Skip to main content

Advertisement

Log in

Evidence for the Role of Isometric Exercise Training in Reducing Blood Pressure: Potential Mechanisms and Future Directions

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Hypertension, or the chronic elevation in resting arterial blood pressure (BP), is a significant risk factor for cardiovascular disease and estimated to affect ~1 billion adults worldwide. The goals of treatment are to lower BP through lifestyle modifications (smoking cessation, weight loss, exercise training, healthy eating and reduced sodium intake), and if not solely effective, the addition of antihypertensive medications. In particular, increased physical exercise and decreased sedentarism are important strategies in the prevention and management of hypertension. Current guidelines recommend both aerobic and dynamic resistance exercise training modalities to reduce BP. Mounting prospective evidence suggests that isometric exercise training in normotensive and hypertensive (medicated and non-medicated) cohorts of young and old participants may produce similar, if not greater, reductions in BP, with meta-analyses reporting mean reductions of between 10 and 13 mmHg systolic, and 6 and 8 mmHg diastolic. Isometric exercise training protocols typically consist of four sets of 2-min handgrip or leg contractions sustained at 20–50 % of maximal voluntary contraction, with each set separated by a rest period of 1–4 min. Training is usually completed three to five times per week for 4–10 weeks. Although the mechanisms responsible for these adaptations remain to be fully clarified, improvements in conduit and resistance vessel endothelium-dependent dilation, oxidative stress, and autonomic regulation of heart rate and BP have been reported. The clinical significance of isometric exercise training, as a time-efficient and effective training modality to reduce BP, warrants further study. This evidence-based review aims to summarize the current state of knowledge regarding the effects of isometric exercise training on resting BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  PubMed  Google Scholar 

  2. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    Article  PubMed  Google Scholar 

  3. Danaei G, Ding EL, Mozaffarian D, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6:e1000058.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Perkovic V, Huxley R, Wu Y, et al. The burden of blood pressure-related disease: a neglected priority for global health. Hypertension. 2007;50:991–7.

    Article  CAS  PubMed  Google Scholar 

  5. Flack JM, Casciano R, Casciano J, et al. Cardiovascular disease costs associated with uncontrolled hypertension. Manag Care Interface. 2002;15:28–36.

    PubMed  Google Scholar 

  6. Arguedas JA, Perez MI, Wright JM. Treatment blood pressure targets for hypertension. Cochrane Database Syst Rev. 2009;(3):CD004349.

  7. Mancia G, De Backer G, Dominiczak A, et al. 2007 ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension. J Hypertens. 2007;25:1751–62.

    Article  CAS  PubMed  Google Scholar 

  8. Hsia J, Margolis KL, Eaton CB, et al. Prehypertension and cardiovascular disease risk in the Women’s Health Initiative. Circulation. 2007;115:855–60.

    Article  PubMed  Google Scholar 

  9. Liszka HA, Mainous AG 3rd, King DE, et al. Prehypertension and cardiovascular morbidity. Ann Fam Med. 2005;3:294–9.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Vasan RS, Larson MG, Leip EP, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.

    Article  CAS  PubMed  Google Scholar 

  11. Bacon SL, Sherwood A, Hinderliter A, et al. Effects of exercise, diet and weight loss on high blood pressure. Sports Med. 2004;34:307–16.

    Article  PubMed  Google Scholar 

  12. George ES, Kolt GS, Duncan MJ, et al. A review of the effectiveness of physical activity interventions for adult males. Sports Med. 2012;42:281–300.

    Article  PubMed  Google Scholar 

  13. Pescatello LS, Franklin BA, Fagard R, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    PubMed  Google Scholar 

  14. Williams MA, Haskell WL, Ades PA, et al. American Heart Association Council on Clinical Cardiology; American Heart Association Council on Nutrition, Physical Activity, and Metabolism. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;116:572–84.

    Google Scholar 

  15. Braith RW, Stewart KJ. Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation. 2006;113:2642–50.

    Article  PubMed  Google Scholar 

  16. Halbert JA, Silagy CA, Finucane P, et al. The effectiveness of exercise training in lowering blood pressure: a meta-analysis of randomised controlled trials of 4 weeks or longer. J Hum Hypertens. 1997;11:641–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kelley GA, Kelley KA, Tran ZV. Aerobic exercise and resting blood pressure: a meta-analytic review of randomized, controlled trials. Prev Cardiol. 2001;4:73–80.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Whelton SP, Chin A, Xin X, et al. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    Article  PubMed  Google Scholar 

  19. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.

    Article  CAS  PubMed  Google Scholar 

  20. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Brook RD, Appel LJ, Rubenfire M, on behalf of the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research, Council on Cardiovascular and Stroke Nursing, Council on Epidemiology and Prevention, and Council on Nutrition, Physical Activity, et al. Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the American Heart Association. Hypertension. 2013;61:1360–83.

    Article  CAS  PubMed  Google Scholar 

  22. Kelley G. Dynamic resistance exercise and resting blood pressure in adults: a meta-analysis. J Appl Physiol. 1997;82:1559–65.

    CAS  PubMed  Google Scholar 

  23. Kelley GA, Kelley KS. Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2000;35:838–43.

    Article  CAS  PubMed  Google Scholar 

  24. Cornelissen VA, Fagard RH. Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2005;23:251–9.

    Article  CAS  PubMed  Google Scholar 

  25. Cornelissen VA, Fagard RH, Coeckelberghs E, et al. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58:950–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kelley GA, Kelley KS. Isometric handgrip exercise and resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2010;28:411–8.

    Article  CAS  PubMed  Google Scholar 

  27. Owen A, Wiles J, Swaine I. Effect of isometric exercise on resting blood pressure: a meta analysis. J Hum Hypertens. 2010;24:796–800.

    Article  CAS  PubMed  Google Scholar 

  28. Mitchell JH, Wildenthal K. Static (isometric) exercise and the heart: physiological and clinical considerations. Annu Rev Med. 1974;25:369–81.

    Article  CAS  PubMed  Google Scholar 

  29. Wiley RL, Dunn CL, Cox RH, et al. Isometric exercise training lowers resting blood pressure. Med Sci Sports Exerc. 1992;24:749–54.

    CAS  PubMed  Google Scholar 

  30. Ray CA, Carrasco DI. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2000;279:245–9.

    Google Scholar 

  31. Howden R, Lightfoot JT, Brown SJ, et al. The effects of isometric exercise training on resting blood pressure and orthostatic tolerance in humans. Exp Physiol. 2002;87:507–15.

    PubMed  Google Scholar 

  32. Taylor AC, McCartney N, Kamath MV, et al. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35:251–6.

    PubMed  Google Scholar 

  33. McGowan CL, Levy AS, Millar PJ, et al. Acute vascular responses to isometric handgrip exercise and effects of training in persons medicated for hypertension. Am J Physiol Heart Circ Physiol. 2006;291:1797–802.

    Article  Google Scholar 

  34. McGowan CL, Visocchi A, Faulkner M, et al. Isometric handgrip training improves local flow-mediated dilation in medicated hypertensives. Eur J Appl Physiol. 2007;99:227–34.

    Article  PubMed  Google Scholar 

  35. McGowan CL, Levy AS, McCartney N, et al. Isometric handgrip training does not improve flow-mediated dilation in subjects with normal blood pressure. Clin Sci (Lond). 2007;112:403–9.

    Article  Google Scholar 

  36. Peters PG, Alessio HM, Hagerman AE, et al. Short-term isometric exercise reduces systolic blood pressure in hypertensive adults: possible role of reactive oxygen species. Int J Cardiol. 2006;110:199–205.

    Article  PubMed  Google Scholar 

  37. Millar PJ, Bray SR, MacDonald MJ, et al. The hypotensive effects of isometric handgrip training using an inexpensive spring handgrip training device. J Cardiopulm Rehabil Prev. 2008;28:203–7.

    Article  PubMed  Google Scholar 

  38. Millar PJ, Levy AS, McGowan CL, et al. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23:620–6. doi:10.1111/j.1600-0838.2011.01435.x.

    Google Scholar 

  39. Wiles JD, Coleman DA, Swaine IL. The effects of performing isometric training at two exercise intensities in healthy young males. Eur J Appl Physiol. 2010;108:419–28.

    Article  PubMed  Google Scholar 

  40. Devereux GR, Wiles JD, Swaine IL. Reductions in resting blood pressure after 4 weeks of isometric exercise training. Eur J Appl Physiol. 2010;109:601–6.

    Article  PubMed  Google Scholar 

  41. Baross AW, Wiles JD, Swaine IL. Effects of the intensity of leg isometric training on the vasculature of trained and untrained limbs and resting blood pressure in middle-aged men. Int J Vasc Med. 2012;2012:964697.

    PubMed Central  PubMed  Google Scholar 

  42. Stiller-Moldovan C, Kenno K, McGowan CL. Effects of isometric handgrip training on blood pressure (resting and 24 h ambulatory) and heart rate variability in medicated hypertensive patients. Blood Press Monit. 2012;17:55–61.

    Article  PubMed  Google Scholar 

  43. Badrov MB, Horton S, Millar PJ, McGowan CL. Cardiovascular stress reactivity tasks successfully predict the hypotensive response of isometric handgrip training in hypertensives. Psychophysiology. 2013;50:407–14.

    Article  PubMed  Google Scholar 

  44. Badrov MB, Bartol CL, Dibartolomeo MA, et al. Effects of isometric handgrip training dose on resting blood pressure and resistance vessel endothelial function in normotensive women. Eur J Appl Physiol. 2013;133:2091–100.

    Article  Google Scholar 

  45. Millar PJ, Bray SR, McGowan CL, et al. Effects of isometric handgrip training among people medicated for hypertension: a multilevel analysis. Blood Press Monit. 2007;12:307–14.

    Article  PubMed  Google Scholar 

  46. Ewing DJ, Irving JB, Kerr F, et al. Static exercise in untreated systemic hypertension. Br Heart J. 1973;35:413–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. MacDougall JD, Tuxen D, Sale DG, et al. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58:785–90.

    CAS  PubMed  Google Scholar 

  48. Williams CA. Effect of muscle mass on the pressor response in man during isometric contractions. J Physiol. 1991;435:573–84.

    CAS  PubMed  Google Scholar 

  49. Chrysant SG. Hemodynamic effects of isometric exercise in normotensive and hypertensive subjects. Angiology. 1978;29:379–85.

    Article  CAS  PubMed  Google Scholar 

  50. Fixler DE, Laird WP, Browne R, et al. Response of hypertensive adolescents to dynamic and isometric exercise stress. Pediatrics. 1979;64:579–83.

    CAS  PubMed  Google Scholar 

  51. Araújo CG, Duarte CV, Gonçalves FA, et al. Hemodynamic responses to an isometric handgrip training protocol. Arq Bras Cardiol. 2011;97:413–8.

    Article  PubMed  Google Scholar 

  52. Blomqvist CG, Lewis SF, Taylor WF, et al. Similarity of the hemodynamic responses to static and dynamic exercise of small muscle groups. Circ Res. 1981;48:87–92.

    Google Scholar 

  53. Lewis SF, Taylor WF, Bastian BC, et al. Haemodynamic responses to static and dynamic handgrip before and after autonomic blockade. Clin Sci (Lond). 1983;64:593–9.

    CAS  Google Scholar 

  54. Lewis SF, Snell PG, Taylor WF, et al. Role of muscle mass and mode of contraction in circulatory responses to exercise. J Appl Physiol. 1985;58:146–51.

    Article  CAS  PubMed  Google Scholar 

  55. Cantor A, Gold B, Gueron M, et al. Isotonic (dynamic) and isometric (static) effort in the assessment and evaluation of diastolic hypertension: correlation and clinical use. Cardiology. 1987;74:141–6.

    Article  CAS  PubMed  Google Scholar 

  56. Daniels JW, Stebbins CL, Longhurst JC. Hemodynamic responses to static and dynamic muscle contractions at equivalent workloads. Am J Physiol Regul Integr Comp Physiol. 2000;279:1849–55.

    Google Scholar 

  57. Stebbins CL, Walser B, Jafarzadeh M. Cardiovascular responses to static and dynamic contraction during comparable workloads in humans. Am J Physiol Regul Integr Comp Physiol. 2002;283:568–75.

    Google Scholar 

  58. Fisher ML, Nutter DO, Jacobs W, et al. Haemodynamic responses to isometric exercise (handgrip) in patients with heart disease. Br Heart J. 1973;35:422–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Tuttle WW, Horvath SM. Comparison of effects of static and dynamic work on blood pressure and heart rate. J Appl Physiol. 1957;10:294–6.

    CAS  PubMed  Google Scholar 

  60. Buckberg GD, Fixler DE, Archie JP, et al. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res. 1972;30:67–81.

    Article  CAS  PubMed  Google Scholar 

  61. Hanson P, Nagle F. Isometric exercise: cardiovascular responses in normal and cardiac populations. Cardiol Clin. 1987;5:157–70.

    CAS  PubMed  Google Scholar 

  62. O’Connor P, Sforzo GA, Frye P. Effect of breathing instruction on blood pressure responses during isometric exercise. Phys Ther. 1989;69:757–61.

    PubMed  Google Scholar 

  63. Fagard RH. Exercise therapy in hypertensive cardiovascular disease. Prog Cardiovasc Dis. 2011;53:404–11.

    Article  PubMed  Google Scholar 

  64. Tinken TM, Thijssen DHJ, Hopkins N, et al. Sheer stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55:312–8.

    Article  CAS  PubMed  Google Scholar 

  65. Malliani A, Pagani M, Lombardi F, et al. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    Article  CAS  PubMed  Google Scholar 

  66. Parati G, Saul JP, Di Rienzo M, et al. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation: a critical appraisal. Hypertension. 1995;25:1276–86.

    Article  CAS  PubMed  Google Scholar 

  67. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.

    Google Scholar 

  68. Millar PJ, Cotie LM, St Amand T, et al. Effects of autonomic blockade on nonlinear heart rate dynamics. Clin Auton Res. 2010;20:241–7.

    Article  PubMed  Google Scholar 

  69. Agapitov AV, Correia ML, Sinkey CA, et al. Dissociation between sympathetic nerve traffic and sympathetically mediated vascular tone in normotensive human obesity. Hypertension. 2008;52:687–95.

    Article  CAS  PubMed  Google Scholar 

  70. Pagani M, Somers V, Furlan R, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12:600–10.

    Article  CAS  PubMed  Google Scholar 

  71. Guzzetti S, Dassi S, Balsamà M, et al. Altered dynamics of the circadian relationship between systemic arterial pressure and cardiac sympathetic drive early on in mild hypertension. Clin Sci (Lond). 1994;86:209–15.

    CAS  Google Scholar 

  72. Floras JS, Hara K. Sympathoneural and haemodynamic characteristics in young subjects with mild essential hypertension. J Hypertens. 1993;11:647–55.

    Article  CAS  PubMed  Google Scholar 

  73. Grassi G, Seravalle G, Quarti-Trevano F. The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol. 2010;95:581–6.

    Article  PubMed  Google Scholar 

  74. Haddy FJ, Overbeck HW, Daugherty RM Jr. Peripheral vascular resistance. Annu Rev Med. 1968;19:167–94.

    Article  CAS  PubMed  Google Scholar 

  75. Kingwell B, Sherrard B, Jennings G, et al. Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol. 1997;272:1070–7.

    Google Scholar 

  76. Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005;26:33–65.

    Article  CAS  PubMed  Google Scholar 

  77. Buck C, Donner A. Isometric occupational exercise and the incidence of hypertension. J Occup Med. 1985;27:370–2.

    Article  CAS  PubMed  Google Scholar 

  78. Cook NR, Cohen J, Hebert PR, et al. Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med. 1995;155:701–9.

    Article  CAS  PubMed  Google Scholar 

  79. Whelton PK, He J, Appel LJ, et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA. 2002;288:1882–8.

    Article  PubMed  Google Scholar 

  80. Turnbull F, Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527–35.

    Article  CAS  PubMed  Google Scholar 

  81. Chrysant SG. Current evidence on the hemodynamic and blood pressure effects of isometric exercise in normotensive and hypertensive persons. J Clin Hypertens (Greenwich). 2010;12:721–6.

    Article  Google Scholar 

  82. Verdecchia P. Prognostic value of ambulatory blood pressure: current evidence and clinical implications. Hypertension. 2000;35:844–51.

    Article  CAS  PubMed  Google Scholar 

  83. Lawes CM, Vander Hoorn S, Rodgers A, International Society of Hypertension. Global burden of blood-pressure related disease, 2001. Lancet. 2008;371:1513–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tony Baross for assistance in preparing the table. No funding was received to assist in the preparation, editing or approval of this review. Dr. Millar has received modest speaking and travel honoraria from ZonaHealth (2010–2012) [Boise, ID, USA]. Dr. Millar is supported by a Canadian Institutes of Health Research (CIHR) research fellowship. Dr. Cornelissen is supported as a postdoctoral research fellow by Research Foundation Flanders (FWO). Dr. Araujo is supported by Brazilian (CNPq) and State of Rio de Janeiro (FAPERJ) research scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian L. Swaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millar, P.J., McGowan, C.L., Cornelissen, V.A. et al. Evidence for the Role of Isometric Exercise Training in Reducing Blood Pressure: Potential Mechanisms and Future Directions. Sports Med 44, 345–356 (2014). https://doi.org/10.1007/s40279-013-0118-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0118-x

Keywords

Navigation