Advertisement

Sports Medicine

, Volume 44, Issue 2, pp 223–249 | Cite as

The Health Effects of Exercising in Air Pollution

  • Luisa V. GilesEmail author
  • Michael S. Koehle
Review Article

Abstract

The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.

Keywords

Ozone Lung Function Exercise Performance Lung Inflammation Maximal Oxygen Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors have no declared conflicts of interest. No sources of funding were used to assist in the preparation of this review.

References

  1. 1.
    Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1–2.PubMedGoogle Scholar
  2. 2.
    Williams PT. Reduction in incident stroke risk with vigorous physical activity: evidence from 7.7-year follow-up of the national runners’ health study. Stroke. 2009;40(5):1921–3. doi: 10.1161/STROKEAHA.108.535427.Google Scholar
  3. 3.
    World Health Organisation. Global health risks. Mortality and burden of disease attributable to major risks; 2009.Google Scholar
  4. 4.
    United Nations. World urbanization prospectus the 2011 revision; 2012. http://esa.un.org/unup/pdf/WUP2011_Highlights.pdf (Accessed 1 April 2013).
  5. 5.
    World Health Organisation. Air quality guidelines global update Geneva; 2005. http://www.euro.who.int/_data/assets/pdf_file/0005/78638/E90038.pdf (Accessed 1 April 2013).
  6. 6.
    van Donkelaar A, Martin RV, Brauer M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect. 2010;118(6):847–55. doi: 10.1289/ehp.0901623.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Zhang A, Qi Q, Jiang L, et al. Population exposure to pm2.5 in the urban area of Beijing. PLoS ONE. 2013;8(5):e63486. doi: 10.1371/journal.pone.0063486.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Cohen AJ. Air pollution and lung cancer: what more do we need to know? Thorax. 2003;58(12):1010–2.PubMedGoogle Scholar
  9. 9.
    Lisabeth LD, Escobar JD, Dvonch JT, et al. Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann Neurol. 2008;64:53–9.PubMedCentralPubMedGoogle Scholar
  10. 10.
    McConnell R, Berhane K, Gilliland F, et al. Asthma in exercising children exposed to ozone: a cohort study. Lancet. 2002;359(9304):386–91.PubMedGoogle Scholar
  11. 11.
    Pope CA 3rd, Muhlestein JB, May HT, et al. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation. 2006;114(23):2443–8.PubMedGoogle Scholar
  12. 12.
    Suwa T, Hogg JC, Quinlan KB, et al. Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol. 2002;39(6):935–42.PubMedGoogle Scholar
  13. 13.
    Zemp E, Elsasser S, Schindler C, et al. Long-term ambient air pollution and respiratory symptoms in adults (SAPALDIA study): the SAPALDIA team. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1257–66.Google Scholar
  14. 14.
    Brook RD, Rajagopalan S, Pope CA 3rd, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.PubMedGoogle Scholar
  15. 15.
    US EPA. Air quality criteria for ozone and related photochemical oxidants; 2005. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=149923 (Accessed 1 April 2013).
  16. 16.
    Gent JF, Triche EW, Holford TR, et al. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA. 2003;290(14):1859–67. doi: 10.1001/jama.290.14.1859290/14/1859.PubMedGoogle Scholar
  17. 17.
    Park SK, O’Neill MS, Vokonas PS, et al. Effects of air pollution on heart rate variability: the VA normative aging study. Environ Health Perspect. 2005;113(3):304–9.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Davidge KS, Motterlini R, Mann BE, et al. Carbon monoxide in biology and microbiology: surprising roles for the “Detroit perfume”. Adv Microb Physiol. 2009;56:85–167. doi: 10.1016/S0065-2911(09)05603-3.PubMedGoogle Scholar
  19. 19.
    Omaye ST. Metabolic modulation of carbon monoxide toxicity. Toxicology. 2002;180(2):139–50.PubMedGoogle Scholar
  20. 20.
    Raub JA, Mathieu-Nolf M, Hampson NB, et al. Carbon monoxide poisoning: a public health perspective. Toxicology. 2000;145(1):1–14. pii:S0300-483X(99)00217-6.Google Scholar
  21. 21.
    US EPA. Air quality criteria for carbon monoxide. Washington DC, Development OoRa; 2000. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=18163 (Accessed 1 April 2013).
  22. 22.
  23. 23.
    US EPA. Acute exposure guideline levels, carbon monoxide; 2008.Google Scholar
  24. 24.
    World Health Organization. Environmental health criteria 213: carbon monoxide. Geneva: World Health Organization; 1999. http://whqlibdoc.who.int/ehc/WHO_EHC_213.pdf (Accessed 1 April 2013).
  25. 25.
    Turrens JF, Freeman BA, Levitt JG, et al. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys. 1982;217(2):401–10.PubMedGoogle Scholar
  26. 26.
    Alonso JR, Cardellach F, Lopez S, et al. Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol. 2003;93(3):142–6. pii:pto930306.Google Scholar
  27. 27.
    Kaur S, Nieuwenhuijsen MJ, Colvilea RN. Pedestrian exposure to air pollution along a major road in central London, UK. Atmos Environ. 2005;39:7307–20.Google Scholar
  28. 28.
    Kaur S, Nieuwenhuijsen MJ. Determinants of personal exposure to pm2.5, ultrafine particle counts, and co in a transport microenvironment. Environ Sci Technol. 2009;43(13):4737–43.PubMedGoogle Scholar
  29. 29.
    McNabola AB, Broderick BM, Gill LW. Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: personal exposure and uptake. Atmos Environ. 2008;42(26):6496–512.Google Scholar
  30. 30.
    van Wijnen JH, Verhoeff AP, Jans HW, et al. The exposure of cyclists, car drivers and pedestrians to traffic-related air pollutants. Int Arch Occup Environ Health. 1995;67(3):187–93.PubMedGoogle Scholar
  31. 31.
    Zuurbier M, Hoek G, Oldenwening M, et al. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. 2010;118(6):783–9. doi: 10.1289/ehp.0901622.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Giles LV, Carlsten C, Koehle MS. The effect of pre-exercise diesel exhaust exposure on cycling performance and cardio-respiratory variables. Inhal Toxicol. 2012;24(12):783–9. doi: 10.3109/08958378.2012.717649.PubMedGoogle Scholar
  33. 33.
    Peters A, von Klot S, Heier M, et al. Exposure to traffic and the onset of myocardial infarction. N Engl J Med. 2004;351(17):1721–30. doi: 10.1056/NEJMoa040203.PubMedGoogle Scholar
  34. 34.
    Niinimaa V, Cole P, Mintz S, et al. The switching point from nasal to oronasal breathing. Respir Physiol. 1980;42(1):61–71.PubMedGoogle Scholar
  35. 35.
    Chalupa DC, Morrow PE, Oberdorster G, et al. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect. 2004;112(8):879–82.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Daigle CC, Chalupa DC, Gibb FR, et al. Ultrafine particle deposition in humans during rest and exercise. Inhal Toxicol. 2003;15(6):539–52.PubMedGoogle Scholar
  37. 37.
    Oravisjarvi K, Pietikainen M, Ruuskanen J, et al. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico. Sci Total Environ. 2011;409(21):4511–8. doi: 10.1016/j.scitotenv.2011.07.020.PubMedGoogle Scholar
  38. 38.
    Bennett WD, Messina MS, Smaldone GC. Effect of exercise on deposition and subsequent retention of inhaled particles. J Appl Physiol. 1985;59(4):1046–54.PubMedGoogle Scholar
  39. 39.
    Kinker JR, Haffor AS, Stephan M, et al. Kinetics of co uptake and diffusing capacity in transition from rest to steady-state exercise. J Appl Physiol. 1992;72(5):1764–72.PubMedGoogle Scholar
  40. 40.
    Tikuisis P, Kane DM, McLellan TM, et al. Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide. J Appl Physiol. 1992;72(4):1311–9.PubMedGoogle Scholar
  41. 41.
    Ultman JS, Ben-Jebria A, Arnold SF. Uptake distribution of ozone in human lungs: intersubject variability in physiologic response. Res Rep Health Eff Inst. 2004(125):1–23 (discussion 5–30).Google Scholar
  42. 42.
    Muns G, Singer P, Wolf F, et al. Impaired nasal mucociliary clearance in long-distance runners. Int J Sports Med. 1995;16(4):209–13. doi: 10.1055/s-2007-972993.PubMedGoogle Scholar
  43. 43.
    Salzano FA, Manola M, Tricarico D, et al. Mucociliary clearance after aerobic exertion in athletes. Acta Otorhinolaryngol Ital. 2000;20(3):171–6.PubMedGoogle Scholar
  44. 44.
    Adams WC. Effects of ozone exposure at ambient air pollution episode levels on exercise performance. Sports Med. 1987;4(6):395–424.PubMedGoogle Scholar
  45. 45.
    Adams WC. Comparison of chamber and face-mask 6.6-hour exposures to ozone on pulmonary function and symptoms responses. Inhal Toxicol. 2002;14(7):745–64. doi: 10.1080/08958370290084610.PubMedGoogle Scholar
  46. 46.
    Adams WC. Comparison of chamber and face mask 6.6-hour exposure to 0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhal Toxicol. 2003;15(3):265–81. doi: 10.1080/08958370304505.PubMedGoogle Scholar
  47. 47.
    Adams WC, Schelegle ES. Ozone and high ventilation effects on pulmonary function and endurance performance. J Appl Physiol. 1983;55(3):805–12.PubMedGoogle Scholar
  48. 48.
    Alfaro MF, Walby WF, Adams WC, et al. Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects. Exp Lung Res. 2007;33(3–4):115–33. doi: 10.1080/01902140701364367.PubMedGoogle Scholar
  49. 49.
    Brookes KA, Adams WC, Schelegle ES. 0.35 ppm O3 exposure induces hyperresponsiveness on 24-h reexposure to 0.20 ppm O3. J Appl Physiol. 1989;66(6):2756–62.PubMedGoogle Scholar
  50. 50.
    DeLucia AJ, Adams WC. Effects of O3 inhalation during exercise on pulmonary function and blood biochemistry. J Appl Physiol. 1977;43(1):75–81.PubMedGoogle Scholar
  51. 51.
    Folinsbee LJ, Hazucha MJ. Time course of response to ozone exposure in healthy adult females. Inhal Toxicol. 2000;12(3):151–67. doi: 10.1080/089583700196211.PubMedGoogle Scholar
  52. 52.
    Foxcroft WJ, Adams WC. Effects of ozone exposure on four consecutive days on work performance and VO2max. J Appl Physiol. 1986;61(3):960–6.PubMedGoogle Scholar
  53. 53.
    Gibbons SI, Adams WC. Combined effects of ozone exposure and ambient heat on exercising females. J Appl Physiol. 1984;57(2):450–6.PubMedGoogle Scholar
  54. 54.
    Messineo TD, Adams WC. Ozone inhalation effects in females varying widely in lung size: comparison with males. J Appl Physiol. 1990;69(1):96–103.PubMedGoogle Scholar
  55. 55.
    Schonfeld BR, Adams WC, Schelegle ES. Duration of enhanced responsiveness upon re-exposure to ozone. Arch Environ Health. 1989;44(4):229–36. doi: 10.1080/00039896.1989.9935888.PubMedGoogle Scholar
  56. 56.
    Gong H Jr, Bradley PW, Simmons MS, et al. Impaired exercise performance and pulmonary function in elite cyclists during low-level ozone exposure in a hot environment. Am Rev Resp Dis. 1986;134(4):726–33.PubMedGoogle Scholar
  57. 57.
    Savin WM, Adams WC. Effects of ozone inhalation on work performance and VO2 max. J Appl Physiol. 1979;46(2):309–14.PubMedGoogle Scholar
  58. 58.
    Schelegle ES, Alfaro MF, Putney L, et al. Effect of C-fiber-mediated, ozone-induced rapid shallow breathing on airway epithelial injury in rats. J Appl Physiol. 2001;91(4):1611–8.PubMedGoogle Scholar
  59. 59.
    Koike A, Wasserman K, Armon Y, et al. The work-rate-dependent effect of carbon monoxide on ventilatory control during exercise. Respir Physiol. 1991;85(2):169–83.PubMedGoogle Scholar
  60. 60.
    Pelham TW, Holt LE, Moss MA. Exposure to carbon monoxide and nitrogen dioxide in enclosed ice arenas. Occup Environ Med. 2002;59(4):224–33.PubMedGoogle Scholar
  61. 61.
    Holgate ST, Sandstrom T, Frew AJ, et al. Health effects of acute exposure to air pollution. Part I: healthy and asthmatic subjects exposed to diesel exhaust. Res Rep Health Eff Inst. 2003(112):1–30 (discussion 51–67).Google Scholar
  62. 62.
    Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60(8):612–6.PubMedGoogle Scholar
  63. 63.
    Rundell KW. High levels of airborne ultrafine and fine particulate matter in indoor ice arenas. Inhal Toxicol. 2003;15(3):237–50. doi: 10.1080/08958370304502.PubMedGoogle Scholar
  64. 64.
    Rundell KW. Pulmonary function decay in women ice hockey players: Is there a relationship to ice rink air quality? Inhal Toxicol. 2004;16(3):117–23. doi: 10.1080/08958370490270918.
  65. 65.
    Coleridge HM, Coleridge JC. Pulmonary reflexes: neural mechanisms of pulmonary defense. Annu Rev Physiol. 1994;56:69–91. doi: 10.1146/annurev.ph.56.030194.000441.PubMedGoogle Scholar
  66. 66.
    Schelegle ES, Carl ML, Coleridge HM, et al. Contribution of vagal afferents to respiratory reflexes evoked by acute inhalation of ozone in dogs. J Appl Physiol. 1993;74(5):2338–44.PubMedGoogle Scholar
  67. 67.
    Islam T, Berhane K, McConnell R, et al. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax. 2009;64(3):197–202. doi: 10.1136/thx.2008.099366.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Adams WC. Ozone dose–response effects of varied equivalent minute ventilation rates. J Expo Anal Environ Epidemiol. 2000;10(3):217–26.PubMedGoogle Scholar
  69. 69.
    Adams WC, Brookes KA, Schelegle ES. Effects of NO2 alone and in combination with O3 on young men and women. J Appl Physiol. 1987;62(4):1698–704.PubMedGoogle Scholar
  70. 70.
    Adams WC, Savin WM, Christo AE. Detection of ozone toxicity during continuous exercise via the effective dose concept. J Appl Physiol. 1981;51(2):415–22.PubMedGoogle Scholar
  71. 71.
    Aris R, Christian D, Sheppard D, et al. The effects of sequential exposure to acidic fog and ozone on pulmonary function in exercising subjects. Am Rev Respir Dis. 1991;143(1):85–91. doi: 10.1164/ajrccm/143.1.85.PubMedGoogle Scholar
  72. 72.
    Aronow WS, Schlueter WJ, Williams MA, et al. Aggravation of exercise performance in patients with anemia by 3% carboxyhemoglobin. Environ Res. 1984;35(2):394–8.PubMedGoogle Scholar
  73. 73.
    Braun-Fahrlander C, Kunzli N, Domenighetti G, et al. Acute effects of ambient ozone on respiratory function of Swiss schoolchildren after a 10-minute heavy exercise. Pediatr Pulmonol. 1994;17(3):169–77.PubMedGoogle Scholar
  74. 74.
    Brunekreef B, Hoek G, Breugelmans O, et al. Respiratory effects of low-level photochemical air pollution in amateur cyclists. Am J Respir Crit Care Med. 1994;150(4):962–6.PubMedGoogle Scholar
  75. 75.
    Dillard CJ, Litov RE, Savin WM, et al. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol. 1978;45(6):927–32.PubMedGoogle Scholar
  76. 76.
    Folinsbee LJ, Bedi JF, Horvath SM. Combined effects of ozone and nitrogen dioxide on respiratory function in man. Am Ind Hyg Assoc J. 1981;42(7):534–41. doi: 10.1080/15298668191420206.PubMedGoogle Scholar
  77. 77.
    Folinsbee LJ, Bedi JF, Horvath SM. Pulmonary function changes after 1 h continuous heavy exercise in 0.21 ppm ozone. J Appl Physiol. 1984;57(4):984–8.PubMedGoogle Scholar
  78. 78.
    Folinsbee LJ, Bedi JF, Horvath SM. Pulmonary response to threshold levels of sulfur dioxide (1.0 ppm) and ozone (0.3 ppm). J Appl Physiol. 1985;58(6):1783–7.PubMedGoogle Scholar
  79. 79.
    Folinsbee LJ, Horstman DH, Kehrl HR, et al. Respiratory responses to repeated prolonged exposure to 0.12 ppm ozone. Am J Respir Crit Care Med. 1994;149(1):98–105. doi: 10.1164/ajrccm.149.1.8111607.PubMedGoogle Scholar
  80. 80.
    Folinsbee LJ, Horvath SM, Raven PB, et al. Influence of exercise and heat stress on pulmonary function during ozone exposure. J Appl Physiol. 1977;43(3):409–13.PubMedGoogle Scholar
  81. 81.
    Folinsbee LJ, McDonnell WF, Horstman DH. Pulmonary function and symptom responses after 6.6-hour exposure to 0.12 ppm ozone with moderate exercise. JAPCA. 1988;38(1):28–35.PubMedGoogle Scholar
  82. 82.
    Gerrity TR, Bennett WD, Kehrl H, et al. Mucociliary clearance of inhaled particles measured at 2 h after ozone exposure in humans. J Appl Physiol. 1993;74(6):2984–9.PubMedGoogle Scholar
  83. 83.
    Grievink L, Jansen SM, van’t Veer P, et al. Acute effects of ozone on pulmonary function of cyclists receiving antioxidant supplements. Occup Environ Med. 1998;55(1):13–7.PubMedGoogle Scholar
  84. 84.
    Horstman DH, Folinsbee LJ, Ives PJ, et al. Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. Am Rev Respir Dis. 1990;142(5):1158–63. doi: 10.1164/ajrccm/142.5.1158.PubMedGoogle Scholar
  85. 85.
    Hynes B, Silverman F, Cole P, et al. Effects of ozone exposure: a comparison between oral and nasal breathing. Arch Environ Health. 1988;43(5):357–60. doi: 10.1080/00039896.1988.9934949.PubMedGoogle Scholar
  86. 86.
    Korrick SA, Neas LM, Dockery DW, et al. Effects of ozone and other pollutants on the pulmonary function of adult hikers. Environ Health Perspect. 1998;106(2):93–9.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Lauritzen SK, Adams WC. Ozone inhalation effects consequent to continuous exercise in females: comparison to males. J Appl Physiol. 1985;59(5):1601–6.PubMedGoogle Scholar
  88. 88.
    Linn WS, Shamoo DA, Anderson KR, et al. Effects of prolonged, repeated exposure to ozone, sulfuric acid, and their combination in healthy and asthmatic volunteers. Am J Respir Crit Care Med. 1994;150(2):431–40. doi: 10.1164/ajrccm.150.2.8049826.PubMedGoogle Scholar
  89. 89.
    McDonnell WF, Kehrl HR, Abdul-Salaam S, et al. Respiratory response of humans exposed to low levels of ozone for 6.6 hours. Arch Environ Health. 1991;46(3):145–50. doi: 10.1080/00039896.1991.9937441.PubMedGoogle Scholar
  90. 90.
    McKittrick T, Adams WC. Pulmonary function response to equivalent doses of ozone consequent to intermittent and continuous exercise. Arch Environ Health. 1995;50(2):153–8. doi: 10.1080/00039896.1995.9940892.PubMedGoogle Scholar
  91. 91.
    Mihevic PM, Gliner JA, Horvath SM. Perception of effort and respiratory sensitivity during exposure to ozone. Ergonomics. 1981;24(5):365–74. doi: 10.1080/00140138108924858.PubMedGoogle Scholar
  92. 92.
    Schelegle ES, Adams WC. Reduced exercise time in competitive simulations consequent to low level ozone exposure. Med Sci Sports Exerc. 1986;18(4):408–14.PubMedGoogle Scholar
  93. 93.
    Spektor DM, Lippmann M, Thurston GD, et al. Effects of ambient ozone on respiratory function in healthy adults exercising outdoors. Am Rev Respir Dis. 1988;138(4):821–8.PubMedGoogle Scholar
  94. 94.
    Holz O, Jorres RA, Timm P, et al. Ozone-induced airway inflammatory changes differ between individuals and are reproducible. Am J Respir Crit Care Med. 1999;159(3):776–84. doi: 10.1164/ajrccm.159.3.9806098.PubMedGoogle Scholar
  95. 95.
    Adams WC, Schelegle ES, Shaffrath JD. Oral and oronasal breathing during continuous exercise produce similar responses to ozone inhalation. Arch Environ Health. 1989;44(5):311–6. doi: 10.1080/00039896.1989.9935899.PubMedGoogle Scholar
  96. 96.
    Fernandes AL, Molfino NA, McClean PA, et al. The effect of pre-exposure to 0.12 ppm of ozone on exercise-induced asthma. Chest. 1994;106(4):1077–82.PubMedGoogle Scholar
  97. 97.
    Gomes EC, Stone V, Florida-James G. Investigating performance and lung function in a hot, humid and ozone-polluted environment. Eur J Appl Physiol. 2010;110(1):199–205. doi: 10.1007/s00421-010-1485-8.PubMedGoogle Scholar
  98. 98.
    Koenig JQ, Covert DS, Smith MS, et al. The pulmonary effects of ozone and nitrogen dioxide alone and combined in healthy and asthmatic adolescent subjects. Toxicol Ind Health. 1988;4(4):521–32.PubMedGoogle Scholar
  99. 99.
    Krishna MT, Springall D, Meng QH, et al. Effects of ozone on epithelium and sensory nerves in the bronchial mucosa of healthy humans. Am J Respir Crit Care Med. 1997;156(3 Pt 1):943–50. doi: 10.1164/ajrccm.156.3.9612088.PubMedGoogle Scholar
  100. 100.
    Superko HR, Adams WC, Daly PW. Effects of ozone inhalation during exercise in selected patients with heart disease. Am J Med. 1984;77(3):463–70. pii:0002-9343(84)90105-0.Google Scholar
  101. 101.
    Avol EL, Linn WS, Venet TG, et al. Comparative respiratory effects of ozone and ambient oxidant pollution exposure during heavy exercise. J Air Pollut Control Assoc. 1984;34(8):804–9.PubMedGoogle Scholar
  102. 102.
    Schneider A, Neas L, Herbst MC, et al. Endothelial dysfunction: associations with exposure to ambient fine particles in diabetic individuals. Environ Health Perspect. 2008;116(12):1666–74. doi: 10.1289/ehp.11666.PubMedCentralPubMedGoogle Scholar
  103. 103.
    European Environment Agency. Air pollution by ozone across Europe during summer 2012: European Environment Agency; 2012.Google Scholar
  104. 104.
    Brunekreef B, Stewart AW, Anderson HR, et al. Self-reported truck traffic on the street of residence and symptoms of asthma and allergic disease: a global relationship in ISAAC phase 3. Environ Health Perspect. 2009;117(11):1791–8. doi: 10.1289/ehp.0800467.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Avol EL, Linn WS, Shamoo DA, et al. Short-term respiratory effects of photochemical oxidant exposure in exercising children. JAPCA. 1987;37(2):158–62.PubMedGoogle Scholar
  106. 106.
    Avol EL, Linn WS, Shamoo DA, et al. Respiratory effects of photochemical oxidant air pollution in exercising adolescents. Am Rev Respir Dis. 1985;132(3):619–22.PubMedGoogle Scholar
  107. 107.
    Avol EL, Linn WS, Shamoo DA, et al. Acute respiratory effects of Los Angeles smog in continuously exercising adults. J Air Pollut Control Assoc. 1983;33(11):1055–60.PubMedGoogle Scholar
  108. 108.
    Brauner EV, Mortensen J, Moller P, et al. Effects of ambient air particulate exposure on blood–gas barrier permeability and lung function. Inhal Toxicol. 2009;21(1):38–47. doi: 10.1080/08958370802304735.PubMedGoogle Scholar
  109. 109.
    Girardot SP, Ryan PB, Smith SM, et al. Ozone and pm2.5 exposure and acute pulmonary health effects: a study of hikers in the Great Smoky Mountains National Park. Environ Health Perspect. 2006;114(7):1044–52.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Kulstrunk M, Bohni B. Comparison of lung function parameters in healthy non-smokers following exertion in urban environmental air and in air-conditioned inside air. Schweiz Med Wochenschr. 1992;122(11):375–81.PubMedGoogle Scholar
  111. 111.
    McCreanor J, Cullinan P, Nieuwenhuijsen MJ, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med. 2007;357(23):2348–58.PubMedGoogle Scholar
  112. 112.
    Strak M, Boogaard H, Meliefste K, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118–24.PubMedGoogle Scholar
  113. 113.
    Timonen KL, Pekkanen J, Tiittanen P, et al. Effects of air pollution on changes in lung function induced by exercise in children with chronic respiratory symptoms. Occup Environ Med. 2002;59(2):129–34.PubMedGoogle Scholar
  114. 114.
    Rundell KW, Slee JB, Caviston R, et al. Decreased lung function after inhalation of ultrafine and fine particulate matter during exercise is related to decreased total nitrate in exhaled breath condensate. Inhal Toxicol. 2008;20(1):1–9. doi: 10.1080/08958370701758593.PubMedGoogle Scholar
  115. 115.
    Balmes JR, Chen LL, Scannell C, et al. Ozone-induced decrements in FEV1 and FVC do not correlate with measures of inflammation. Am J Respir Crit Care Med. 1996;153(3):904–9. doi: 10.1164/ajrccm.153.3.8630571.PubMedGoogle Scholar
  116. 116.
    Chen LL, Tager IB, Peden DB, et al. Effect of ozone exposure on airway responses to inhaled allergen in asthmatic subjects. Chest. 2004;125(6):2328–35.PubMedGoogle Scholar
  117. 117.
    Devlin RB, Horstman DP, Gerrity TR, et al. Inflammatory response in humans exposed to 2.0 ppm nitrogen dioxide. Inhal Toxicol. 1999;11(2):89–109. doi: 10.1080/089583799197195.PubMedGoogle Scholar
  118. 118.
    Devlin RB, McDonnell WF, Mann R, et al. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am J Respir Cell Mol Biol. 1991;4(1):72–81. doi: 10.1165/ajrcmb/4.1.72.PubMedGoogle Scholar
  119. 119.
    Ferdinands JM, Crawford CA, Greenwald R, et al. Breath acidification in adolescent runners exposed to atmospheric pollution: a prospective, repeated measures observational study. Environ Health. 2008;7:10. doi: 10.1186/1476-069X-7-10.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Jacobs L, Nawrot TS, de Geus B, et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health. 2010;9:64. doi: 10.1186/1476-069X-9-64.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Long NC, Suh J, Morrow JD, et al. Ozone causes lipid peroxidation but little antioxidant depletion in exercising and nonexercising hamsters. J Appl Physiol. 2001;91(4):1694–700.PubMedGoogle Scholar
  122. 122.
    Scannell C, Chen L, Aris RM, et al. Greater ozone-induced inflammatory responses in subjects with asthma. Am J Respir Crit Care Med. 1996;154(1):24–9.PubMedGoogle Scholar
  123. 123.
    Weichenthal S, Kulka R, Dubeau A, et al. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect. 2011;119(10):1373–8. doi: 10.1289/ehp.1003321.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Zuurbier M, Hoek G, Oldenwening M, et al. Respiratory effects of commuters’ exposure to air pollution in traffic. Epidemiology. 2011;22(2):219–27. doi: 10.1097/EDE.0b013e3182093693.PubMedGoogle Scholar
  125. 125.
    Bhalla DK, Mannix RC, Lavan SM, et al. Tracheal and bronchoalveolar permeability changes in rats inhaling oxidant atmospheres during rest or exercise. J Toxicol Environ Health. 1987;22(4):417–37.PubMedGoogle Scholar
  126. 126.
    Mautz WJ. Exercising animal models in inhalation toxicology: interactions with ozone and formaldehyde. Environ Res. 2003;92(1):14–26. pii:S0013935102000245.Google Scholar
  127. 127.
    Mautz WJ, McClure TR, Reischl P, et al. Enhancement of ozone-induced lung injury by exercise. J Toxicol Environ Health. 1985;16(6):841–54.PubMedGoogle Scholar
  128. 128.
    Aris RM, Christian D, Hearne PQ, et al. Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy. Am Rev Respir Dis. 1993;148(5):1363–72. doi: 10.1164/ajrccm/148.5.1363.PubMedGoogle Scholar
  129. 129.
    Gomes EC, Stone V, Florida-James G. Impact of heat and pollution on oxidative stress and CC16 secretion after 8 km run. Eur J Appl Physiol. 2011;111(9):2089–97. doi: 10.1007/s00421-011-1839-x.PubMedGoogle Scholar
  130. 130.
    Bos I, De Boever P, Vanparijs J, et al. Subclinical effects of aerobic training in urban environment. Med Sci Sports Exerc. 2013;45(3):439–47. doi: 10.1249/MSS.0b013e31827767fc.PubMedGoogle Scholar
  131. 131.
    Srebot V, Gianicolo EA, Rainaldi G, et al. Ozone and cardiovascular injury. Cardiovasc Ultrasound. 2009;7:30. doi: 10.1186/1476-7120-7-30.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Allred EN, Bleecker ER, Chaitman BR, et al. Effects of carbon monoxide on myocardial ischemia. Environ Health Perspect. 1991;91:89–132.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Lanki T, de Hartog JJ, Heinrich J, et al. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ultra study. Environ Health Perspect. 2006;114(5):655–60.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Lanki T, Hoek G, Timonen KL, et al. Hourly variation in fine particle exposure is associated with transiently increased risk of ST segment depression. Occup Environ Med. 2008;65(11):782–6. doi: 10.1136/oem.2007.037531.PubMedGoogle Scholar
  135. 135.
    Pekkanen J, Peters A, Hoek G, et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the exposure and risk assessment for fine and ultrafine particles in ambient air (ultra) study. Circulation. 2002;106(8):933–8.PubMedGoogle Scholar
  136. 136.
    Adams KF, Koch G, Chatterjee B, et al. Acute elevation of blood carboxyhemoglobin to 6% impairs exercise performance and aggravates symptoms in patients with ischemic heart disease. J Am Coll Cardiol. 1988;12(4):900–9.PubMedGoogle Scholar
  137. 137.
    Allred EN, Bleecker ER, Chaitman BR, et al. Short-term effects of carbon monoxide exposure on the exercise performance of subjects with coronary artery disease. N Engl J Med. 1989;321(21):1426–32. doi: 10.1056/NEJM198911233212102.PubMedGoogle Scholar
  138. 138.
    Anderson EW, Andelman RJ, Strauch JM, et al. Effect of low-level carbon monoxide exposure on onset and duration of angina pectoris: a study in ten patients with ischemic heart disease. Ann Intern Med. 1973;79(1):46–50.PubMedGoogle Scholar
  139. 139.
    Aronow WS, Isbell MW. Carbon monoxide effect on exercise-induced angina pectoris. Ann Intern Med. 1973;79(3):392–5.PubMedGoogle Scholar
  140. 140.
    Hinderliter AL, Adams KF Jr, Price CJ, et al. Effects of low-level carbon monoxide exposure on resting and exercise-induced ventricular arrhythmias in patients with coronary artery disease and no baseline ectopy. Arch Environ Health. 1989;44(2):89–93. doi: 10.1080/00039896.1989.9934381.PubMedGoogle Scholar
  141. 141.
    Kleinman MT, Davidson DM, Vandagriff RB, et al. Effects of short-term exposure to carbon monoxide in subjects with coronary artery disease. Arch Environ Health. 1989;44(6):361–9. doi: 10.1080/00039896.1989.9935908.PubMedGoogle Scholar
  142. 142.
    Kleinman MT, Leaf DA, Kelly E, et al. Urban angina in the mountains: effects of carbon monoxide and mild hypoxemia on subjects with chronic stable angina. Arch Environ Health. 1998;53(6):388–97. doi: 10.1080/00039899809605726.PubMedGoogle Scholar
  143. 143.
    Nicholson JP, Case DB. Carboxyhemoglobin in New York City runners. Physician Sports Med. 1983;11(3):135–8.Google Scholar
  144. 144.
    Rundell KW, Hoffman JR, Caviston R, et al. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal Toxicol. 2007;19(2):133–40.PubMedGoogle Scholar
  145. 145.
    Rundell KW, Steigerwald MD, Fisk MZ. Montelukast prevents vascular endothelial dysfunction from internal combustion exhaust inhalation during exercise. Inhal Toxicol. 2010;. doi: 10.3109/08958371003743254.PubMedGoogle Scholar
  146. 146.
    Cutrufello PT, Rundell KW, Smoliga JM, et al. Inhaled whole exhaust and its effect on exercise performance and vascular function. Inhal Toxicol. 2011;23(11):658–67. doi: 10.3109/08958378.2011.604106.PubMedGoogle Scholar
  147. 147.
    Wauters A, Dreyfuss C, Hendrick P et al., editors. Acute exposure to diesel exhausts impairs endothelial vasomotor function and nitric oxide bioavailability. 31st annual scientific meeting of the Belgian Society of Cardiology. Acta Cardiologica, Brussels; 2012.Google Scholar
  148. 148.
    Kizakevich PN, McCartney ML, Hazucha MJ, et al. Noninvasive ambulatory assessment of cardiac function in healthy men exposed to carbon monoxide during upper and lower body exercise. Eur J Appl Physiol. 2000;83(1):7–16. doi: 10.1007/s004210000256.PubMedGoogle Scholar
  149. 149.
    Pirnay F, Dujardin J, Deroanne R, et al. Muscular exercise during intoxication by carbon monoxide. J Appl Physiol. 1971;31(4):573–5.PubMedGoogle Scholar
  150. 150.
    Bos I, Jacobs L, Nawrot TS, et al. No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett. 2011;500(2):129–32. doi: 10.1016/j.neulet.2011.06.019.PubMedGoogle Scholar
  151. 151.
    Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580–90. doi: 10.1111/j.1460-9568.2004.03720.x.PubMedGoogle Scholar
  152. 152.
    Bos I, De Boever P, Int Panis L, et al. Negative effects of ultrafine particle exposure during forced exercise on the expression of brain-derived neurotrophic factor in the hippocampus of rats. Neuroscience. 2012;223:131–9. doi: 10.1016/j.neuroscience.2012.07.057.Google Scholar
  153. 153.
    Wauters A, Dreyfuss C, Hendrick P, et al., editors. Acute exposure to diesel exhausts induces immediate platelet activation. Munich: European Society of Cardiology; 2012.Google Scholar
  154. 154.
    Brauner EV, Forchhammer L, Moller P, et al. Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environ Health Perspect. 2007;115(8):1177–82.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Kargarfard M, Poursafa P, Rezanejad S, et al. Effects of exercise in polluted air on the aerobic power, serum lactate level and cell blood count of active individuals. Int J Prev Med. 2011;2(3):145–50.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Vinzents PS, Moller P, Sorensen M, et al. Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect. 2005;113(11):1485–90.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Martinez-Campos C, Lara-Padilla E, Bobadilla-Lugo RA, et al. Effects of exercise on oxidative stress in rats induced by ozone. Sci World J. 2012;2012:135921. doi: 10.1100/2012/135921.Google Scholar
  158. 158.
    Jafari A, Faizi MA, Askarian F, et al. Effect of regular aerobic exercise with ozone exposure on peripheral leukocyte populations in Wistar male rats. J Res Med Sci. 2009;14(5):277–83.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Holland GJ, Benson D, Bush A, et al. Air pollution simulation and human performance. Am J Public Health Nations Health. 1968;58(9):1684–91.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Gao Y, Chan EYY, Zhu Y, Wong TW. Adverse effect of outdoor air pollution on cardiorespiratory fitness in Chinese children. Atmos Environ. 2013;64:10–7.Google Scholar
  161. 161.
    Yu IT, Wong TW, Liu HJ. Impact of air pollution on cardiopulmonary fitness in schoolchildren. J Occup Environ Med. 2004;46(9):946–52. pii:00043764-200409000-00008.Google Scholar
  162. 162.
    Marr LC, Ely MR. Effect of air pollution on marathon running performance. Med Sci Sports Exerc. 2010;42(3):585–91. doi: 10.1249/MSS.0b013e3181b84a85.PubMedGoogle Scholar
  163. 163.
    Rundell KW, Caviston R. Ultrafine and fine particulate matter inhalation decreases exercise performance in healthy subjects. J Strength Condition Res. 2008;22(1):2–5.Google Scholar
  164. 164.
    Cakmak S, Dales R, Leech J, et al. The influence of air pollution on cardiovascular and pulmonary function and exercise capacity: Canadian Health Measures Survey (CHMS). Environ Res. 2011;111(8):1309–12. doi: 10.1016/j.envres.2011.09.016.PubMedGoogle Scholar
  165. 165.
    El Helou N, Tafflet M, Berthelot G, et al. Impact of environmental parameters on marathon running performance. PLoS ONE. 2012;7(5):e37407. doi: 10.1371/journal.pone.0037407.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Linder J, Herren D, Monn C, et al. Effect of ozone on physical performance capacity. Soz Praventivmed. 1987;32(4–5):251–2.PubMedGoogle Scholar
  167. 167.
    Gomes EC, Allgrove JE, Florida-James G, et al. Effect of vitamin supplementation on lung injury and running performance in a hot, humid, and ozone-polluted environment. Scand J Med Sci Sports. 2011;21(6):e452–60. doi: 10.1111/j.1600-0838.2011.01366.x.PubMedGoogle Scholar
  168. 168.
    Koike A, Wasserman K. Effect of acute reduction in oxygen transport on parameters of aerobic function during exercise. Ann Acad Med Singapore. 1992;21(1):14–22.PubMedGoogle Scholar
  169. 169.
    Horvath SM, Raven PB, Dahms TE, et al. Maximal aerobic capacity at different levels of carboxyhemoglobin. J Appl Physiol. 1975;38(2):300–3.PubMedGoogle Scholar
  170. 170.
    Vogel JA, Gleser MA. Effect of carbon monoxide on oxygen transport during exercise. J Appl Physiol. 1972;32(2):234–9.PubMedGoogle Scholar
  171. 171.
    Adir Y, Merdler A, Ben Haim S, et al. Effects of exposure to low concentrations of carbon monoxide on exercise performance and myocardial perfusion in young healthy men. Occup Environ Med. 1999;56(8):535–8.PubMedGoogle Scholar
  172. 172.
    Aronow WS, Cassidy J. Effect of carbon monoxide on maximal treadmill exercise: a study in normal persons. Ann Int Med. 1975;83(4):496–9.PubMedGoogle Scholar
  173. 173.
    Aronow WS, Ferlinz J, Glauser F. Effect of carbon monoxide on exercise performance in chronic obstructive pulmonary disease. Am J Med. 1977;63(6):904–8.PubMedGoogle Scholar
  174. 174.
    Calverley PM, Leggett RJ, Flenley DC. Carbon monoxide and exercise tolerance in chronic bronchitis and emphysema. Br Med J Clin Res Ed. 1981;283(6296):878–80.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Drinkwater BL, Raven PB, Horvath SM, et al. Air pollution, exercise, and heat stress. Arch Environ Health. 1974;28(4):177–81.PubMedGoogle Scholar
  176. 176.
    Keramidas ME, Kounalakis SN, Eiken O, et al. Carbon monoxide exposure during exercise performance: muscle and cerebral oxygenation. Acta Physiol (Oxf). 2012;204(4):544–54. doi: 10.1111/j.1748-1716.2011.02363.x.Google Scholar
  177. 177.
    Turner JA, McNicol MW. The effect of nicotine and carbon monoxide on exercise performance in normal subjects. Respir Med. 1993;87(6):427–31.PubMedGoogle Scholar
  178. 178.
    Oliveira RS, Barros Neto TL, Braga AL, et al. Impact of acute exposure to air pollution on the cardiorespiratory performance of military firemen. Braz J Med Biol Res. 2006;39(12):1643–9. pii:S0100-879X2006001200016.Google Scholar
  179. 179.
    DeSouza CA, Shapiro LF, Clevenger CM, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–7.PubMedGoogle Scholar
  180. 180.
    Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.PubMedCentralPubMedGoogle Scholar
  181. 181.
    Thompson PD, Crouse SF, Goodpaster B, et al. The acute versus the chronic response to exercise. Med Sci Sports Exerc. 2001;33(6 Suppl):S438–45 (discussion S52–3). Google Scholar
  182. 182.
    de Hartog J, Boogaard H, Nijland H, et al. Do the health benefits of cycling outweigh the risks? Environ Health Perspect. 2010;118(8):1109–16. doi: 10.1289/ehp.0901747.PubMedCentralGoogle Scholar
  183. 183.
    Grabow ML, Spak SN, Holloway T, et al. Air quality and exercise-related health benefits from reduced car travel in the midwestern United States. Environ Health Perspect. 2011;. doi: 10.1289/ehp.1103440.PubMedCentralPubMedGoogle Scholar
  184. 184.
    Hamer M, Chida Y. Active commuting and cardiovascular risk: a meta-analytic review. Prev Med. 2008;46(1):9–13. doi: 10.1016/j.ypmed.2007.03.006. Google Scholar
  185. 185.
    Rojas-Rueda D, de Nazelle A, Tainio M, et al. The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ. 2011;343:d4521.PubMedCentralPubMedGoogle Scholar
  186. 186.
    Wong CM, Ou CQ, Thach TQ, et al. Does regular exercise protect against air pollution-associated mortality? Prev Med. 2007;44(5):386–92. doi: 10.1016/j.ypmed.2006.12.012.PubMedGoogle Scholar
  187. 187.
    Dong GH, Zhang P, Sun B, et al. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study. Respiration. 2012;84(5):360–8. doi: 10.1159/000332930.PubMedGoogle Scholar
  188. 188.
    Vieira RP, Toledo AC, Silva LB, et al. Anti-inflammatory effects of aerobic exercise in mice exposed to air pollution. Med Sci Sports Exerc. 2012;. doi: 10.1249/MSS.0b013e31824b2877.Google Scholar
  189. 189.
    Yu YB, Liao YW, Su KH, et al. Prior exercise training alleviates the lung inflammation induced by subsequent exposure to environmental cigarette smoke. Acta Physiol (Oxf). 2012;205(4):532–40. doi: 10.1111/j.1748-1716.2012.02433.x.Google Scholar
  190. 190.
    Normando VM, Mazzoli-Rocha F, Moreira DK, et al. Regular exercise training attenuates pulmonary inflammatory responses to inhaled alumina refinery dust in mice. Respir Physiol Neurobiol. 2013;186(1):53–60. doi: 10.1016/j.resp.2012.12.010.PubMedGoogle Scholar
  191. 191.
    Delfino RJ, Tjoa T, Gillen DL, et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology. 2010;21(3):396–404. doi: 10.1097/EDE.0b013e3181d5e19b.PubMedGoogle Scholar
  192. 192.
    Zanobetti A, Canner MJ, Stone PH, et al. Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation. 2004;110(15):2184–9. doi: 10.1161/01.CIR.0000143831.33243.D8.PubMedGoogle Scholar
  193. 193.
    Giles LV, Barn P, Kunzli N, et al. From good intentions to proven interventions: effectiveness of actions to reduce the health impacts of air pollution. Environ Health Perspect. 2011;119(1):29–36. doi: 10.1289/ehp.1002246.PubMedCentralPubMedGoogle Scholar
  194. 194.
    Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, et al. Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax. 2004;59(1):8–10.PubMedGoogle Scholar
  195. 195.
    Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, et al. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med. 2002;166(5):703–9.PubMedGoogle Scholar
  196. 196.
    Samet JM, Hatch GE, Horstman D, et al. Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. Am J Respir Crit Care Med. 2001;164(5):819–25.PubMedGoogle Scholar
  197. 197.
    Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, et al. Antioxidant supplementation and nasal inflammatory responses among young asthmatics exposed to high levels of ozone. Clin Exp Immunol. 2004;138(2):317–22. doi: 10.1111/j.1365-2249.2004.02606.x.PubMedCentralPubMedGoogle Scholar
  198. 198.
    Grievink L, Zijlstra AG, Ke X, et al. Double-blind intervention trial on modulation of ozone effects on pulmonary function by antioxidant supplements. Am J Epidemiol. 1999;149(4):306–14.PubMedGoogle Scholar
  199. 199.
    Langrish JP, Mills NL, Chan JK, et al. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol. 2009;6:8. doi: 10.1186/1743-8977-6-8.PubMedCentralPubMedGoogle Scholar
  200. 200.
    Langrish JP, Li X, Wang S, et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ Health Perspect. 2012;120(3):367–72.PubMedCentralPubMedGoogle Scholar
  201. 201.
    Gong H Jr, Bedi JF, Horvath SM. Inhaled albuterol does not protect against ozone toxicity in nonasthmatic athletes. Arch Environ Health. 1988;43(1):46–53. doi: 10.1080/00039896.1988.9934373.PubMedGoogle Scholar
  202. 202.
    McKenzie DC, Stirling DR, Fadl S, et al. The effects of salbutamol on pulmonary function in cyclists exposed to ozone: a pilot study. Can J Sport Sci. 1987;12(1):46–8.PubMedGoogle Scholar
  203. 203.
    Rundell KW, Spiering BA, Baumann JM et al. Bronchoconstriction provoked by exercise in a high-particulate-matter environment is attenuated by montelukast. Inhal Toxicol. 2005;17(2):99–105. doi: 10.1080/08958370590899479.PubMedGoogle Scholar
  204. 204.
    Rundell KW, Caviston R, Hollenbach AM, et al. Vehicular air pollution, playgrounds, and youth athletic fields. Inhal Toxicol. 2006;18(8):541–7. doi: 10.1080/08958370600685640.PubMedGoogle Scholar
  205. 205.
    Sheps DS, Adams KF, Jr., Bromberg PA et al. Lack of effect of low levels of carboxyhemoglobin on cardiovascular function in patients with ischemic heart disease. Arch Environ Health. 1987;42(2):108–16. doi: 10.1080/00039896.1987.9935805.Google Scholar
  206. 206.
    Horvath SM, Gliner JA, Matsen-Twisdale JA. Pulmonary function and maximum exercise responses following acute ozone exposure. Aviat Space Environ Med. 1979;50(9):901–5.Google Scholar
  207. 207.
    Flouris AD, Metsios GS, Carrillo AE et al. Respiratory and immune response to maximal physical exertion following exposure to secondhand smoke in healthy adults. PLoS One. 2012;7(2):e31880. doi: 10.1371/journal.pone.0031880

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.School of KinesiologyUniversity of British ColumbiaVancouverCanada
  2. 2.Division of Sports MedicineUniversity of British ColumbiaVancouverCanada

Personalised recommendations