P, Waller AE, Chalmers DJ, Toomey MJ, Wilson BD. The New Zealand rugby injury and performance project: III. Anthropometric and physical performance characteristics of players. Br J Sports Med. 1995;29(4):263–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Quarrie KL, Hopkins WG. Changes in player characteristics and match activities in Bledisloe Cup rugby union from 1972 to 2004. J Sports Sci. 2007;25(8):895–903.

    PubMed  Google Scholar 

  89. Bell W, Evans WD, Cobner DM, Eston RG. Regional placement of bone mineral mass, fat mass, and lean soft tissue mass in young adult rugby union players. Ergonomics. 2005;48(11–14):1462–72.

    CAS  PubMed  Google Scholar 

  90. Wilmore J, Haskell W. Body composition and endurance capacity of professional football players. J Appl Physiol. 1972;33(5):564–7.

    CAS  PubMed  Google Scholar 

  91. Bandyopadhyay A. Anthropometry and body composition in soccer and volleyball players in West Bengal, India. J Physiol Anthropol. 2007;26(4):501–5.

    PubMed  Google Scholar 

  92. Butler RJ, Plisky PJ, Southers C, Scoma C, Kiesel KB. Biomechanical analysis of the different classifications of the functional movement screen deep squat test. Sports Biomech. 2010;9(4):270–9.

    PubMed  Google Scholar 

  93. Frost DM, Beach TA, Callaghan JP, McGill SM. Using the functional movement screen to evaluate the effectiveness of training. J Strength Cond Res. 2012;26(6):1620–30.

    PubMed  Google Scholar 

  94. Gribble PA, Brigle J, Pietrosimone BG, Pfile KR, Webster KA. Intrarater reliability of the functional movement screen. J Strength Cond Res. 2013;27(4):978–81.

    PubMed  Google Scholar 

  95. Parchmann CJ, McBride JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res. 2011;25(12):3378–84.

    PubMed  Google Scholar 

  96. Signorelli GR, Perim RR, Santos TM, Araujo CG. A pre-season comparison of aerobic fitness and flexibility of younger and older professional soccer players. Int J Sports Med. 2012;33(11):867–72.

    CAS  PubMed  Google Scholar 

  97. Zakas A, Grammatikopoulou MG, Zakas N, Zahariadis P, Vamvakoudis E. The effect of active warm-up and stretching on the flexibility of adolescent soccer players. J Sports Med Phys Fitness. 2006;46(1):57–61.

    CAS  PubMed  Google Scholar 

  98. Witvrouw E, Danneels L, Asselman P, D’Have T, Cambier D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players: a prospective study. Am J Sports Med. 2003;31(1):41–6.

    PubMed  Google Scholar 

  99. Hattori K, Ohta S. Ankle joint flexibility in college soccer players. J Hum Ergol (Tokyo). 1986;15(1):85–9.

    CAS  Google Scholar 

  100. Oberg B, Ekstrand J, Moller M, Gillquist J. Muscle strength and flexibility in different positions of soccer players. Int J Sports Med. 1984;5(4):213–6.

    CAS  PubMed  Google Scholar 

  101. French DN, Gomez AL, Volek JS, Rubin MR, Ratamess NA, Sharman MJ, et al. Longitudinal tracking of muscular power changes of NCAA Division I collegiate women gymnasts. J Strength Cond Res. 2004;18(1):101–7.

    PubMed  Google Scholar 

  102. Cormack SJ, Newton RU, McGuigan MR, Cormie P. Neuromuscular and endocrine responses of elite players during an Australian Rules Football season. Int J Sports Physiol Perform. 2008;3(4):439–53.

    PubMed  Google Scholar 

  103. Pienaar AE, Spamer MJ, Steyn HS Jr. Identifying and developing rugby talent among 10-year-old boys: a practical model. J Sports Sci. 1998;16(8):691–9.

    CAS  PubMed  Google Scholar 

  104. Spamer EJ, Hare E. A longitudinal study of talented youth rugby players with special reference to skill, growth and development. J Hum Mov Stud. 2001;41:39–57.

    Google Scholar 

  105. Glenn G. The profiling of professional football players. Clin J Sport Med. 1984;3(1):185–97.

    Google Scholar 

  106. Pincivero D, Bompa T. A physiological review of American football. Sports Med. 1997;23(4):247–60.

    CAS  PubMed  Google Scholar 

  107. Robbins DW, Goodale TL, Kuzmits FE, Adams AJ. Changes in the athletic profile of elite college American football players. J Strength Cond Res. 2013;27(4):861–74.

    PubMed  Google Scholar 

  108. Burgess DJ, Naughton GA. Talent development in adolescent team sports: a review. Int J Sports Physiol Perform. 2010;5(1):103–16.

    PubMed  Google Scholar 

  109. Unnithan V, White J, Georgiou A, Iga J, Drust B. Talent identification in youth soccer. J Sports Sci. 2012;30(15):1719–26.

    PubMed  Google Scholar 

  110. Goncalves CE, Rama LM, Figueiredo AB. Talent identification and specialization in sport: an overview of some unanswered questions. Int J Sports Physiol Perform. 2012;7(4):390–3.

    CAS  Google Scholar 

  111. Roth SM. Critical overview of applications of genetic testing in sport talent identification. Recent Pat DNA Gene Seq. 2012;6(3):247–55.

    CAS  PubMed  Google Scholar 

  112. Mohamed H, Vaeyens R, Matthys S, Multael M, Lefevre J, Lenoir M, et al. Anthropometric and performance measures for the development of a talent detection and identification model in youth handball. J Sports Sci. 2009;27(3):257–66.

    PubMed  Google Scholar 

  113. Vaeyens R, Lenoir M, Williams AM, Philippaerts RM. Talent identification and development programmes in sport: current models and future directions. Sports Med. 2008;38(9):703–14.

    PubMed  Google Scholar 

  114. Pearson DT, Naughton GA, Torode M. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports. J Sci Med Sport. 2006;9(4):277–87.

    CAS  PubMed  Google Scholar 

  115. Abbott A, Button C, Pepping GJ, Collins D. Unnatural selection: talent identification and development in sport. Nonlinear Dynamics Psychol Life Sci. 2005;9(1):61–88.

    PubMed  Google Scholar 

  116. Falk B, Lidor R, Lander Y, Lang B. Talent identification and early development of elite water-polo players: a 2-year follow-up study. J Sports Sci. 2004;22(4):347–55.

    PubMed  Google Scholar 

  117. Reilly T, Williams AM, Nevill A, Franks A. A multidisciplinary approach to talent identification in soccer. J Sports Sci. 2000;18(9):695–702.

    CAS  PubMed  Google Scholar 

  118. Williams AM, Reilly T. Talent identification and development in soccer. J Sports Sci. 2000;18(9):657–67.

    CAS  PubMed  Google Scholar 

  119. Corcoran G, Bird S. Preseason strength training for rugby union: the general and specific preparatory phases. Strength Cond J. 2009;31(6):66–74.

    Google Scholar 

  120. Issurin VB. New horizons for the methodology and physiology of training periodization. Sports Med. 2010;40(3):189–206.

    PubMed  Google Scholar 

  121. James N, Mellalieu SD, Jones NM. The development of position-specific performance indicators in professional rugby union. J Sports Sci. 2005;23(1):63–72.

    PubMed  Google Scholar 

  122. Turner A. The science and practice of periodization: a brief review. Strength Cond J. 2011;33(1):34–46.

    Google Scholar 

  123. Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1(2):74–83.

    PubMed  Google Scholar 

  124. Stone M, Plisk S, Collins D. Training principles: evaluation of modes and methods of resistance training: a coaching perspective. Sports Biomech. 2002;1(1):79–103.

    PubMed  Google Scholar 

  125. McMaster DT, Gill ND, Cronin J, McGuigan M. The development, retention and decay rates of strength and power in elite rugby union, rugby league and American football. Sports Med. 2013;43(5):367–84.

    PubMed  Google Scholar 

  126. Gamble P. Periodization of training for team sports athletes. Strength Cond J. 2006;28(5):56–66.

    Google Scholar 

  127. Stone NM, Kilding AE. Aerobic conditioning for team sport athletes. Sports Med. 2009;39(8):615–42.

    PubMed  Google Scholar 

  128. Baker D. The effects of an in-season of concurrent training on the maintenance of maximal strength and power in professional and college aged rugby league football players. J Strength Cond Res. 2001;15(2):172–7.

    CAS  PubMed  Google Scholar 

  129. Leveritt M, Abernethy PJ, Barry BK, Logan PA. Concurrent strength and endurance training: a review. Sports Med. 1999;28(6):413–27.

    CAS  PubMed  Google Scholar 

  130. Burger T, Boyer-Kendrick T, Dolny D. Complex training compared to a combined weight training and plyometric training program. J Strength Cond Res. 2000;14(3):360.

    Google Scholar 

  131. Robbins DW, Young WB, Behm DG, Payne WR. The effect of a complex agonist and antagonist resistance training protocol on volume load, power output, electromyographic responses, and efficiency. J Strength Cond Res. 2010;24(7):1782–9.

    PubMed  Google Scholar 

  132. Mujika I, Santisteban J, Castagna C. In-season effect of short-term sprint and power training programs on elite junior soccer players. J Strength Cond Res. 2009;23(9):2581–7.

    PubMed  Google Scholar 

  133. Spinks CD, Murphy AJ, Spinks WL, Lockie RG. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players. J Strength Cond Res. 2007;21(1):77–85.

    PubMed  Google Scholar 

  134. Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18(4):918–20.

    PubMed  Google Scholar 

  135. Peterson MD, Rhea MR, Alvar BA. Applications of the dose-response for muscular strength development: a review of meta-analytic efficacy and reliability for designing training prescription. J Strength Cond Res. 2005;19(4):950–8.

    PubMed  Google Scholar 

  136. Austin D, Gabbett T, Jenkins D. Tackling in professional rugby league. J Strength Cond Res. 2011;25(6):1659–63.

    PubMed  Google Scholar 

  137. Brughelli M, Cronin J, Levin G, Chaouachi A. Understanding change of direction ability in sport: a review of resistance training studies. Sports Med. 2008;38(12):1045–63.

    PubMed  Google Scholar 

  138. Trewartha G, Casanova R, Wilson C. A kinematic analysis of rugby lineout throwing. J Sports Sci. 2008;26(8):845–54.

    PubMed  Google Scholar 

  139. Green B, Blake C, Caulfield B. A valid field test protocol of linear speed and agility in rugby union. J Strength Cond Res. 2011;25(2):1256–62.

    PubMed  Google Scholar 

  140. Brown LE, Weir JP. ASEP procedures recommendation I: accurate assessment of muscular strength and power. J Exp Physiol. 2001;4(3):1–21.

    Google Scholar 

  141. Clark RA, Bryant AL, Pua YH. Examining different aspects of functional performance using a variety of bench throw techniques. J Strength Cond Res. 2010;24(10):2755–61.

    PubMed  Google Scholar 

  142. Milburn PD. The kinetics of rugby union scrummaging. J Sports Sci. 1990;8(1):47–60.

    CAS  PubMed  Google Scholar 

  143. Gabbett TJ, Jenkins DG, Abernethy B. Correlates of tackling ability in high-performance rugby league players. J Strength Cond Res. 2011;25(1):72–9.

    PubMed  Google Scholar 

  144. Garcia-Pallares J, Sanchez-Medina L, Perez CE, Izquierdo-Gabarren M, Izquierdo M. Physiological effects of tapering and detraining in world-class kayakers. Med Sci Sports Exerc. 2010;42(6):1209–14.

    PubMed  Google Scholar 

  145. Bezodis N, Trewartha G, Wilson C, Irwin G. Contributions of the non-kicking-side arm to rugby place-kicking technique. Sports Biomech. 2007;6(2):171–86.

    PubMed  Google Scholar 

  146. Pavely S, Adams R, Di Francesco T, Larkham S, Maher C. Bilateral clearance punt kicking in rugby union: effects of hand used for ball delivery. Int J Perform Anal Sport. 2010;10(2):187–96.

    Google Scholar 

  147. Pavely S, Adams RD, Di Francesco T, Larkham S, Maher CG. Execution and outcome differences between passes to the left and right made by first-grade rugby union players. Phys Ther Sport. 2009;10(4):136–41.

    PubMed  Google Scholar 

  148. Stone MH, O’Bryant HS, McCoy L, Coglianese R, Lehmkuhl M, Schilling B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J Strength Cond Res. 2003;17(1):140–7.

    PubMed  Google Scholar 

  149. Duthie GM, Pyne DB, Ross AA, Livingstone SG, Hooper SL. The reliability of ten-meter sprint time using different starting techniques. J Strength Cond Res. 2006;20(2):246–51.

    PubMed  Google Scholar 

  150. Frost DM, Cronin JB. Stepping back to improve sprint performance: a kinetic analysis of the first step forwards. J Strength Cond Res. 2011;25(10):2721–8.

    PubMed  Google Scholar 

  151. West DJ, Cunningham DJ, Bracken RM, Bevan HR, Crewther BT, Cook CJ, et al. Effects of resisted sprint training on acceleration in professional rugby union players. J Strength Cond Res. 2013;27(4):1014–8.

    PubMed  Google Scholar 

  152. Johnson TM, Brown LE, Coburn JW, Judelson DA, Khamoui AV, Tran TT, et al. Effect of four different starting stances on sprint time in collegiate volleyball players. J Strength Cond Res. 2010;24(10):2641–6.

    PubMed  Google Scholar 

  153. Rumpf MC, Cronin JB, Oliver JL, Hughes M. Assessing youth sprint ability-methodological issues, reliability and performance data. Pediatr Exerc Sci. 2011;23(4):442–67.

    PubMed  Google Scholar 

  154. Nuzzo JL, Anning JH, Scharfenberg JM. The reliability of three devices used for measuring vertical jump height. J Strength Cond Res. 2011;25(9):2580–90.

    PubMed  Google Scholar 

  155. Dias JA, Dal Pupo J, Reis DC, Borges L, Santos SG, Moro AR, et al. Validity of two methods for estimation of vertical jump height. J Strength Cond Res. 2011;25(7):2034–9.

    PubMed  Google Scholar 

  156. Roig A, Borras X, Drobnic F, Galilea P. Validation of three different jumping height measurement systems, Ergo Jump (Bosco), OptoJump (Microgate) and Myotest. Archivos De Medicina Del Deporte. 2008;XXV(128):520.

    Google Scholar 

  157. Garcia-Lopez J, Morante JC, Ogueta-Alday A, Rodriguez-Marroyo JA. The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time. J Strength Cond Res. 2013;27(4):1162–7.

    PubMed  Google Scholar 

  158. Hartwig TB, Naughton G, Searl J. Motion analyses of adolescent rugby union players: a comparison of training and game demands. J Strength Cond Res. 2011;25(4):966–72.

    PubMed  Google Scholar 

  159. Jennings D, Cormack S, Coutts AJ, Boyd L, Aughey RJ. The validity and reliability of GPS units for measuring distance in team sport specific running patterns. Int J Sports Physiol Perform. 2010;5(3):328–41.

    PubMed  Google Scholar 

  160. McLellan CP, Lovell DI, Gass GC. Performance analysis of elite rugby league match play using global positioning systems. J Strength Cond Res. 2011;25(6):1703–10.

    PubMed  Google Scholar 

  161. Moir G, Button C, Glaister M, Stone MH. Influence of familiarization on the reliability of vertical jump and acceleration sprinting performance in physically active men. J Strength Cond Res. 2004;18(2):276–80.

    PubMed  Google Scholar 

  162. Crewther BT, Gill N, Weatherby RP, Lowe T. A comparison of ratio and allometric scaling methods for normalizing power and strength in elite rugby union players. J Sports Sci. 2009;27(14):1575–80.

    PubMed  Google Scholar 

  163. Gomez-Piriz PT, Sanchez ET, Manrique DC, Gonzalez EP. Reliability and comparability of the accelerometer and the linear position measuring device in resistance training. J Strength Cond Res. 2013;27(6):1664–70.

    PubMed  Google Scholar 

  164. Crewther B, Kilduff L, Cunningham D, Cook C, Yang G. Validity of two kinematic systems for calculating force and power during squat jumps. Int Sports Sci Sports Med Conf. 2010;44:20.

    Google Scholar 

  165. Winchester JB, Erickson TM, Blaak JB, McBride JM. Changes in bar-path kinematics and kinetics after power-clean training. J Strength Cond Res. 2005;19(1):177–83.

    PubMed  Google Scholar 

  166. Cormie P, McBride JM, McCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103–18.

    PubMed  Google Scholar 

  167. Cronin JB, Hing RD, McNair PJ. Reliability and validity of a linear position transducer for measuring jump performance. J Strength Cond Res. 2004;18(3):590–3.

    PubMed  Google Scholar 

  168. Hansen K, Cronin J, Newton M. The reliability of linear position transducer and force plate measurement of explosive force–time variables during a loaded jump squat in elite athletes. J Strength Cond Res. 2011;25(2):1447–56.

    PubMed  Google Scholar 

  169. Heglund NC. A simple design for a force-plate to measure ground reaction forces. J Exp Biol. 1981;93:333–8.

    Google Scholar 

  170. Major JA, Sands W, McNeal J, Paine D, Kipp R. Design, construction, and validation of a portable one-dimensional force platform. J Strength Cond Res. 1998;12(1):37–41.

    Google Scholar 

  171. Walsh M, Ford K, Bangen K, Myer G, Hewett T. The validation of a portable force plate for measuring force–time data during jumping and landing tasks. J Strength Cond Res. 2006;20(4):730–4.

    PubMed  Google Scholar 

  172. Wilson GJ, Murphy AJ. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996;22(1):19–37.

    CAS  PubMed  Google Scholar 

  173. Drinkwater EJ, Moore NR, Bird SP. Effects of changing from full range of motion to partial range of motion on squat kinetics. J Strength Cond Res. 2012;26(4):890–6.

    PubMed  Google Scholar 

  174. Rontu JP, Hannula MI, Leskinen S, Linnamo V, Salmi JA. One-repetition maximum bench press performance estimated with a new accelerometer method. J Strength Cond Res. 2010;24(8):2018–25.

    PubMed  Google Scholar 

  175. Bampouras T, Relph N, Orme D, Esformes J. Validity and reliability of the myotest pro wireless accelerometer. Newcastle: Int Sports Sci Sports Med Conf; 2010.

    Google Scholar 

  176. Feldmann C, Weiss L, Ferreira L, Schilling B, Hammond K. Criterion validity of accelerometer-derived peak power obtained during jump squats. Med Sci Sports Exerc. 2010;42(5S1):80.

    Google Scholar 

  177. Sato K, Smith SL, Sands WA. Validation of an accelerometer for measuring sport performance. J Strength Cond Res. 2009;23(1):341–7.

    PubMed  Google Scholar 

  178. Weiss L, Ferreira L, Feldmann C, Schilling B, Hammond K. Criterion validity of accelerometer-derived peak velocity during jump squats. J Strength Cond Res. 2011;25(S1):53–4.

    Google Scholar 

  179. Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):2940–5.

    PubMed  Google Scholar 

  180. Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force–velocity profile in ballistic movements: altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313–22.

    PubMed  Google Scholar 

  181. Alemany JA, Pandorf CE, Montain SJ, Castellani JW, Tuckow AP, Nindl BC. Reliability assessment of ballistic jump squats and bench throws. J Strength Cond Res. 2005;19(1):33–8.

    PubMed  Google Scholar 

  182. Favre S, Najafi B, Aminian K. A system for vertical jump evaluation using accelerometers and gyroscopes; 2010. http://downloads.myotest.com (Accessed 12 Dec 2010).

  183. Deutsch MU, Kearney GA, Rehrer NJ. Time—motion analysis of professional rugby union players during match-play. J Sports Sci. 2007;25(4):461–72.

    CAS  PubMed  Google Scholar 

  184. Sabatini AM. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng. 2006;53(7):1346–56.

    PubMed  Google Scholar 

  185. Tong K, Granat MH. A practical gait analysis system using gyroscopes. Med Eng Phys. 1999;21(2):87–94.

    CAS  PubMed  Google Scholar 

  186. Babault N, Cometti G. Validity of myotest during vertical jump test. Centre d’expertise de la Performance; 2009. http://downloads.myotest.com/ (Accessed 12 Dec 2010).

  187. Bubanj S, Stanković R, Bubanj R, Bojić I, Đinđić B, Dimić A. Reliability of myotest tested by a countermovement jump. Acta Kinesiol. 2010;4(2):46–8.

    Google Scholar 

  188. Comstock BA, Solomon-Hill G, Flanagan SD, Earp JE, Luk HY, Dobbins KA, et al. Validity of the Myotest® in measuring force and power production in the squat and bench press. J Strength Cond Res. 2011;25(8):2293–7.

    PubMed  Google Scholar 

  189. Kraemer W. Construct validity of the Myotest in measuring force and power production. Natl Strength Cond Assoc Conf, Las Vegas; 2009. p. 745.

  190. Gouwanda D, Senanayake SM. Emerging trends of body-mounted sensors in sports and human gait analysis. Int Fed Med Biol Eng Conf. 2008;21:715–8.

    Google Scholar 

  191. Sabatini AM. Inertial sensing in biomechanics: a survey of computation techniques bridging motion analysis and personal navigation: Computation Intelligence for Movement Sciences. Hershey: Idea Group Publishing; 2006. p. 70–100.

    Google Scholar 

  192. Cormie P, Deane R, McBride JM. Methodological concerns for determining power output in the jump squat. J Strength Cond Res. 2007;21(2):424–30.

    PubMed  Google Scholar 

  193. Siegel JA, Gilders RM, Staron RS, Hagerman FC. Human muscle power output during upper- and lower-body exercises. J Strength Cond Res. 2002;16(2):173–8.

    PubMed  Google Scholar 

  194. Lara AJ, Abian J, Alegre LM, Jimenez L, Aguado X. Assessment of power output in jump tests for applicants to a sports sciences degree. J Sports Med Phys Fitness. 2006;46(3):419–24.

    CAS  PubMed  Google Scholar 

  195. Hori N, Newton RU, Kawamori N, McGuigan MR, Kraemer WJ, Nosaka K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J Strength Cond Res. 2009;23(3):874–82.

    PubMed  Google Scholar 

  196. Casartelli N, Muller R, Maffiuletti NA. Accelerometric system for the assessment of vertical jump height. J Strength Cond Res. 2010;24(11):3186–93.

    PubMed  Google Scholar 

  197. Argus C, Gill N, Keogh J, Hopkins W. Assessing the variation in the load that produces maximal upper-body power. J Strength Cond Res. 2014;28:240–4.

    PubMed  Google Scholar 

  198. Baker D, Nance S. The relation between running speed and measures of strength and power in professional rugby league player. J Strength Cond Res. 1999;13:230–5.

    Google Scholar 

  199. Baker D, Wilson G, Carlyon R. Periodization: the effect on strength of manipulating volume and intensity. J Strength Cond Res. 1994;8(4):235–42.

    Google Scholar 

  200. Cormack SJ, Newton RU, McGuigan MR, Doyle TL. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3(2):131–44.

    PubMed  Google Scholar 

  201. Hansen K, Cronin J, Newton M. Three methods of calculation force–time variables in the rebound jump squat. J Strength Cond Res. 2011;25:867–71.

    PubMed  Google Scholar 

  202. Hori N, Newton RU, Andrews WA, Kawamori N, McGuigan MR, Nosaka K. Comparison of four different methods to measure power output during the hang power clean and the weighted jump squat. J Strength Cond Res. 2007;21(2):314–20.

    PubMed  Google Scholar 

  203. Nibali ML, Chapman DW, Robergs RA, Drinkwater EJ. Influence of rest interval duration on muscular power production in the lower-body power profile. J Strength Cond Res. 2013;27:2723–9.

    PubMed  Google Scholar 

  204. Nibali ML, Chapman DW, Robergs RA, Drinkwater EJ. A rationale for assessing the lower-body power profile in team sport athletes. J Strength Cond Res. 2013;27(2):388–97.

    PubMed  Google Scholar 

  205. Hamill J, Caldwell G, Derrick T. Reconstructing digital signals using Shannon’s sampling theorem. J Appl Biomech. 1997;13:226–38.

    Google Scholar 

  206. Derrick T. Signal processing. In: Robertson D, Caldwell G, Hamill J, Kamen G, Whittlesey S, editors. Research methods in biomechanics. Champaign: Human Kinetics; 2004. p. 227–38.

    Google Scholar 

  207. Meng Q, Li B, Holstein H. Recognition of human periodic movements from unstructured information using a motion-based frequency domain approach. Image Vis Comp. 2006;24:795–809.

    Google Scholar 

  208. Chung WY, Purwar A, Sharma A. Frequency domain approach for activity classification using accelerometer. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1120–3.

    PubMed  Google Scholar 

  209. Parkka J, Ermes M, Korpipaa P, Mantyjarvi J, Peltola J, Korhonen I. Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed. 2006;10(1):119–28.

    PubMed  Google Scholar 

  210. Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed. 2006;10(1):156–67.

    PubMed  Google Scholar 

  211. Challis J. Data processing and error estimation. In: Payton CJ, Bartlett RM, editors. Biomechanical evaluation of movement in sport and exercise. New York: Routledge; 2008. p. 129–52.

    Google Scholar 

  212. BMS. Ballistic Measurement System: User Guide. Skye: Fitness Technology; 2007.

    Google Scholar 

  213. Kistler. Kistler: measure, analyze, innovate. Winterthur: Kistler Group; 2007.

    Google Scholar 

  214. Braun KN. Single-leg power generation in adolescent and young adult athletes returning to sport following anterior cruciate ligament reconstruction. Oxford: Miami University; 2010.

    Google Scholar 

  215. AMTI. AccuPower User Manual Fargo. North Dakota: Athletic Republic; 2008. p. 23.

    Google Scholar 

  216. Challis J. A procedure for the automatic determination of filter cutoff frequency for processing of biomechanical data. J Appl Biomech. 1999;15(3):303–17.

    Google Scholar 

  217. Robertson DG, Dowling JJ. Design and responses of Butterworth and critically damped digital filters. J Electromech Kinesiol. 2003;13(6):569–73.

    Google Scholar 

  218. Bezodis N, Salo A, Trewartha G. The effect of digital filtering procedures on knee joint moments in sprinting. Port J Sport Sci. 2011;11(2):837–40.

    Google Scholar 

  219. Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sports Exerc. 2005;37(11):1931–8.

    PubMed  Google Scholar 

  220. D’Amico M, Ferrigno G. Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure. Med Biol Eng Comput. 1990;28:407–16.

    PubMed  Google Scholar 

  221. Challis RE, Kitney RI. The design of digital filters for biomedical signal processing: Part 3. The design of Butterworth and Chebychev filters. J Biomed Eng. 1983;5(2):91–102.

    CAS  PubMed  Google Scholar 

  222. Cormie P, McBride JM, McCaulley GO. Power-time, force–time, and velocity–time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177–86.

    PubMed  Google Scholar 

  223. Demmler A, Reinsch C. Oscillation matrices and spline smoothing. Numer Math. 1975;24:375–82.

    Google Scholar 

  224. Carter C, Eagleson G, Silverman B. A comparison of Reinsch and Speckman splines. Biometrika. 1992;79(1):81–91.

    Google Scholar 

  225. Reinsch C. Smoothing by spline functions. Numer Math. 1967;10:177–83.

    Google Scholar 

  226. Plamondon R, Feng C, Woch A. A kinematic theory of rapid human movement: Part IV. A formal mathematical proof and new insights. Biol Cyber. 2003;89((2):126–38.

    Google Scholar 

  227. Plamondon R. A kinematic theory of rapid human movements: Part III. Kinetic outcomes. Biol Cyber. 1998;78(2):133–45.

    CAS  Google Scholar 

  228. Plamondon R. A kinematic theory of rapid human movements: Part II. Movement time and control. Biol Cyber. 1995;72(4):309–20.

    CAS  Google Scholar 

  229. Plamondon R. A kinematic theory of rapid human movements: Part I. Movement representation and generation. Biol Cyber. 1995;72(4):295–307.

    CAS  Google Scholar 

  230. Wood GA. Data smoothing and differentiation procedures in biomechanics. Exerc Sport Sci Rev. 1982;10:308–62.

    CAS  PubMed  Google Scholar 

  231. Kuitunen S, Komi PV, Kyrolainen H. Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc. 2002;34(1):166–73.

    PubMed  Google Scholar 

  232. Hawkins D. A new instrumentation system for training rowers. J Biomech. 2000;33(2):241–5.

    CAS  PubMed  Google Scholar 

  233. Cronin J, McNair P, Marshall R. The role of maximal strength and load on initial power production. Med Sci Sports Exerc. 2000;32(10):1763–9.

    CAS  PubMed  Google Scholar 

  234. Challis RE, Kitney RI. The design of digital filters for biomedical signal processing: Part 2. Design techniques using the z-plane. J Biomed Eng. 1983;5(1):19–30.

    CAS  PubMed  Google Scholar 

  235. Challis RE, Kitney RI. The design of digital filters for biomedical signal processing: Part 1. Basic concepts. J Biomed Eng. 1982;4(4):267–78.

    CAS  PubMed  Google Scholar 

  236. Winter DA. Signal processing: biomechanics and motor control of human movement. 4th ed. New York: Wiley; 1990. p. 14–43.

    Google Scholar 

  237. Ashby M, Jones D. Engineering materials 2: an introduction to microstructures, processing and design. 3rd ed. Oxford: Butterworth and Heinemann; 2006.

    Google Scholar 

  238. Zatsiorsky VM. Biomechanics of strength and strength training. In: Komi PV, editor. Strength and power in sport. 2nd ed. Oxford: Blackwell; 2003. p. 439–87.

    Google Scholar 

  239. Gray AJ, Jenkins D. Match analysis and physiological demands of Australian football. Sports Med. 2010;40(4):347–60.

    PubMed  Google Scholar 

  240. Hermassi S, Chelly MS, Fathloun M, Shephard RJ. The effect of heavy- vs. moderate-load training on the development of strength, power, and throwing ball velocity in male handball players. J Strength Cond Res. 2010;24(9):2408–18.

    PubMed  Google Scholar 

  241. Hermassi S, Chelly MS, Tabka Z, Shephard RJ, Chamari K. Effects of 8-week in-season upper and lower limb heavy resistance training on the peak power, throwing velocity, and sprint performance of elite male handball players. J Strength Cond Res. 2011;25(9):2424–33.

    PubMed  Google Scholar 

  242. Stone MH, Sanborn K, O’Bryant HS, Hartman M, Stone ME, Proulx C, et al. Maximum strength–power–performance relationships in collegiate throwers. J Strength Cond Res. 2003;17(4):739–45.

    PubMed  Google Scholar 

  243. Liu XG, Zhou YJ, Liu TC, Yuan JQ. Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg. 2009;27(6):863–9.

    CAS  PubMed  Google Scholar 

  244. Nuzzo JL, McBride JM, Cormie P, McCaulley GO. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J Strength Cond Res. 2008;22(3):699–707.

    PubMed  Google Scholar 

  245. Izquierdo M, Hakkinen K, Gonzalez-Badillo JJ, Ibanez J, Gorostiaga EM. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol. 2002;87(3):264–71.

    PubMed  Google Scholar 

  246. Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Hakkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol. 1997;75(4):333–42.

    CAS  PubMed  Google Scholar 

  247. Baker D, Newton RU. Methods to increase the effectiveness of maximal power training for the upper body. Strength Cond J. 2005;27(6):24–32.

    Google Scholar 

  248. Coutts A, Reaburn P, Piva T, Murphy A. Changes in selected biochemical, muscular strength, power and endurance measures during deliberate overreaching and tapering in rugby league players. Int J Sports Med. 2007;28(2):116–24.

    CAS  PubMed  Google Scholar 

  249. Newton R, Kraemer W, Hakkinen A, Humphries B, Murphy AJ. Kinematics, kinetics and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12:31–43.

    Google Scholar 

  250. Quagliarella L, Sasanelli N, Cavone G, Lanzolla A. Biomedical signal analysis by a low-cost accelerometer measurement system. Instrument Measure Tech Conf, Sorrento; 2006.

  251. Canavan PK, Vescovi JD. Evaluation of power prediction equations: peak vertical jumping power in women. Med Sci Sports Exerc. 2004;36(9):1589–93.

    PubMed  Google Scholar 

  252. Harman E, Rosenstein M, Frykman P, Rosenstein R, Kraemer W. Estimates of human power output from vertical jump. J Appl Sport Sci Res. 1991;5(1):116–20.

    Google Scholar 

  253. Sayers SP, Harackiewicz DV, Harman EA, Frykman PN, Rosenstein MT. Cross-validation of three jump power equations. Med Sci Sports Exerc. 1999;31(4):572–7.

    CAS  PubMed  Google Scholar 

  254. Houel N, Faury A, Seyfried D. Accuracy and reliability of the Memsens system to evaluate a squat jump. Vienna: Conf Int Sports Eng Assoc; 2010.

    Google Scholar 

  255. Ruben R, Molinari M, Bibbee C, Childress M, Harman M, Reed K, et al. The effects of heavy-loaded squats on performance during plyometric jumps. J Strength Cond Res. 2010;24:1414–20.

    Google Scholar 

  256. Kibele A. Possibilities and limitations in the biomechanical analysis of countermovement jumps: a methodological study. J Appl Biomech. 1998;14(1):105–17.

    Google Scholar 

  257. Aragon-Vargas LF. Evaluation of four vertical jumps tests: methodology, reliability, validity and accuracy. Meas Phys Educ Exerc Sci. 2000;4(4):215–28.

    Google Scholar 

  258. Kraemer W. Construct validity of the Myotest in measuring force and power production. J Strength Cond Res. 2010;24(S1).

  259. Jandacka D, Uchytil J. Optimal load maximizes the mean mechanical power output during upper extremity exercise in highly trained soccer players. J Strength Cond Res. 2011;25(10):2764–72.

    PubMed  Google Scholar 

  260. Harris NK, Cronin JB, Hopkins WG, Hansen KT. Relationship between sprint times and the strength/power outputs of a machine squat jump. J Strength Cond Res. 2008;22(3):691–8.

    PubMed  Google Scholar 

  261. Driss T, Vandewalle H, Quievre J, Miller C, Monod H. Effects of external loading on power output in a squat jump on a force platform: a comparison between strength and power athletes and sedentary individuals. J Sports Sci. 2001;19(2):99–105.

    CAS  PubMed  Google Scholar 

  262. McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy vs. light-load jump squats on the development of strength, power and speed. J Strength Cond Res. 2002;16(1):75–82.

    PubMed  Google Scholar 

  263. Hori N, Newton RU, Kawamori N, McGuigan MR, Andrews WA, Chapman DW, et al. Comparison of weighted jump squat training with and without eccentric braking. J Strength Cond Res. 2008;22(1):54–65.

    PubMed  Google Scholar 

  264. Horita T, Komi PV, Hamalainen I, Avela J. Exhausting stretch-shortening cycle (SSC) exercise causes greater impairment in SSC performance than in pure concentric performance. Eur J Appl Physiol. 2003;88(6):527–34.

    CAS  PubMed  Google Scholar 

  265. McGuigan MR, Doyle TL, Newton M, Edwards DJ, Nimphius S, Newton RU. Eccentric utilization ratio: effect of sport and phase of training. J Strength Cond Res. 2006;20(4):992–5.

    PubMed  Google Scholar 

  266. Kirby TJ, McBride JM, Haines TL, Dayne AM. Relative net vertical impulse determines jumping performance. J Appl Biomech. 2011;27(3):207–14.

    PubMed  Google Scholar 

  267. McBride JM, Skinner JW, Schafer PC, Haines TL, Kirby TJ. Comparison of kinetic variables and muscle activity during a squat vs. a box squat. J Strength Cond Res. 2010;24(12):3195–9.

    PubMed  Google Scholar 

  268. McBride JM, Kirby TJ, Haines TL, Skinner J. Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads. Int J Sports Physiol Perform. 2010;5(4):484–96.

    PubMed  Google Scholar 

  269. Khamoui AV, Brown LE, Nguyen D, Uribe BP, Coburn JW, Noffal GJ, et al. Relationship between force–time and velocity–time characteristics of dynamic and isometric muscle actions. J Strength Cond Res. 2011;25(1):198–204.

    PubMed  Google Scholar 

  270. Holm DJ, Stalbom M, Keogh JW, Cronin J. Relationship between the kinetics and kinematics of a unilateral horizontal drop jump to sprint performance. J Strength Cond Res. 2008;22(5):1589–96.

    PubMed  Google Scholar 

  271. Maulder P, Cronin J. Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Phys Ther Sport. 2005;6:74–82.

    Google Scholar 

  272. Wallace BJ, Kernozer T, White J, Kline D, Wright G, Peng H, et al. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J Strength Cond Res. 2010;24(1):207–12.

    PubMed  Google Scholar 

  273. Read PJ, Lloyd RS, De Ste Croix M, Oliver JL. Relationships between field-based measures of strength and power, and golf club head speed. J Strength Cond Res. 2013;27:2708–13.

    PubMed  Google Scholar 

  274. Los Arcos A, Yanci J, Mendiguchia J, et al. Short-term training effects of vertically and horizontally oriented exercises on neuromuscular performance in professional soccer players. Int J Sports Physiol Perform. 2013.

  275. Sedano Campo S, Vaeyens R, Philippaerts RM, Redondo JC, de Benito AM, Cuadrado G. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J Strength Cond Res. 2009;23(6):1714–22.

    PubMed  Google Scholar 

  276. Robbins DW. Relationships between National Football League combine performance measures. J Strength Cond Res. 2012;26(1):226–31.

    PubMed  Google Scholar 

  277. Robbins DW, Young WB. Positional relationships between various sprint and jump abilities in elite American football players. J Strength Cond Res. 2012;26(2):388–97.

    PubMed  Google Scholar 

  278. Marques MC, Tillaar R, Vescovi JD, Gonzalez-Badillo JJ. Changes in strength and power performance in elite senior female professional volleyball players during the in-season: a case study. J Strength Cond Res. 2008;22(4):1147–55.

    PubMed  Google Scholar 

  279. Terzis G, Stratakos G, Manta P, Georgiadis G. Throwing performance after resistance training and detraining. J Strength Cond Res. 2008;22(4):1198–204.

    PubMed  Google Scholar 

  280. Meylan C, McMaster T, Cronin J, Mohammad NI, Rogers C, Deklerk M. Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):1140–7.

    PubMed  Google Scholar 

  281. Meylan CM, Nosaka K, Green J, Cronin JB. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. J Sports Sci. 2010;28(5):545–54.

    PubMed  Google Scholar 

  282. Randell AD, Cronin JB, Keogh JW, Gill ND, Pedersen MC. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res. 2011;25(1):87–93.

    PubMed  Google Scholar 

  283. Myer GD, Ford KR, Brent JL, Hewett TE. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res. 2006;20(2):345–53.

    PubMed  Google Scholar 

  284. McCurdy KW, Langford GA, Doscher MW, Wiley LP, Mallard KG. The effects of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. J Strength Cond Res. 2005;19(1):9–15.

    PubMed  Google Scholar 

  285. Meylan CM, Nosaka K, Green JP, Cronin JB. Variability and influence of eccentric kinematics on unilateral vertical, horizontal, and lateral countermovement jump performance. J Strength Cond Res. 2010;24(3):840–5.

    PubMed  Google Scholar 

  286. Bevan HR, Owen NJ, Cunningham DJ, Kingsley MI, Kilduff LP. Complex training in professional rugby players: influence of recovery time on upper-body power output. J Strength Cond Res. 2009;23(6):1780–5.

    PubMed  Google Scholar 

  287. Kilduff LP, Bevan HR, Kingsley MI, Owen NJ, Bennett MA, Bunce PJ, et al. Postactivation potentiation in professional rugby players: optimal recovery. J Strength Cond Res. 2007;21(4):1134–8.

    PubMed  Google Scholar 

  288. Kilduff LP, Owen N, Bevan H, Bennett M, Kingsley MI, Cunningham D. Influence of recovery time on post-activation potentiation in professional rugby players. J Sports Sci. 2008;26(8):795–802.

    PubMed  Google Scholar 

  289. Chiu LZ, Fry AC, Schilling BK, Johnson EJ, Weiss LW. Neuromuscular fatigue and potentiation following two successive high intensity resistance exercise sessions. Eur J Appl Physiol. 2004;92(4–5):385–92.

    CAS  PubMed  Google Scholar 

  290. Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138–43.

    PubMed  Google Scholar 

  291. Stone MH, Sands WA, Pierce KC, Ramsey MW, Haff GG. Power and power potentiation among strength-power athletes: preliminary study. Int J Sports Physiol Perform. 2008;3(1):55–67.

    PubMed  Google Scholar 

  292. Turki O, Chaouachi A, Drinkwater EJ, Chtara M, Chamari K, Amri M, et al. Ten minutes of dynamic stretching is sufficient to potentiate vertical jump performance characteristics. J Strength Cond Res. 2011;25(9):2453–63.

    PubMed  Google Scholar 

  293. Ferreira SL, Panissa VL, Miarka B, Franchini E. Postactivation potentiation: effect of various recovery intervals on bench press power performance. J Strength Cond Res. 2012;26(3):739–44.

    PubMed  Google Scholar 

  294. Cormie P, Deane RS, Triplett NT, McBride JM. Acute effects of whole-body vibration on muscle activity, strength, and power. J Strength Cond Res. 2006;20(2):257–61.

    PubMed  Google Scholar 

  295. Samuel MN, Holcomb WR, Guadagnoli MA, Rubley MD, Wallmann H. Acute effects of static and ballistic stretching on measures of strength and power. J Strength Cond Res. 2008;22(5):1422–8.

    PubMed  Google Scholar 

  296. Jaggers JR, Swank AM, Frost KL, Lee CD. The acute effects of dynamic and ballistic stretching on vertical jump height, force, and power. J Strength Cond Res. 2008;22(6):1844–9.

    PubMed  Google Scholar 

  297. Robbins DW. Postactivation potentiation and its practical applicability: a brief review. J Strength Cond Res. 2005;19(2):453–8.

    PubMed  Google Scholar 

  298. Chiu LZ, Fry AC, Weiss LW, Schilling BK, Brown LE, Smith SL. Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Cond Res. 2003;17(4):671–7.

    PubMed  Google Scholar 

  299. Crewther BT, Kilduff LP, Cook CJ, Middleton MK, Bunce PJ, Yang GZ. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res. 2011;25(12):3319–25.

    PubMed  Google Scholar 

  300. Farup J, Sorensen H. Postactivation potentiation: upper body force development changes after maximal force intervention. J Strength Cond Res. 2010;24(7):1874–9.

    PubMed  Google Scholar 

  301. Esformes JI, Bampouras TM. Effect of back squat depth on lower body post-activation potentiation. J Strength Cond Res. 2013;27:2997–3000.

    PubMed  Google Scholar 

  302. Rixon KP, Lamont HS, Bemben MG. Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. J Strength Cond Res. 2007;21(2):500–5.

    PubMed  Google Scholar 

  303. Baker D. Changes in upper body concentric mean power output resulting from complex training emphasizing concentric muscle actions. J Austral Strength Cond. 2012;20(3):15–20.

    Google Scholar 

  304. Baker D. Increases in bench throw power output when combined with heavier bench press plus accommodating chain resistance during complex training. J Austral Strength Cond. 2009;17(1):3–11.

    Google Scholar 

  305. Baker D. Increases in jump squat peak external power output when combined with accommodating resistance box squats during contrasting resistance complex training with short rest periods. J Austral Strength Cond. 2008;16(2):10–8.

    Google Scholar 

  306. Randell AD, Cronin JB, Keogh JW, Gill ND, Pedersen MC. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions. J Strength Cond Res. 2011;25(12):3514–8.

    PubMed  Google Scholar 

  307. Argus CK, Gill ND, Keogh JW, Hopkins WG. Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res. 2011;25(12):3282–7.

    PubMed  Google Scholar 

  308. Baker DG, Newton RU. Adaptations in upper-body maximal strength and power output resulting from long-term resistance training in experienced strength-power athletes. J Strength Cond Res. 2006;20(3):541–6.

    PubMed  Google Scholar 

  309. Baker DG, Newton RU. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J Strength Cond Res. 2008;22(1):153–8.

    PubMed  Google Scholar 

  310. Carlock JM, Smith SL, Hartman MJ, Morris RT, Ciroslan DA, Pierce KC, et al. The relationship between vertical jump power estimates and weightlifting ability: a field-test approach. J Strength Cond Res. 2004;18(3):534–9.

    PubMed  Google Scholar 

  311. Markovic S, Mirkov DM, Knezevic OM, Jaric S. Jump training with different loads: effects on jumping performance and power output. Eur J Appl Physiol. 2013;113(10):2511–21.

    PubMed  Google Scholar 

  312. Sapega A, Drillings G. The definition and assessment of muscular power. J Orthop Sports Phys Ther. 1983;5(1):7–9.

    CAS  PubMed  Google Scholar 

  313. Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sport Exerc. 2007;39(6):996–1003.

    Google Scholar 

  314. Cronin J, Crewther B. Training volume and strength and power development. J Sci Med Sport. 2004;7(2):144–55.

    CAS  PubMed  Google Scholar 

  315. Harris NK, Cronin JB, Hopkins WG, Hansen KT. Squat jump training at maximal power loads vs. heavy loads: effect on sprint ability. J Strength Cond Res. 2008;22(6):1742–9.

    PubMed  Google Scholar 

  316. Moore CA, Weiss LW, Schilling BK, Fry AC, Li Y. Acute effects of augmented eccentric loading on jump squat performance. J Strength Cond Res. 2007;21(2):372–7.

    PubMed  Google Scholar 

  317. Newton R, Robertson M, Dugan E, Hasson C, Cecil J, Gerber A, et al. Heavy elastic bands alter force, velocity and power output during the back squat lift (abstract). J Strength Cond Res. 2002;16:1–18.

    Google Scholar 

  318. Wallace BJ, Winchester JB, McGuigan MR. Effects of elastic bands on force and power characteristics during the back squat exercise. J Strength Cond Res. 2006;20(2):268–72.

    PubMed  Google Scholar 

  319. Wilson GJ, Newton RU, Murphy AJ, Humphries BJ. The optimal training load for the development of dynamic athletic performance. Med Sci Sport Exerc. 1993;25(11):1279–86.

    CAS  Google Scholar 

  320. Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3):213–34.

    PubMed  Google Scholar 

  321. Crewther BT, Cook CJ, Lowe TE, Weatherby RP, Gill N. The effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players. J Strength Cond Res. 2011;25:32–9.

    PubMed  Google Scholar 

  322. McLean BD, Coutts AJ, Kelly V, McGuigan MR, Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367–83.

    PubMed  Google Scholar 

  323. McMaster DT, Gill N, McGuigan M, Cronin J. Force–velocity–power assessment in semi-professional rugby union players. J Strength Cond Res. (Epub ahead of print 8 July 2013).

  324. Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501–36.

    PubMed  Google Scholar 

  325. Mayhew JL, Levy B, McCormick T. Strength norms for NCAA division II college footbal players. Natl Strength Cond Assoc J. 1987;9(3):67–9.

    Google Scholar 

  326. McGuigan M, Winchester J. The relationship between isometric and dynamic strength in college football players. J Sports Sci Med. 2008;7:101–5.

    PubMed Central  PubMed  Google Scholar 

  327. Sale D, MacDougall D. Specificity in strength training: a review for the coach and athlete. Can J Appl Sport Sci. 1981;6(2):87–92.

    CAS  PubMed  Google Scholar 

  328. Hoffman J. The applied physiology of American football. Int J Sports Physiol Perform. 2008;3:387–92.

    PubMed  Google Scholar 

  329. Stone MH, Sands WA, Pierce KC, Carlock J, Cardinale M, Newton RU. Relationship of maximum strength to weightlifting performance. Med Sci Sports Exerc. 2005;37(6):1037–43.

    PubMed  Google Scholar 

  330. Poprawski B. Aspects of strength, power and speed in shot put training. Natl Strength Cond Assoc J. 1987;9(6):39–41.

    Google Scholar 

  331. Seo D, Kim E, Fahs A, Rossow L, Young K, Feguson S, et al. Reliability of the one-repetition maximum test based on muscle group and gender. J Sports Sci Med. 2011;11:221–5.

    Google Scholar 

  332. Haff GG, Carlock JM, Hartman MJ, Kilgore JL, Kawamori N, Jackson JR, et al. Force–time curve characteristics of dynamic and isometric muscle actions of elite women Olympic weightlifters. J Strength Cond Res. 2005;19(4):741–8.

    PubMed  Google Scholar 

  333. McCurdy K, Langford G, Cline A, Dorscher M, Hoff R. The reliability of 1 and 3RM tests of unilateral strength in trained and untrained men and women. J Sports Sci Med. 2004;2004(3):190–6.

    Google Scholar 

  334. Pereira M, Gomes P. Muscular strength and endurance tests: reliability and prediction of one repetition maximum: review and new evidences. Rev Brasilia Med Esporte. 2003;9(5):336–45.

    Google Scholar 

  335. Comfort P. Within and between session reliability of power, force and rate of force development during the power clean. J Strength Cond Res. 2013;27(5):1210–4.

    PubMed  Google Scholar 

  336. Blazevich AJ, Gill N, Newton RU. Reliability and validity of two isometric squat tests. J Strength Cond Res. 2002;16(2):298–304.

    PubMed  Google Scholar 

  337. Kawamori N, Rossi SJ, Justice BD, Haff EE, Pistilli EE, O’Bryant HS, et al. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20(3):483–91.

    PubMed  Google Scholar 

  338. Argus CK, Gill N, Keogh J, Hopkins WG, Beaven CM. Effects of a short-term pre-season training programme on the body composition and anaerobic performance of professional rugby union players. J Sports Sci. 2010;28(6):679–86.

    PubMed  Google Scholar 

  339. McMaster DT, Reyneke J. Speed, strength and power testing of elite rugby players. North Harbour Rugby Union (unpublished).

  340. McMaster DT, Gill N. Normative performance data in elite rugby union players. New Zealand Rugby Union (unpublished).

  341. Hoffman J, Cooper J, Wendell M, Kang J. Comparison of Olympic vs traditional power lifting training programs in football players. J Strength Cond Res. 2004;18(1):129–35.

    PubMed  Google Scholar 

  342. Hoffman J, Ratamess N, Klatt M, Faigenbaum A, Ross D, Tranchina N, et al. Comparison between different off-season resistance training programs in division III American college football players. J Strength Cond Res. 2009;23(1):11–9.

    PubMed  Google Scholar 

  343. Hori N, Newton RU, Andrews WA, Kawamori N, McGuigan MR, Nosaka K. Does performance of hang power clean differentiate performance of jumping, sprinting, and changing of direction? J Strength Cond Res. 2008;22(2):412–8.

    PubMed  Google Scholar 

  344. Harris GR, Stone MH, O’Bryant HS, Proulx CM, Johnson RL. Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res. 2000;14(1):14–20.

    Google Scholar 

  345. Cotter JA, Chaudhari AM, Jamison ST, Devor ST. Knee joint kinetics in relation to commonly prescribed squat loads and depths. J Strength Cond Res. 2013;27(7):1765–74.

    PubMed  Google Scholar 

  346. Cotterman ML, Darby LA, Skelly WA. Comparison of muscle force production using the Smith machine and free weights for bench press and squat exercises. J Strength Cond Res. 2005;19(1):169–76.

    PubMed  Google Scholar 

  347. Swinton PA, Lloyd R, Keogh JW, Agouris I, Stewart AD. A biomechanical comparison of the traditional squat, powerlifting squat, and box squat. J Strength Cond Res. 2012;26(7):1805–16.

    PubMed  Google Scholar 

  348. IPF. International Powerlifting Federation: Technical Rules Book; 2012. p. 35.

  349. Algra B. An in-depth analysis of the bench press. Natl Strength Cond Assoc J. 1982;4(5):6–13.

    Google Scholar 

  350. Caruso JF, Taylor ST, Lutz BM, Olson NM, Mason ML, Borgsmiller JA, et al. Anthropometry as a predictor of bench press performance done at different loads. J Strength Cond Res. 2012;26(9):2460–7.

    PubMed  Google Scholar 

  351. Langford GA, McCurdy KW, Ernest JM, Doscher MW, Walters SD. Specificity of machine, barbell, and water-filled log bench press resistance training on measures of strength. J Strength Cond Res. 2007;21(4):1061–6.

    PubMed  Google Scholar 

  352. Reynolds JM, Gordon TJ, Robergs RA. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res. 2006;20(3):584–92.

    PubMed  Google Scholar 

  353. Hetzler RK, Schroeder BL, Wages JJ, Stickley CD, Kimura IF. Anthropometry increases 1 repetition maximum predictive ability of NFL-225 test for Division IA college football players. J Strength Cond Res. 2010;24(6):1429–39.

    PubMed  Google Scholar 

  354. Garhammer J. Power clean: kinesiological evaluation. Natl Strength Cond Assoc J. 1984;40:60–3.

    Google Scholar 

  355. Ronnestad BR, Holden G, Samnoy LE, Paulsen G. Acute effect of whole-body vibration on power, one-repetition maximum, and muscle activation in power lifters. J Strength Cond Res. 2012;26(2):531–9.

    PubMed  Google Scholar 

  356. Brandenburg J, Czajka A. The acute effects of performing drop jumps of different intensities on concentric squat strength. J Sports Med Phys Fitness. 2010;50(3):254–61.

    CAS  PubMed  Google Scholar 

  357. Matuszak ME, Fry AC, Weiss LW, Ireland TR, McKnight MM. Effect of rest interval length on repeated 1 repetition maximum back squats. J Strength Cond Res. 2003;17(4):634–7.

    PubMed  Google Scholar 

  358. Barroso R, Silva-Batista C, Tricoli V, Roschel H, Ugrinowitsch C. The effects of different intensities and durations of the general warm-up on leg press 1RM. J Strength Cond Res. 2013;27(4):1009–13.

    PubMed  Google Scholar 

  359. Wilcox J, Larson R, Brochu KM, Faigenbaum AD. Acute explosive-force movements enhance bench-press performance in athletic men. Int J Sports Physiol Perform. 2006;1(3):261–9.

    PubMed  Google Scholar 

  360. Abad CC, Prado ML, Ugrinowitsch C, Tricoli V, Barroso R. Combination of general and specific warm-ups improves leg-press one repetition maximum compared with specific warm-up in trained individuals. J Strength Cond Res. 2011;25(8):2242–5.

    PubMed  Google Scholar 

  361. Barroso R, Tricoli V, SantosGil SD, Ugrinowitsch C, Roschel H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res. 2012;26(9):2432–7.

    PubMed  Google Scholar 

  362. Tod DA, Iredale KF, McGuigan MR, Strange DE, Gill N. “Psyching-up” enhances force production during the bench press exercise. J Strength Cond Res. 2005;19(3):599–603.

    PubMed  Google Scholar 

  363. Tod D, Iredale F, Gill N. ‘Psyching-up’ and muscular force production. Sports Med. 2003;33(1):47–58.

    PubMed  Google Scholar 

  364. Tynes L, McFatter R. The efficacy of “psyching” strategies on a weight-lifting task. Cognit Ther Res. 1987;11(3):327–36.

    Google Scholar 

  365. Rahmani A, Viale F, Dalleau G, Lacour JR. Force/velocity and power/velocity relationships in squat exercise. Eur J Appl Physiol. 2001;84(3):227–32.

    CAS  PubMed  Google Scholar 

  366. McGuigan MR, Newton MJ, Winchester JB, Nelson AG. Relationship between isometric and dynamic strength in recreationally trained men. J Strength Cond Res. 2010;24(9):2570–3.

    PubMed  Google Scholar 

  367. Sahaly R, Vandewalle H, Driss T, Monod H. Surface electromyograms of agonist and antagonist muscles during force development of maximal isometric exercises: effects of instruction. Eur J Appl Physiol. 2003;89(1):79–84.

    PubMed  Google Scholar 

  368. Sahaly R, Vandewalle H, Driss T, Monod H. Maximal voluntary force and rate of force development in humans: importance of instruction. Eur J Appl Physiol. 2001;85(3–4):345–50.

    CAS  PubMed  Google Scholar 

  369. Marcora S, Miller MK. The effect of knee angle on the external validity of isometric measures of lower body neuromuscular function. J Sports Sci. 2000;18(5):313–9.

    CAS  PubMed  Google Scholar 

  370. Paulus DC, Reiser RF 2nd, Troxell WO. Pneumatic strength assessment device: design and isometric measurement. Biomed Sci Instrum. 2004;40:277–82.

    PubMed  Google Scholar 

  371. McGuigan M, Winchester J, Erickson TM. The importance of isometric maximum strength in college wrestlers. J Sports Sci Med. 2006;5(S):108–13.

    PubMed Central  PubMed  Google Scholar 

  372. Ignjatovic A, Stankovic R, Katerina H, Radovanovic D. Investigation of the relationship between different muscle strength assessments in bench press action. Phys Educ Sport. 2009;7(1):17–25.

    Google Scholar 

  373. Murphy AJ, Wilson GJ. Poor correlations between isometric tests and dynamic performance: relationship to muscle activation. Eur J Appl Physiol Occup Physiol. 1996;73(3–4):353–7.

    CAS  PubMed  Google Scholar 

  374. Kilduff LP, Vidakovic P, Cooney G, Twycross-Lewis R, Amuna P, Parker M, et al. Effects of creatine on isometric bench-press performance in resistance-trained humans. Med Sci Sports Exerc. 2002;34(7):1176–83.

    CAS  PubMed  Google Scholar 

  375. Elliott BC, Wilson GJ, Kerr GK. A biomechanical analysis of the sticking region in the bench press. Med Sci Sports Exerc. 1989;21(4):450–62.

    CAS  PubMed  Google Scholar 

  376. Tillaar R, Saeterbakken AH, Ettema G. Is the occurrence of the sticking region the result of diminishing potentiation in bench press? J Sports Sci. 2012;30(6):591–9.

    PubMed  Google Scholar 

  377. van den Tillaar R, Ettema G. The, “sticking period” in a maximum bench press. J Sports Sci. 2010;28(5):529–35.

    PubMed  Google Scholar 

  378. van den Tillaar R, Ettema G. A comparison of successful and unsuccessful attempts in maximal bench pressing. Med Sci Sports Exerc. 2009;41(11):2056–63.

    PubMed  Google Scholar 

  379. Winwood PW, Keogh JW, Harris NK. Interrelationships between strength, anthropometrics, and strongman performance in novice strongman athletes. J Strength Cond Res. 2012;26(2):513–22.

    PubMed  Google Scholar 

  380. Folland J, Williams A. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    PubMed  Google Scholar 

  381. Baker DG, Newton RU. Discriminative analyses of various upper body tests in professional rugby-league players. Int J Sports Physiol Perform. 2006;1(4):347–60.

    PubMed  Google Scholar 

  382. Crewther BT, Lowe T, Weatherby RP, Gill N. Prior sprint cycling did not enhance training adaptation, but resting salivary hormones were related to workout power and strength. Eur J Appl Physiol. 2009;105(6):919–27.

    PubMed  Google Scholar 

  383. Rogerson S, Riches CJ, Jennings C, Weatherby RP, Meir RA, Marshall-Gradisnik SM. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res. 2007;21(2):348–53.

    PubMed  Google Scholar 

  384. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89(6):555–63.

    CAS  PubMed  Google Scholar 

  385. Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663–79.

    PubMed  Google Scholar 

  386. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72.

    PubMed  Google Scholar 

  387. Wernbom M, Augustsson J, Thomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–64.

    PubMed  Google Scholar 

  388. Hoffman J, Kraemer W, Fry A, Deschenes M, Kemp M. The effects of self-selection for frequency of training in a winter conditioning program for football. J Appl Sport Sci Res. 1990;4(3):76–82.

    Google Scholar 

  389. Nimphius S, McGuigan MR, Newton RU. Relationship between strength, power, speed, and change of direction performance of female softball players. J Strength Cond Res. 2010;24(4):885–95.

    PubMed  Google Scholar 

  390. Wu WL, Chang JJ, Wu JH, Guo LY. An investigation of rugby scrummaging posture and individual maximum pushing force. J Strength Cond Res. 2007;21(1):251–8.

    CAS  PubMed  Google Scholar 

  391. Herrington L, Horsley I. Electromyographic analysis of selected shoulder muscles during a rugby football tackle. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):10.

    PubMed Central  PubMed  Google Scholar 

  392. Preatoni E, Stokes K, England M, Trewartha G. The influence of playing level on the biomechanical demands experienced by rugby union forwards during maching scrummaging. Scand J Med Sci Sports. 2013;23:e178–84.

    CAS  PubMed  Google Scholar 

  393. Torg JS, Vegso JJ, O’Neill MJ, Sennett B. The epidemiologic, pathologic, biomechanical, and cinematographic analysis of football-induced cervical spine trauma. Am J Sports Med. 1990;18(1):50–7.

    CAS  PubMed  Google Scholar 

  394. Gatt CJ Jr, Hosea TM, Palumbo RC, Zawadsky JP. Impact loading of the lumbar spine during football blocking. Am J Sports Med. 1997;25(3):317–21.

    PubMed  Google Scholar 

  395. Crisco JJ, Wilcox BJ, Machan JT, McAllister TW, Duhaime AC, Duma SM, et al. Magnitude of head impact exposures in individual collegiate football players. J Appl Biomech. 2012;28(2):174–83.

    PubMed Central  PubMed  Google Scholar 

  396. Naunheim RS, Standeven J, Richter C, Lewis LM. Comparison of impact data in hockey, football, and soccer. J Trauma. 2000;48(5):938–41.

    CAS  PubMed  Google Scholar 

  397. Estevan I, Alvarez O, Falco C, Molina-Garcia J, Castillo I. Impact force and time analysis influenced by execution distance in a roundhouse kick to the head in taekwondo. J Strength Cond Res. 2011;25(10):2851–6.

    PubMed  Google Scholar 

  398. Sorensen H, Zacho M, Simonsen EB, Dyhre-Poulsen P, Klausen K. Dynamics of the martial arts high front kick. J Sports Sci. 1996;14(6):483–95.

    CAS  PubMed  Google Scholar 

  399. Schwartz ML, Hudson AR, Fernie GR, Hayashi K, Coleclough AA. Biomechanical study of full-contact karate contrasted with boxing. J Neurosurg. 1986;64(2):248–52.

    CAS  PubMed  Google Scholar 

  400. Smith MS, Dyson RJ, Hale T, Janaway L. Development of a boxing dynamometer and its punch force discrimination efficacy. J Sports Sci. 2000;18(6):445–50.

    CAS  PubMed  Google Scholar 

  401. Atha J, Yeadon MR, Sandover J, Parsons KC. The damaging punch. Br Med J (Clin Res Ed). 1985;21–28(291):1756–7.

    Google Scholar 

  402. Donovan T, Ballam T, Morton JP, Close GL. Beta-alanine improves punch force and frequency in amateur boxers during a simulated contest. Int J Sport Nutr Exerc Metab. 2012;22(5):331–7.

    CAS  Google Scholar 

  403. Haff GG, Ruben R, Saffel H, McCrory JL, Cormie P, Sands W, et al. Reliability of accelerometer based performance measurements during countermovement vertical jumps and the influence of sampling frequency. J Strength Cond Res. 2012;25:S92.

    Google Scholar 

  404. Street G, McMillan S, Board W, Rasmussen M, Heneghan M. Sources of error in determining countermovement jump height with the impulse method. J Appl Biomech. 2001;17(1):43–54.

    Google Scholar 

  405. Pearson SN, Cronin JB, Hume PA, Slyfield D. Kinematics and kinetics of the bench-press and bench-pull exercises in a strength-trained sporting population. Sports Biomech. 2009;8(3):245–54.

    PubMed  Google Scholar 

  406. Hales ME, Johnson BF, Johnson JT. Kinematic analysis of the powerlifting style squat and the conventional deadlift during competition: is there a cross-over effect between lifts? J Strength Cond Res. 2009;23(9):2574–80.

    PubMed  Google Scholar 

  407. Hartmann H, Bob A, Wirth K, Schmidtbleicher D. Effects of different periodization models on rate of force development and power ability of the upper extremity. J Strength Cond Res. 2009;23(7):1921–32.

    PubMed  Google Scholar 

  408. Bagheri J, van den Berg-Emons RJ, Pel JJ, Horemans HL, Stam HJ. Acute effects of whole-body vibration on jump force and jump rate of force development: a comparative study of different devices. J Strength Cond Res. 2012;26(3):691–6.

    PubMed  Google Scholar 

  409. Lander JE, Bates BT, Sawhill JA, Hamill J. A comparison between free-weight and isokinetic bench pressing. Med Sci Sports Exerc. 1985;17(3):344–53.

    CAS  PubMed  Google Scholar 

  410. Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18(3):551–5.

    PubMed  Google Scholar 

  411. Wilson G, Murphy A. The efficacy of isokinetic, isometric and vertical jump tests in exercise science. Aust J Sci Med Sport. 1995;27(1):20–4.

    CAS  PubMed  Google Scholar 

  412. Blazevich AJ, Gill ND. Reliability of unfamiliar, multijoint, uni- and bilateral strength tests: effects of load and laterality. J Strength Cond Res. 2006;20(1):226–30.

    PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

The authors have no potential conflicts of interest that are directly related to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Travis McMaster.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McMaster, D.T., Gill, N., Cronin, J. et al. A Brief Review of Strength and Ballistic Assessment Methodologies in Sport. Sports Med 44, 603–623 (2014). https://doi.org/10.1007/s40279-014-0145-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0145-2

Keywords

  • Force Plate
  • Vertical Jump
  • Bench Press
  • Jump Height
  • Position Transducer