Skip to main content

Advertisement

Log in

Bone Quality: The Determinants of Bone Strength and Fragility

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Bone fragility is a major health concern, as the increased risk of bone fractures has devastating outcomes in terms of mortality, decreased autonomy, and healthcare costs. Efforts made to address this problem have considerably increased our knowledge about the mechanisms that regulate bone formation and resorption. In particular, we now have a much better understanding of the cellular events that are triggered when bones are mechanically stimulated and how these events can lead to improvements in bone mass. Despite these findings at the molecular level, most exercise intervention studies reveal either no effects or only minor benefits of exercise programs in improving bone mineral density (BMD) in osteoporotic patients. Nevertheless, and despite that BMD is the gold standard for diagnosing osteoporosis, this measure is only able to provide insights regarding the quantity of bone tissue. In this article, we review the complex structure of bone tissue and highlight the concept that its mechanical strength stems from the interaction of several different features. We revisited the available data showing that bone mineralization degree, hydroxyapatite crystal size and heterogeneity, collagen properties, osteocyte density, trabecular and cortical microarchitecture, as well as whole bone geometry, are determinants of bone strength and that each one of these properties may independently contribute to the increased or decreased risk of fracture, even without meaningful changes in aBMD. Based on these findings, we emphasize that while osteoporosis (almost) always causes bone fragility, bone fragility is not always caused just by osteoporosis, as other important variables also play a major role in this etiology. Furthermore, the results of several studies showing compelling data that physical exercise has the potential to improve bone quality and to decrease fracture risk by influencing each one of these determinants are also reviewed. These findings have meaningful clinical repercussions as they emphasize the fact that, even without leading to improvements in BMD, exercise interventions in patients with osteoporosis may be beneficial by improving other determinants of bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Google Scholar 

  2. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

    CAS  PubMed  Google Scholar 

  3. Cranney A, Jamal SA, Tsang JF, et al. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007;177(6):575–80.

    PubMed Central  PubMed  Google Scholar 

  4. Pasco JA, Seeman E, Henry MJ, et al. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int. 2006;17(9):1404–9.

    CAS  PubMed  Google Scholar 

  5. Stone KL, Seeley DG, Lui LY, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947–54.

    PubMed  Google Scholar 

  6. Wainwright SA, Marshall LM, Ensrud KE, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90(5):2787–93.

    CAS  PubMed  Google Scholar 

  7. Keaveny TM, Kopperdahl DL, Melton LJ 3rd, et al. Age-dependence of femoral strength in white women and men. J Bone Miner Res. 2010;25(5):994–1001.

    PubMed  Google Scholar 

  8. Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med. 2002;112(4):281–9.

    CAS  PubMed  Google Scholar 

  9. Chen P, Miller PD, Delmas PD, et al. Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21(11):1785–90.

    CAS  PubMed  Google Scholar 

  10. Watts NB, Cooper C, Lindsay R, et al. Relationship between changes in bone mineral density and vertebral fracture risk associated with risedronate: greater increases in bone mineral density do not relate to greater decreases in fracture risk. J Clin Densitom. 2004;7(3):255–61.

    PubMed  Google Scholar 

  11. Plotkin LI, Bellido T. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43. Cell Commun Adhes. 2001;8(4–6):377–82.

    CAS  PubMed  Google Scholar 

  12. Plotkin LI, Aguirre JI, Kousteni S, et al. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280(8):7317–25.

    CAS  PubMed  Google Scholar 

  13. Riggs BL, Hodgson SF, O’Fallon WM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med. 1990;322(12):802–9.

    CAS  PubMed  Google Scholar 

  14. Meunier PJ, Sebert JL, Reginster JY, et al. Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis: the FAVOStudy. Osteoporos Int. 1998;8(1):4–12.

    CAS  PubMed  Google Scholar 

  15. Engelke K, Adams JE, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):123–62.

    PubMed  Google Scholar 

  16. Engelke K, Libanati C, Liu Y, et al. Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone. 2009;45(1):110–8.

    PubMed  Google Scholar 

  17. Khoo BC, Brown K, Cann C, et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009;20(9):1539–45.

    CAS  PubMed  Google Scholar 

  18. Dall’Ara E, Pahr D, Varga P, et al. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int. 2012;23(2):563–72.

    PubMed  Google Scholar 

  19. Bergot C, Laval-Jeantet AM, Hutchinson K, et al. A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int. 2001;68(2):74–82.

    CAS  PubMed  Google Scholar 

  20. Lang TF, Keyak JH, Heitz MW, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone. 1997;21(1):101–8.

    CAS  PubMed  Google Scholar 

  21. Bousson V, Le Bras A, Roqueplan F, et al. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006;17(6):855–64.

    CAS  PubMed  Google Scholar 

  22. Cody DD, Gross GJ, Hou FJ, et al. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32(10):1013–20.

    CAS  PubMed  Google Scholar 

  23. Grampp S, Genant HK, Mathur A, et al. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res. 1997;12(5):697–711.

    CAS  PubMed  Google Scholar 

  24. Chilibeck PD, Sale DG, Webber CE. Exercise and bone mineral density. Sports Med. 1995;19(2):103–22.

    CAS  PubMed  Google Scholar 

  25. Suominen H. Bone mineral density and long term exercise. An overview of cross-sectional athlete studies. Sports Med. 1993;16(5):316–30.

    CAS  PubMed  Google Scholar 

  26. Heinonen A, Oja P, Kannus P, et al. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995;17(3):197–203.

    CAS  PubMed  Google Scholar 

  27. Heinonen A, Oja P, Kannus P, et al. Bone mineral density of female athletes in different sports. Bone Miner. 1993;23(1):1–14.

    CAS  PubMed  Google Scholar 

  28. Wittich A, Mautalen CA, Oliveri MB, et al. Professional football (soccer) players have a markedly greater skeletal mineral content, density and size than age- and BMI-matched controls. Calcif Tissue Int. 1998;63(2):112–7.

    CAS  PubMed  Google Scholar 

  29. Colletti LA, Edwards J, Gordon L, et al. The effects of muscle-building exercise on bone mineral density of the radius, spine, and hip in young men. Calcif Tissue Int. 1989;45(1):12–4.

    CAS  PubMed  Google Scholar 

  30. Heinonen A, Sievanen H, Kyrolainen H, et al. Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb. Bone. 2001;29(3):279–85.

    CAS  PubMed  Google Scholar 

  31. Morris FL, Naughton GA, Gibbs JL, et al. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12(9):1453–62.

    CAS  PubMed  Google Scholar 

  32. Williams JA, Wagner J, Wasnich R, et al. The effect of long-distance running upon appendicular bone mineral content. Med Sci Sports Exerc. 1984;16(3):223–7.

    CAS  PubMed  Google Scholar 

  33. MacKelvie KJ, Petit MA, Khan KM, et al. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34(4):755–64.

    PubMed  Google Scholar 

  34. Bradney M, Pearce G, Naughton G, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13(12):1814–21.

    CAS  PubMed  Google Scholar 

  35. Saville PD, Whyte MP. Muscle and bone hypertrophy. Positive effect of running exercise in the rat. Clin Orthop Relat Res. 1969;65:81–8.

    CAS  PubMed  Google Scholar 

  36. Forwood MR, Burr DB. Physical activity and bone mass: exercises in futility? Bone Miner. 1993;21(2):89–112.

    CAS  PubMed  Google Scholar 

  37. Jarvinen TL, Kannus P, Sievanen H, et al. Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res. 1998;13(9):1475–82.

    CAS  PubMed  Google Scholar 

  38. McCarthy RN, Jeffcott LB. Effects of treadmill exercise on cortical bone in the third metacarpus of young horses. Res Vet Sci. 1992;52(1):28–37.

    CAS  PubMed  Google Scholar 

  39. Nilsson M, Ohlsson C, Oden A, et al. Increased physical activity is associated with enhanced development of peak bone mass in men: a five-year longitudinal study. J Bone Miner Res. 2012;27(5):1206–14.

    PubMed Central  PubMed  Google Scholar 

  40. Erlandson M, Kontulainen S, Chilibeck P, et al. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res. 2011;27(1):104–10.

    Google Scholar 

  41. Meyer U, Romann M, Zahner L, et al. Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone. 2011;48(4):792–7.

    PubMed  Google Scholar 

  42. Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012;40(1):13–21.

    PubMed Central  PubMed  Google Scholar 

  43. Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int. 1997;7(4):331–7.

    CAS  PubMed  Google Scholar 

  44. Kelley G. Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. J Am Geriatr Soc. 1998;46(2):143–52.

    CAS  PubMed  Google Scholar 

  45. Kelley GA. Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med. 1998;27(6):798–807.

    CAS  PubMed  Google Scholar 

  46. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67(1):10–8.

    CAS  PubMed  Google Scholar 

  47. Palombaro KM. Effects of walking-only interventions on bone mineral density at various skeletal sites: a meta-analysis. J Geriatr Phys Ther. 2005;28(3):102–7.

    PubMed  Google Scholar 

  48. Kelley GA, Kelley KS. Exercise and bone mineral density at the femoral neck in postmenopausal women: a meta-analysis of controlled clinical trials with individual patient data. Am J Obstet Gynecol. 2006;194(3):760–7.

    PubMed  Google Scholar 

  49. Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43(3):521–31.

    PubMed  Google Scholar 

  50. Robbins J, Aragaki AK, Kooperberg C, et al. Factors associated with 5-year risk of hip fracture in postmenopausal women. JAMA. 2007;298(20):2389–98.

    CAS  PubMed  Google Scholar 

  51. Feskanich D, Willett W, Colditz G. Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA. 2002;288(18):2300–6.

    PubMed  Google Scholar 

  52. Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol. 2008;18(11):827–35.

    PubMed  Google Scholar 

  53. Muraki S, Akune T, Oka H, et al. Physical performance, bone and joint diseases, and incidence of falls in Japanese men and women: a longitudinal cohort study. Osteoporos Int. 2013;24(2):459–66.

    CAS  PubMed  Google Scholar 

  54. Peeters GM, van Schoor NM, Pluijm SM, et al. Is there a U-shaped association between physical activity and falling in older persons? Osteoporos Int. 2010;21(7):1189–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Huang TH, Chang FL, Lin SC, et al. Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. J Bone Miner Metab. 2008;26(4):350–7.

    PubMed  Google Scholar 

  56. Lespessailles E, Jaffre C, Beaupied H, et al. Does exercise modify the effects of zoledronic acid on bone mass, microarchitecture, biomechanics, and turnover in ovariectomized rats? Calcif Tissue Int. 2009;85(2):146–57.

    CAS  PubMed  Google Scholar 

  57. Adami S, Gatti D, Braga V, et al. Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women. J Bone Miner Res. 1999;14(1):120–4.

    CAS  PubMed  Google Scholar 

  58. Burr DB. The contribution of the organic matrix to bone’s material properties. Bone. 2002;31(1):8–11.

    CAS  PubMed  Google Scholar 

  59. Skedros JG, Dayton MR, Sybrowsky CL, et al. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J Exp Biol. 2006;209(Pt 15):3025–42.

    PubMed  Google Scholar 

  60. Bolotin HH, Sievanen H, Grashuis JL. Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res. 2003;18(6):1020–7.

    CAS  PubMed  Google Scholar 

  61. Bolotin HH. A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J Bone Miner Res. 1998;13(11):1739–46.

    CAS  PubMed  Google Scholar 

  62. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595–608.

    CAS  PubMed  Google Scholar 

  63. Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003;2(3):164–8.

    CAS  PubMed  Google Scholar 

  64. Chappard D, Basle MF, Legrand E, et al. New laboratory tools in the assessment of bone quality. Osteoporos Int. 2011;22(8):2225–40.

    CAS  PubMed  Google Scholar 

  65. Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.

    PubMed  Google Scholar 

  66. McCreadie BR, Goulet RW, Feldkamp LA, et al. Hierarchical structure of bone and micro-computed tomography. Adv Exp Med Biol. 2001;496:67–83.

    CAS  PubMed  Google Scholar 

  67. Martin RM, Correa PH. Bone quality and osteoporosis therapy. Arquivos brasileiros de endocrinologia e metabologia. 2010;54(2):186–99.

    PubMed  Google Scholar 

  68. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    CAS  PubMed  Google Scholar 

  69. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39(6):1173–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14(Suppl 5):S118–27.

    PubMed  Google Scholar 

  71. Allen MR, Burr D. Mineralization, microdamage, and matrix: how bisphosphonates influence material properties of bone. Bonekey Osteovision. 2007;4:49–60.

    Google Scholar 

  72. Follet H, Boivin G, Rumelhart C, et al. The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone. 2004;34(5):783–9.

    CAS  PubMed  Google Scholar 

  73. Loveridge N, Power J, Reeve J, et al. Bone mineralization density and femoral neck fragility. Bone. 2004;35(4):929–41.

    PubMed  Google Scholar 

  74. Currey JD. Bone strength: what are we trying to measure? Calcif Tissue Int. 2001;68(4):205–10.

    CAS  PubMed  Google Scholar 

  75. Boivin GY, Chavassieux PM, Santora AC, et al. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone. 2000;27(5):687–94.

    CAS  PubMed  Google Scholar 

  76. Roschger P, Rinnerthaler S, Yates J, et al. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone. 2001;29(2):185–91.

    CAS  PubMed  Google Scholar 

  77. Boivin G, Meunier PJ. Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res. 2002;43(2–3):535–7.

    CAS  PubMed  Google Scholar 

  78. Cranney A, Wells G, Willan A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the treatment of postmenopausal women. Endocr Rev. 2002;23(4):508–16.

    CAS  PubMed  Google Scholar 

  79. Arlot M, Meunier PJ, Boivin G, et al. Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. J Bone Miner Res. 2005;20(7):1244–53.

    CAS  PubMed  Google Scholar 

  80. Finkelstein JS, Leder BZ, Burnett SM, et al. Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men. J Clin Endocrinol Metab. 2006;91(8):2882–7.

    CAS  PubMed  Google Scholar 

  81. Misof BM, Roschger P, Cosman F, et al. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;88(3):1150–6.

    CAS  PubMed  Google Scholar 

  82. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    CAS  PubMed  Google Scholar 

  83. Ascenzi MG, Liao VP, Lee BM, et al. Parathyroid hormone treatment improves the cortical bone microstructure by improving the distribution of type I collagen in postmenopausal women with osteoporosis. J Bone Miner Res. 2012;27(3):702–12.

    CAS  PubMed  Google Scholar 

  84. Fratzl P, Gupta H, Paschalis E, et al. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    CAS  Google Scholar 

  85. Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta. 2009;1790(12):1592–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.

    CAS  PubMed  Google Scholar 

  87. Martin E, Shapiro JR. Osteogenesis imperfecta: epidemiology and pathophysiology. Curr Osteoporos Rep. 2007;5(3):91–7.

    PubMed  Google Scholar 

  88. Simon JA, Hudes ES. Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. Am J Epidemiol. 2001;154(5):427–33.

    CAS  PubMed  Google Scholar 

  89. Michaelsson K, Holmberg L, Mallmin H, et al. Diet and hip fracture risk: a case–control study. Study Group of the Multiple Risk Survey on Swedish Women for Eating Assessment. Int J Epidemiol. 1995;24(4):771–82.

    CAS  PubMed  Google Scholar 

  90. Pinnell SR. Regulation of collagen biosynthesis by ascorbic acid: a review. Yale J Biol Med. 1985;58(6):553–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Oxlund H, Barckman M, Ortoft G, et al. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone. 1995;17(4 Suppl):365S–71S.

    CAS  PubMed  Google Scholar 

  92. Bailey AJ, Sims TJ, Ebbesen EN, et al. Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int. 1999;65(3):203–10.

    CAS  PubMed  Google Scholar 

  93. Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17(9):1621–8.

    CAS  PubMed  Google Scholar 

  94. Mochida Y, Parisuthiman D, Pornprasertsuk-Damrongsri S, et al. Decorin modulates collagen matrix assembly and mineralization. Matrix Biol. 2009;28(1):44–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Wallace JM, Golcuk K, Morris MD, et al. Inbred strain-specific response to biglycan deficiency in the cortical bone of C57BL6/129 and C3H/He mice. J Bone Miner Res. 2009;24(6):1002–12.

    PubMed  Google Scholar 

  96. Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech. 1989;22(5):419–26.

    CAS  PubMed  Google Scholar 

  97. Silva MJ, Brodt MD, Wopenka B, et al. Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res. 2006;21(1):78–88.

    PubMed  Google Scholar 

  98. Kasper M, Funk RH. Age-related changes in cells and tissues due to advanced glycation end products (AGEs). Arch Gerontol Geriatr. 2001;32(3):233–43.

    CAS  PubMed  Google Scholar 

  99. Garnero P, Borel O, Gineyts E, et al. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone. 2006;38(3):300–9.

    CAS  PubMed  Google Scholar 

  100. Saito M, Mori S, Mashiba T, et al. Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int. 2008;19(9):1343–54.

    CAS  PubMed  Google Scholar 

  101. Vashishth D, Gibson GJ, Khoury JI, et al. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201.

    CAS  PubMed  Google Scholar 

  102. Wang X, Shen X, Li X, et al. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31(1):1–7.

    PubMed  Google Scholar 

  103. Hernandez CJ, Tang SY, Baumbach BM, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37(6):825–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18(4):427–44.

    CAS  PubMed  Google Scholar 

  105. Saito M, Fujii K, Soshi S, et al. Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int. 2006;17(7):986–95.

    CAS  PubMed  Google Scholar 

  106. Shiraki M, Kuroda T, Tanaka S, et al. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab. 2008;26(1):93–100.

    CAS  PubMed  Google Scholar 

  107. Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27(2):301–8.

    PubMed  Google Scholar 

  108. Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Rep. 2007;5(3):105–11.

    PubMed  Google Scholar 

  109. Bailey AJ, Wotton SF, Sims TJ, et al. Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res. 1993;29(2):119–32.

    CAS  PubMed  Google Scholar 

  110. Kowitz J, Knippel M, Schuhr T, et al. Alteration in the extent of collagen I hydroxylation, isolated from femoral heads of women with a femoral neck fracture caused by osteoporosis. Calcif Tissue Int. 1997;60(6):501–5.

    CAS  PubMed  Google Scholar 

  111. Paschalis EP, Shane E, Lyritis G, et al. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19(12):2000–4.

    PubMed Central  PubMed  Google Scholar 

  112. Isaksson H, Tolvanen V, Finnila MA, et al. Physical exercise improves properties of bone and its collagen network in growing and maturing mice. Calcif Tissue Int. 2009;85(3):247–56.

    CAS  PubMed  Google Scholar 

  113. Wallace JM, Ron MS, Kohn DH. Short-term exercise in mice increases tibial post-yield mechanical properties while two weeks of latency following exercise increases tissue-level strength. Calcif Tissue Int. 2009;84(4):297–304.

    CAS  PubMed  Google Scholar 

  114. Wallace JM, Rajachar RM, Allen MR, et al. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone. 2007;40(4):1120–7.

    PubMed Central  PubMed  Google Scholar 

  115. Shiiba M, Arnaud SB, Tanzawa H, et al. Regional alterations of type I collagen in rat tibia induced by skeletal unloading. J Bone Miner Res. 2002;17(9):1639–45.

    CAS  PubMed  Google Scholar 

  116. Brama PA, Bank RA, Tekoppele JM, et al. Training affects the collagen framework of subchondral bone in foals. Vet J. 2001;162(1):24–32.

    CAS  PubMed  Google Scholar 

  117. Puustjarvi K, Nieminen J, Rasanen T, et al. Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res. 1999;14(3):321–9.

    CAS  PubMed  Google Scholar 

  118. Avery NC, Bailey AJ. Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand J Med Sci Sports. 2005;15(4):231–40.

    CAS  PubMed  Google Scholar 

  119. Boivin G, Meunier PJ. Effects of bisphosphonates on matrix mineralization. J Musculoskelet Neuronal Interact. 2002;2(6):538–43.

    CAS  PubMed  Google Scholar 

  120. Boivin G, Meunier PJ. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int. 2002;70(6):503–11.

    CAS  PubMed  Google Scholar 

  121. Boivin G, Meunie PJ. Changes in bone remodeling rate influence the degree of mineralization of bone which is a determinant of bone strength: therapeutic implications. Adv Exp Med Biol. 2001;496:123–7.

    CAS  PubMed  Google Scholar 

  122. Sornay-Rendu E, Munoz F, Duboeuf F, et al. Rate of forearm bone loss is associated with an increased risk of fracture independently of bone mass in postmenopausal women: the OFELY study. J Bone Miner Res. 2005;20(11):1929–35.

    PubMed  Google Scholar 

  123. Bjarnason NH, Sarkar S, Duong T, et al. Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int. 2001;12(11):922–30.

    CAS  PubMed  Google Scholar 

  124. Sarkar S, Mitlak BH, Wong M, et al. Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res. 2002;17(1):1–10.

    CAS  PubMed  Google Scholar 

  125. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358(12):1304–6.

    CAS  PubMed  Google Scholar 

  126. Neviaser AS, Lane JM, Lenart BA, et al. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22(5):346–50.

    PubMed  Google Scholar 

  127. Donnelly E, Meredith DS, Nguyen JT, et al. Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res. 2012;27(3):672–8.

    CAS  PubMed  Google Scholar 

  128. Meunier PJ, Boivin G. Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone. 1997;21(5):373–7.

    CAS  PubMed  Google Scholar 

  129. Currey JD. Physical characteristics affecting the tensile failure properties of compact bone. J Biomech. 1990;23(8):837–44.

    CAS  PubMed  Google Scholar 

  130. Mashiba T, Hirano T, Turner CH, et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15(4):613–20.

    CAS  PubMed  Google Scholar 

  131. Mashiba T, Turner CH, Hirano T, et al. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28(5):524–31.

    CAS  PubMed  Google Scholar 

  132. Burr DB, Turner CH, Naick P, et al. Does microdamage accumulation affect the mechanical properties of bone? J Biomech. 1998;31(4):337–45.

    CAS  PubMed  Google Scholar 

  133. Odvina CV, Zerwekh JE, Rao DS, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90(3):1294–301.

    CAS  PubMed  Google Scholar 

  134. Boskey A. Bone mineral crystal size. Osteoporos Int. 2003;14 Suppl 5:S16–20 (discussion S-1).

    Google Scholar 

  135. Yerramshetty JS, Lind C, Akkus O. The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone. 2006;39(6):1236–43.

    CAS  PubMed  Google Scholar 

  136. Delmas PD, Ensrud KE, Adachi JD, et al. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab. 2002;87(8):3609–17.

    CAS  PubMed  Google Scholar 

  137. Boivin G, Lips P, Ott SM, et al. Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab. 2003;88(9):4199–205.

    CAS  PubMed  Google Scholar 

  138. Fratzl P, Fratzl-Zelman N, Klaushofer K, et al. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int. 1991;48(6):407–13.

    CAS  PubMed  Google Scholar 

  139. Paschalis EP, Burr DB, Mendelsohn R, et al. Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH(1–34) for 18 months. J Bone Miner Res. 2003;18(4):769–75.

    CAS  PubMed  Google Scholar 

  140. Khosla S, Atkinson EJ, Melton LJ 3rd, et al. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study. J Clin Endocrinol Metab. 1997;82(5):1522–7.

    CAS  PubMed  Google Scholar 

  141. Yerramshetty JS, Akkus O. The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone. 2008;42(3):476–82.

    CAS  PubMed  Google Scholar 

  142. Gajjeraman S, Narayanan K, Hao J, et al. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem. 2007;282(2):1193–204.

    CAS  PubMed  Google Scholar 

  143. Addadi L, Weiner S, Geva M. On how proteins interact with crystals and their effect on crystal formation. Z Kardiol. 2001;90(Suppl 3):92–8.

    PubMed  Google Scholar 

  144. Veis A. Materials science. A window on biomineralization. Science. 2005;307(5714):1419–20.

    CAS  PubMed  Google Scholar 

  145. Arnold S, Plate U, Wiesmann HP, et al. Quantitative analyses of the biomineralization of different hard tissues. J Microsc. 2001;202(Pt 3):488–94.

    CAS  PubMed  Google Scholar 

  146. Addison WN, McKee MD. ASARM mineralization hypothesis: a bridge to progress. J Bone Miner Res. 2010;25(5):1191–2.

    CAS  PubMed  Google Scholar 

  147. Addison WN, Masica DL, Gray JJ, et al. Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res. 2010;25(4):695–705.

    CAS  PubMed  Google Scholar 

  148. Dickson IR, Bagga MK. Changes with age in the non-collagenous proteins of human bone. Connect Tissue Res. 1985;14(1):77–85.

    CAS  PubMed  Google Scholar 

  149. Xie LQ, Jacobson JM, Choi ES, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone. 2006;39(5):1059–66.

    PubMed  Google Scholar 

  150. Prioreschi A, Oosthuyse T, Avidon I, et al. Whole body vibration increases hip bone mineral density in road cyclists. Int J Sports Med. 2012;33(8):593–9.

    CAS  PubMed  Google Scholar 

  151. Wang H, Wan Y, Tam KF, et al. Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest. Osteoporos Int. 2012;23(8):2169–78.

    CAS  PubMed  Google Scholar 

  152. Sehmisch S, Galal R, Kolios L, et al. Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int. 2009;20(12):1999–2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Hamilton CJ, Swan VJ, Jamal SA. The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: a systematic review of pQCT studies. Osteoporos Int. 2010;21(1):11–23.

    CAS  PubMed  Google Scholar 

  154. Huang TH, Lin SC, Chang FL, et al. Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol. 2003;95(1):300–7.

    CAS  PubMed  Google Scholar 

  155. Nyman JS, Roy A, Shen X, et al. The influence of water removal on the strength and toughness of cortical bone. J Biomech. 2006;39(5):931–8.

    PubMed Central  PubMed  Google Scholar 

  156. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    CAS  PubMed  Google Scholar 

  157. Kurata K, Heino TJ, Higaki H, et al. Bone marrow cell differentiation induced by mechanically damaged osteocytes in 3D gel-embedded culture. J Bone Miner Res. 2006;21(4):616–25.

    PubMed  Google Scholar 

  158. Eberhardt AW, Yeager-Jones A, Blair HC. Regional trabecular bone matrix degeneration and osteocyte death in femora of glucocorticoid-treated rabbits. Endocrinology. 2001;142(3):1333–40.

    CAS  PubMed  Google Scholar 

  159. Heino TJ, Hentunen TA, Vaananen HK. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem. 2002;85(1):185–97.

    CAS  PubMed  Google Scholar 

  160. Zhao S, Zhang YK, Harris S, et al. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17(11):2068–79.

    CAS  PubMed  Google Scholar 

  161. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

    CAS  PubMed  Google Scholar 

  162. Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res. 2008;23(6):915–27.

    PubMed  Google Scholar 

  163. Cardoso L, Herman BC, Verborgt O, et al. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597–605.

    CAS  PubMed  Google Scholar 

  164. Gu G, Mulari M, Peng Z, et al. Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption. Biochem Biophys Res Commun. 2005;335(4):1095–101.

    CAS  PubMed  Google Scholar 

  165. Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75.

    CAS  PubMed  Google Scholar 

  166. Dunstan CR, Somers NM, Evans RA. Osteocyte death and hip fracture. Calcif Tissue Int. 1993;53 Suppl 1:S113–6 (discussion S6–7).

    Google Scholar 

  167. Liu C, Zhao Y, Cheung WY, et al. Effects of cyclic hydraulic pressure on osteocytes. Bone. 2010;46(5):1449–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Bonivtch AR, Bonewald LF, Nicolella DP. Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. J Biomech. 2007;40(10):2199–206.

    PubMed Central  PubMed  Google Scholar 

  169. Vatsa A, Mizuno D, Smit TH, et al. Bio imaging of intracellular NO production in single bone cells after mechanical stimulation. J Bone Miner Res. 2006;21(11):1722–8.

    CAS  PubMed  Google Scholar 

  170. Ajubi NE, Klein-Nulend J, Alblas MJ, et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol. 1999;276(1 Pt 1):E171–8.

    CAS  PubMed  Google Scholar 

  171. Bakker AD, Soejima K, Klein-Nulend J, et al. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech. 2001;34(5):671–7.

    CAS  PubMed  Google Scholar 

  172. Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(13):1842–4.

    CAS  PubMed  Google Scholar 

  173. Klein-Nulend J, Bakker AD, Bacabac RG, et al. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90.

    CAS  PubMed  Google Scholar 

  174. Imai S, Heino TJ, Hienola A, et al. Osteocyte-derived HB-GAM (pleiotrophin) is associated with bone formation and mechanical loading. Bone. 2009;44(5):785–94.

    CAS  PubMed  Google Scholar 

  175. Fox SW, Chambers TJ, Chow JW. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol. 1996;270(6 Pt 1):E955–60.

    CAS  PubMed  Google Scholar 

  176. Turner CH, Takano Y, Owan I, et al. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol. 1996;270(4 Pt 1):E634–9.

    CAS  PubMed  Google Scholar 

  177. Cherian PP, Siller-Jackson AJ, Gu S, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16(7):3100–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Yoshida K, Oida H, Kobayashi T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA. 2002;99(7):4580–5.

    CAS  PubMed  Google Scholar 

  179. Keila S, Kelner A, Weinreb M. Systemic prostaglandin E2 increases cancellous bone formation and mass in aging rats and stimulates their bone marrow osteogenic capacity in vivo and in vitro. J Endocrinol. 2001;168(1):131–9.

    CAS  PubMed  Google Scholar 

  180. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.

    CAS  PubMed  Google Scholar 

  181. Galli C, Passeri G, Macaluso GM. Osteocytes and WNT: the mechanical control of bone formation. J Dent Res. 2010;89(4):331–43.

    CAS  PubMed  Google Scholar 

  182. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell and more. Endocr Rev. Epub 2013 Apr 26.

  183. Gowen LC, Petersen DN, Mansolf AL, et al. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem. 2003;278(3):1998–2007.

    CAS  PubMed  Google Scholar 

  184. Kulkarni RN, Bakker AD, Everts V, et al. Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE. Calcif Tissue Int. 2010;87(5):461–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Toyosawa S, Shintani S, Fujiwara T, et al. Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res. 2001;16(11):2017–26.

    CAS  PubMed  Google Scholar 

  186. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Gluhak-Heinrich J, Ye L, Bonewald LF, et al. Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo. J Bone Miner Res. 2003;18(5):807–17.

    CAS  PubMed  Google Scholar 

  188. Qiu S, Rao DS, Palnitkar S, et al. Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res. 2003;18(9):1657–63.

    PubMed  Google Scholar 

  189. Vashishth D, Verborgt O, Divine G, et al. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26(4):375–80.

    CAS  PubMed  Google Scholar 

  190. Emerton KB, Hu B, Woo AA, et al. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone. 2009;46(3):577–83.

    PubMed Central  PubMed  Google Scholar 

  191. O’Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145(4):1835–41.

    PubMed  Google Scholar 

  192. Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. J Biol Chem. 2007;282(33):24120–30.

    CAS  PubMed  Google Scholar 

  193. Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab. 2000;85(8):2907–12.

    CAS  PubMed  Google Scholar 

  194. Sampson HW, Hebert VA, Booe HL, et al. Effect of alcohol consumption on adult and aged bone: composition, morphology, and hormone levels of a rat animal model. Alcohol Clin Exp Res. 1998;22(8):1746–53.

    CAS  PubMed  Google Scholar 

  195. Turner RT, Kidder LS, Kennedy A, et al. Moderate alcohol consumption suppresses bone turnover in adult female rats. J Bone Miner Res. 2001;16(3):589–94.

    CAS  PubMed  Google Scholar 

  196. Kanis JA, Johansson H, Johnell O, et al. Alcohol intake as a risk factor for fracture. Osteoporos Int. 2005;16(7):737–42.

    PubMed  Google Scholar 

  197. Maurel DB, Jaffre C, Rochefort GY, et al. Low bone accrual is associated with osteocyte apoptosis in alcohol-induced osteopenia. Bone. 2011;49(3):543–52.

    CAS  PubMed  Google Scholar 

  198. Fonseca H, Moreira-Goncalves D, Esteves JL, et al. Voluntary exercise has long-term in vivo protective effects on osteocyte viability and bone strength following ovariectomy. Calcif Tissue Int. 2011;88(6):443–54.

    CAS  PubMed  Google Scholar 

  199. Miserez A, Schneberk T, Sun C, et al. The transition from stiff to compliant materials in squid beaks. Science. 2008;319(5871):1816–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Wilson EE, Awonusi A, Morris MD, et al. Three structural roles for water in bone observed by solid-state NMR. Biophys J. 2006;90(10):3722–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. You LD, Weinbaum S, Cowin SC, et al. Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol. 2004;278(2):505–13.

    PubMed  Google Scholar 

  202. Weinstein RS, Wan C, Liu Q, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010;9(2):147–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Ishijima H, Ishizaka H, Horikoshi H, et al. Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex. AJR Am J Roentgenol. 1996;167(2):355–8.

    CAS  PubMed  Google Scholar 

  204. Liebschner MA, Keller TS. Hydraulic strengthening affects the stiffness and strength of cortical bone. Ann Biomed Eng. 2005;33(1):26–38.

    PubMed  Google Scholar 

  205. Busse B, Djonic D, Milovanovic P, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75.

    CAS  PubMed  Google Scholar 

  206. Frost HM. Micropetrosis. J Bone Joint Surg. 1960;42-A:144–50.

    CAS  PubMed  Google Scholar 

  207. Aguirre JI, Plotkin LI, Stewart SA, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21(4):605–15.

    PubMed  Google Scholar 

  208. Dodd JS, Raleigh JA, Gross TS. Osteocyte hypoxia: a novel mechanotransduction pathway. Am J Physiol. 1999;277(3 Pt 1):C598–602.

    CAS  PubMed  Google Scholar 

  209. Noble BS, Peet N, Stevens HY, et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284(4):C934–43.

    CAS  PubMed  Google Scholar 

  210. Bakker A, Klein-Nulend J, Burger E. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun. 2004;320(4):1163–8.

    CAS  PubMed  Google Scholar 

  211. Plotkin LI, Mathov I, Aguirre JI, et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol. 2005;289(3):C633–43.

    CAS  PubMed  Google Scholar 

  212. Kitase Y, Barragan L, Qing H, et al. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. J Bone Miner Res. 2010;25(12):2657–68.

    PubMed  Google Scholar 

  213. Fonseca H, Goncalves D, Figueiredo P, et al. Lifelong sedentary behaviour and femur structure. Int J Sports Med. 2011;32(5):344–52.

    CAS  PubMed  Google Scholar 

  214. Mann V, Huber C, Kogianni G, et al. The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J Musculoskelet Neuronal Interact. 2006;6(4):408–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Kulkarni RN, Bakker AD, Everts V, et al. Mechanical loading prevents the stimulating effect of IL-1beta on osteocyte-modulated osteoclastogenesis. Biochem Biophys Res Commun. 2012;420(1):11–6.

    CAS  PubMed  Google Scholar 

  216. Siu WS, Qin L, Cheung WH, et al. A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography. Bone. 2004;35(1):21–6.

    CAS  PubMed  Google Scholar 

  217. Laib A, Kumer JL, Majumdar S, et al. The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int. 2001;12(11):936–41.

    CAS  PubMed  Google Scholar 

  218. Boyd SK, Davison P, Muller R, et al. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone. 2006;39(4):854–62.

    PubMed  Google Scholar 

  219. Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13(2):97–104.

    CAS  PubMed  Google Scholar 

  220. Ikeda S, Tsurukami H, Ito M, et al. Effect of trabecular bone contour on ultimate strength of lumbar vertebra after bilateral ovariectomy in rats. Bone. 2001;28(6):625–33.

    CAS  PubMed  Google Scholar 

  221. Fields AJ, Eswaran SK, Jekir MG, et al. Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res. 2009;24(9):1523–30.

    PubMed  Google Scholar 

  222. Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31.

    PubMed Central  PubMed  Google Scholar 

  223. Thomas CD, Mayhew PM, Power J, et al. Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res. 2009;24(11):1808–18.

    PubMed  Google Scholar 

  224. Borah B, Dufresne TE, Chmielewski PA, et al. Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography. J Bone Miner Res. 2002;17(7):1139–47.

    CAS  PubMed  Google Scholar 

  225. Wehrli FW, Rajapakse CS, Magland JF, et al. Mechanical implications of estrogen supplementation in early postmenopausal women. J Bone Miner Res. 2010;25(6):1406–14.

    CAS  PubMed  Google Scholar 

  226. Chappard D, Legrand E, Basle MF, et al. Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res. 1996;11(5):676–85.

    CAS  PubMed  Google Scholar 

  227. Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.

    CAS  PubMed  Google Scholar 

  228. Sran MM, Boyd SK, Cooper DM, et al. Regional trabecular morphology assessed by micro-CT is correlated with failure of aged thoracic vertebrae under a posteroanterior load and may determine the site of fracture. Bone. 2007;40(3):751–7.

    PubMed  Google Scholar 

  229. Sran MM, Khan KM, Zhu Q, et al. Failure characteristics of the thoracic spine with a posteroanterior load: investigating the safety of spinal mobilization. Spine (Phila Pa 1976). 2004;29(21):2382–8.

    Google Scholar 

  230. MacNeil JA, Boyd SK. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone. 2007;41(1):129–37.

    PubMed  Google Scholar 

  231. Bell KL, Loveridge N, Power J, et al. Regional differences in cortical porosity in the fractured femoral neck. Bone. 1999;24(1):57–64.

    CAS  PubMed  Google Scholar 

  232. Holzer G, von Skrbensky G, Holzer LA, et al. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 2009;24(3):468–74.

    PubMed  Google Scholar 

  233. Burghardt AJ, Kazakia GJ, Ramachandran S, et al. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res. 2010;25(5):983–93.

    PubMed  Google Scholar 

  234. Cooper DM, Thomas CD, Clement JG, et al. Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone. 2007;40(4):957–65.

    PubMed  Google Scholar 

  235. Sietsema WK. Animal models of cortical porosity. Bone. 1995;17(4 Suppl):297S–305S.

    CAS  PubMed  Google Scholar 

  236. Nicks KM, Amin S, Atkinson EJ, et al. Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res. 2012;27(3):637–44.

    PubMed Central  PubMed  Google Scholar 

  237. Dong XN, Guo XE. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J Biomech. 2004;37(8):1281–7.

    PubMed  Google Scholar 

  238. Rianon NJ, Lang TF, Sigurdsson G, et al. Lifelong physical activity in maintaining bone strength in older men and women of the Age, Gene/Environment Susceptibility-Reykjavik Study. Osteoporos Int. 2012;23(9):2303–12.

    CAS  PubMed  Google Scholar 

  239. Uusi-Rasi K, Sievanen H, Pasanen M, et al. Associations of calcium intake and physical activity with bone density and size in premenopausal and postmenopausal women: a peripheral quantitative computed tomography study. J Bone Miner Res. 2002;17(3):544–52.

    CAS  PubMed  Google Scholar 

  240. Sugiyama T, Price JS, Lanyon LE. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone. 2010;46(2):314–21.

    PubMed Central  PubMed  Google Scholar 

  241. Fritton JC, Myers ER, Wright TM, et al. Bone mass is preserved and cancellous architecture altered due to cyclic loading of the mouse tibia after orchidectomy. J Bone Miner Res. 2008;23(5):663–71.

    PubMed  Google Scholar 

  242. Lynch ME, Main RP, Xu Q, et al. Cancellous bone adaptation to tibial compression is not sex dependent in growing mice. J Appl Physiol. 2010;109(3):685–91.

    PubMed  Google Scholar 

  243. Joo YI, Sone T, Fukunaga M, et al. Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone. 2003;33(4):485–93.

    PubMed  Google Scholar 

  244. Iwamoto J, Yeh JK, Aloia JF. Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone. 1999;24(3):163–9.

    CAS  PubMed  Google Scholar 

  245. Notomi T, Okimoto N, Okazaki Y, et al. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. J Bone Miner Res. 2001;16(1):166–74.

    CAS  PubMed  Google Scholar 

  246. Notomi T, Okazaki Y, Okimoto N, et al. Effects of tower climbing exercise on bone mass, strength, and turnover in orchidectomized growing rats. J Appl Physiol. 2002;93(3):1152–8.

    PubMed  Google Scholar 

  247. Gross TS, Rubin CT. Uniformity of resorptive bone loss induced by disuse. J Orthop Res. 1995;13(5):708–14.

    CAS  PubMed  Google Scholar 

  248. Fonseca H, Moreira-Goncalves D, Vaz M, et al. Changes in proximal femur bone properties following ovariectomy and their association with resistance to fracture. J Bone Miner Metab. 2012;30(3):281–92.

    PubMed  Google Scholar 

  249. Alele JD, Kamen DL, Hunt KJ, et al. Bone geometry profiles in women with and without SLE. J Bone Miner Res. 2011;26(11):2719–26.

    PubMed  Google Scholar 

  250. Taes Y, Lapauw B, Griet V, et al. Prevalent fractures are related to cortical bone geometry in young healthy men at age of peak bone mass. J Bone Miner Res. 2010;25(6):1433–40.

    PubMed  Google Scholar 

  251. Ammann P, Rizzoli R, Meyer JM, et al. Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporos Int. 1996;6(3):219–27.

    CAS  PubMed  Google Scholar 

  252. Ejersted C, Andreassen TT, Oxlund H, et al. Human parathyroid hormone (1–34) and (1–84) increase the mechanical strength and thickness of cortical bone in rats. J Bone Miner Res. 1993;8(9):1097–101.

    CAS  PubMed  Google Scholar 

  253. Andreassen TT, Jorgensen PH, Flyvbjerg A, et al. Growth hormone stimulates bone formation and strength of cortical bone in aged rats. J Bone Miner Res. 1995;10(7):1057–67.

    CAS  PubMed  Google Scholar 

  254. Nelson DA, Pettifor JM, Barondess DA, et al. Comparison of cross-sectional geometry of the proximal femur in white and black women from Detroit and Johannesburg. J Bone Miner Res. 2004;19(4):560–5.

    PubMed  Google Scholar 

  255. Nelson DA, Barondess DA, Hendrix SL, et al. Cross-sectional geometry, bone strength, and bone mass in the proximal femur in black and white postmenopausal women. J Bone Miner Res. 2000;15(10):1992–7.

    CAS  PubMed  Google Scholar 

  256. Russo CR, Lauretani F, Bandinelli S, et al. Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int. 2003;14(7):531–8.

    CAS  PubMed  Google Scholar 

  257. Russo CR, Lauretani F, Seeman E, et al. Structural adaptations to bone loss in aging men and women. Bone. 2006;38(1):112–8.

    PubMed  Google Scholar 

  258. Seeman E. Periosteal bone formation–a neglected determinant of bone strength. N Engl J Med. 2003;349(4):320–3.

    PubMed  Google Scholar 

  259. Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18(6):949–54.

    PubMed  Google Scholar 

  260. Nakamura T, Turner CH, Yoshikawa T, et al. Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res. 1994;9(7):1071–6.

    CAS  PubMed  Google Scholar 

  261. Faulkner KG, Wacker WK, Barden HS, et al. Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int. 2006;17(4):593–9.

    CAS  PubMed  Google Scholar 

  262. Siu WS, Qin L, Leung KS. pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength. J Bone Miner Metab. 2003;21(5):316–22.

    PubMed  Google Scholar 

  263. Beck TJ. Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep. 2007;5(2):49–55.

    PubMed  Google Scholar 

  264. Pulkkinen P, Partanen J, Jalovaara P, et al. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int. 2004;15(4):274–80.

    PubMed  Google Scholar 

  265. El-Kaissi S, Pasco JA, Henry MJ, et al. Femoral neck geometry and hip fracture risk: the Geelong osteoporosis study. Osteoporos Int. 2005;16(10):1299–303.

    CAS  PubMed  Google Scholar 

  266. Frisoli A Jr, Paula AP, Pinheiro M, et al. Hip axis length as an independent risk factor for hip fracture independently of femural bone mineral density in Caucasian elderly Brazilian women. Bone. 2005;37(6):871–5.

    PubMed  Google Scholar 

  267. Bergot C, Bousson V, Meunier A, et al. Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int. 2002;13(7):542–50.

    CAS  PubMed  Google Scholar 

  268. Theobald TM, Cauley JA, Gluer CC, et al. Black–white differences in hip geometry. Study of Osteoporotic Fractures Research Group. Osteoporos Int. 1998;8(1):61–7.

    CAS  PubMed  Google Scholar 

  269. Michelotti J, Clark J. Femoral neck length and hip fracture risk. J Bone Miner Res. 1999;14(10):1714–20.

    CAS  PubMed  Google Scholar 

  270. Alonso CG, Curiel MD, Carranza FH, et al. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int. 2000;11(8):714–20.

    CAS  PubMed  Google Scholar 

  271. Faulkner KG, Cummings SR, Black D, et al. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993;8(10):1211–7.

    CAS  PubMed  Google Scholar 

  272. Parkkari J, Kannus P, Palvanen M, et al. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int. 1999;65(3):183–7.

    CAS  PubMed  Google Scholar 

  273. Wang Q, Teo JW, Ghasem-Zadeh A, et al. Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall. Osteoporos Int. 2009;20(7):1151–6.

    CAS  PubMed  Google Scholar 

  274. Cheung CL, Livshits G, Zhou Y, et al. Hip geometry variation is associated with bone mineralization pathway gene variants: The Framingham Study. J Bone Miner Res. 2010;25(7):1564–71.

    CAS  PubMed  Google Scholar 

  275. Greenspan SL, Beck TJ, Resnick NM, et al. Effect of hormone replacement, alendronate, or combination therapy on hip structural geometry: a 3-year, double-blind, placebo-controlled clinical trial. J Bone Miner Res. 2005;20(9):1525–32.

    CAS  PubMed  Google Scholar 

  276. Uusi-Rasi K, Semanick LM, Zanchetta JR, et al. Effects of teriparatide [rhPTH (1–34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone. 2005;36(6):948–58.

    CAS  PubMed  Google Scholar 

  277. Korhonen MT, Heinonen A, Siekkinen J, et al. Bone density, structure and strength and their determinants in aging sprint athletes. Med Sci Sports Exerc. 2012;44:2340–9.

    PubMed  Google Scholar 

  278. Nikander R, Kannus P, Dastidar P, et al. Targeted exercises against hip fragility. Osteoporos Int. 2009;20(8):1321–8.

    CAS  PubMed  Google Scholar 

  279. Duncan CS, Blimkie CJ, Kemp A, et al. Mid-femur geometry and biomechanical properties in 15- to 18-yr-old female athletes. Med Sci Sports Exerc. 2002;34(4):673–81.

    PubMed  Google Scholar 

  280. Farr JN, Blew RM, Lee VR, et al. Associations of physical activity duration, frequency, and load with volumetric BMD, geometry, and bone strength in young girls. Osteoporos Int. 2011;22(5):1419–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Petit MA, McKay HA, MacKelvie KJ, et al. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17(3):363–72.

    CAS  PubMed  Google Scholar 

  282. Karinkanta S, Heinonen A, Sievanen H, et al. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int. 2007;18(4):453–62.

    CAS  PubMed  Google Scholar 

  283. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300.

    CAS  PubMed  Google Scholar 

  284. Saito M, Fujii K, Mori Y, et al. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17(10):1514–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors made a substantial contribution in all stages of preparation of the manuscript. The author’s work is supported by Fundação para a Ciência e Tecnologia (FCT) grants PEst-OE/SAU/UI0617/2011, PTDC/DES/103047/2008, and PTDC/DES/104567/2008. H. Fonseca benefits from FCT fellow SFRH/BPD/78259/2011 and D. Moreira-Gonçalves from FCT fellow SFRH/BPD/90010/2012. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélder Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, H., Moreira-Gonçalves, D., Coriolano, HJ.A. et al. Bone Quality: The Determinants of Bone Strength and Fragility. Sports Med 44, 37–53 (2014). https://doi.org/10.1007/s40279-013-0100-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0100-7

Keywords

Navigation