Sports Medicine

, Volume 44, Issue 1, pp 9–23 | Cite as

The Pain of Tendinopathy: Physiological or Pathophysiological?

  • Ebonie RioEmail author
  • Lorimer Moseley
  • Craig Purdam
  • Tom Samiric
  • Dawson Kidgell
  • Alan J. Pearce
  • Shapour Jaberzadeh
  • Jill Cook
Review Article


Tendon pain remains an enigma. Many clinical features are consistent with tissue disruption—the pain is localised, persistent and specifically associated with tendon loading, whereas others are not—investigations do not always match symptoms and painless tendons can be catastrophically degenerated. As such, the question ‘what causes a tendon to be painful?’ remains unanswered. Without a proper understanding of the mechanism behind tendon pain, it is no surprise that treatments are often ineffective. Tendon pain certainly serves to protect the area—this is a defining characteristic of pain—and there is often a plausible nociceptive contributor. However, the problem of tendon pain is that the relation between pain and evidence of tissue disruption is variable. The investigation into mechanisms for tendon pain should extend beyond local tissue changes and include peripheral and central mechanisms of nociception modulation. This review integrates recent discoveries in diverse fields such as histology, physiology and neuroscience with clinical insight to present a current state of the art in tendon pain. New hypotheses for this condition are proposed, which focus on the potential role of tenocytes, mechanosensitive and chemosensitive receptors, the role of ion channels in nociception and pain and central mechanisms associated with load and threat monitoring.


Patellar Tendon Pressure Pain Threshold Patellar Tendinopathy Secondary Hyperalgesia Tendon Pathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No funding was provided for the preparation of this manuscript and the authors declare no conflicts of interest.


  1. 1.
    Cumpston M, Johnston RV, Wengier L, Buchbinder R. Topical glyceryl trinitrate for rotator cuff disease. Cochrane Database Syst Rev. 2009;(3):CD006355.Google Scholar
  2. 2.
    Buchbinder R, Johnston RV, Barnsley L, Assendelft WJ, Bell SN, Smidt N. Surgery for lateral elbow pain. Cochrane Database Syst Rev. 2011;(3):CD003525.Google Scholar
  3. 3.
    Buchbinder R, Green SE, Youd JM, Assendelft WJ, Barnsley L, Smidt N. Systematic review of the efficacy and safety of shock wave therapy for lateral elbow pain. J Rheumatol. 2006;33(7):1351–63.PubMedGoogle Scholar
  4. 4.
    Kingma JJ, de Knikker R, Wittink HM, Takken T. Eccentric overload training in patients with chronic Achilles tendinopathy: a systematic review. Br J Sports Med. 2007;41(6):e3.PubMedGoogle Scholar
  5. 5.
    Cook JL, Purdam CR. Rehabilitation of lower limb tendinopathies. Clin Sports Med. 2003;22(4):777–89.PubMedGoogle Scholar
  6. 6.
    Cook J, Khan K. The treatment of resistant, painful tendinopathies results in frustration for athletes and health professionals alike. Am J Sports Med. 2003;31(2):327–8 (author reply 8).Google Scholar
  7. 7.
    Kountouris A, Cook J. Rehabilitation of Achilles and patellar tendinopathies. Best Pract Res Clin Rheumatol. 2007;21(2):295–316.PubMedGoogle Scholar
  8. 8.
    Ramos LA, Carvalho RT, Garms E, Navarro MS, Abdalla RJ, Cohen M. Prevalence of pain on palpation of the inferior pole of the patella among patients with complaints of knee pain. Clinics (Sao Paulo). 2009;64(3):199–202.Google Scholar
  9. 9.
    Khan KM, Cook JL, Kannus P, Maffulli N, Bonar SF. Time to abandon the “tendinitis” myth. BMJ. 2002;324(7338):626–7.PubMedGoogle Scholar
  10. 10.
    Maffulli N, Khan KM, Puddu G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy. 1998;14(8):840–3.PubMedGoogle Scholar
  11. 11.
    Silbernagel KG, Thomee R, Eriksson BI, Karlsson J. Full symptomatic recovery does not ensure full recovery of muscle-tendon function in patients with Achilles tendinopathy. Br J Sports Med. 2007;41(4):276–80 (discussion 80).Google Scholar
  12. 12.
    Khan KM, Cook JL, Taunton JE, Bonar F. Overuse tendinosis, not tendinitis part 1: a new paradigm for a difficult clinical problem. Phys Sportsmed. 2000;28(5):38–48.PubMedGoogle Scholar
  13. 13.
    Lichtwark GA, Wilson AM. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol. 2005;208(Pt 24):4715–25.PubMedGoogle Scholar
  14. 14.
    Bagge J, Gaida JE, Danielson P, Alfredson H, Forsgren S. Physical activity level in Achilles tendinosis is associated with blood levels of pain-related factors: a pilot study. Scand J Med Sci Sports. 2011;21(6):e430–8.PubMedGoogle Scholar
  15. 15.
    Cook JL, Khan KM, Purdam C. Achilles tendinopathy. Man Ther. 2002;7(3):121–30.PubMedGoogle Scholar
  16. 16.
    Ferretti A. Epidemiology of jumper’s knee. Sports Med. 1986;3(4):289–95.PubMedGoogle Scholar
  17. 17.
    Costigan M, Woolf CJ. Pain: molecular mechanisms. J Pain. 2000;1(3 Suppl):35–44.PubMedGoogle Scholar
  18. 18.
    Cook JL, Feller JA, Bonar SF, Khan KM. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J Orthop Res. 2004;22(2):334–8.PubMedGoogle Scholar
  19. 19.
    Malliaras P, Cook J. Patellar tendons with normal imaging and pain: change in imaging and pain status over a volleyball season. Clin J Sport Med. 2006;16(5):388–91.PubMedGoogle Scholar
  20. 20.
    Cook JL, Khan KM, Harcourt PR, Grant M, Young DA, Bonar SF. A cross sectional study of 100 athletes with jumper’s knee managed conservatively and surgically. The Victorian Institute of Sport Tendon Study Group. Br J Sports Med. 1997;31(4):332–6.PubMedGoogle Scholar
  21. 21.
    Jonsson P, Alfredson H. Superior results with eccentric compared to concentric quadriceps training in patients with jumper’s knee: a prospective randomised study. Br J Sports Med. 2005;39(11):847–50.PubMedGoogle Scholar
  22. 22.
    Young MA, Cook JL, Purdam CR, Kiss ZS, Alfredson H. Eccentric decline squat protocol offers superior results at 12 months compared with traditional eccentric protocol for patellar tendinopathy in volleyball players. Br J Sports Med. 2005;39(2):102–5.PubMedGoogle Scholar
  23. 23.
    Ohberg L, Alfredson H. Effects on neovascularisation behind the good results with eccentric training in chronic mid-portion Achilles tendinosis? Knee Surg Sports Traumatol Arthrosc. 2004;12(5):465–70.PubMedGoogle Scholar
  24. 24.
    Fahlstrom M, Jonsson P, Lorentzon R, Alfredson H. Chronic Achilles tendon pain treated with eccentric calf-muscle training. Knee Surg Sports Traumatol Arthrosc. 2003;11(5):327–33.PubMedGoogle Scholar
  25. 25.
    Silbernagel KG, Thomee R, Eriksson BI, Karlsson J. Continued sports activity, using a pain-monitoring model, during rehabilitation in patients with Achilles tendinopathy: a randomized controlled study. Am J Sports Med. 2007;35(6):897–906.PubMedGoogle Scholar
  26. 26.
    Wilson JJ, Best TM. Common overuse tendon problems: a review and recommendations for treatment. Am Fam Physician. 2005;72(5):811–8.PubMedGoogle Scholar
  27. 27.
    Butler D, Moseley L. Explain pain. Adelaide: NOI Publications; 2003.Google Scholar
  28. 28.
    Thacker MA, Moseley GL. First-person neuroscience and the understanding of pain. Med J Aust. 2012;196(6):410–1.PubMedGoogle Scholar
  29. 29.
    Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91.PubMedGoogle Scholar
  30. 30.
    Bayer TL, Baer PE, Early C. Situational and psychophysiological factors in psychologically induced pain. Pain. 1991;44(1):45–50.PubMedGoogle Scholar
  31. 31.
    Moseley GL, Arntz A. The context of a noxious stimulus affects the pain it evokes. Pain. 2007;133(1–3):64–71.PubMedGoogle Scholar
  32. 32.
    Wand BM, Parkitny L, O’Connell NE, Luomajoki H, McAuley JH, Thacker M, et al. Cortical changes in chronic low back pain: current state of the art and implications for clinical practice. Man Ther. 2011;16(1):15–20.PubMedGoogle Scholar
  33. 33.
    Moseley GBD, Beames T, Giles T. The graded motor imagery handbook. Adelaide: NOI Group Publishing; 2012.Google Scholar
  34. 34.
    Woolf CJ, Salter M. Plasticity and pain: the role of the dorsal horn. In: McMahon SB, Koltzenburg M, editors. Textbook of pain. 5th ed. London: Elsevier; 2006. p. 91–107.Google Scholar
  35. 35.
    Cook JL, Khan KM, Kiss ZS, Purdam CR, Griffiths L. Reproducibility and clinical utility of tendon palpation to detect patellar tendinopathy in young basketball players. Victorian Institute of Sport Tendon Study Group. Br J Sports Med. 2001;35(1):65–9.PubMedGoogle Scholar
  36. 36.
    Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288(5472):1765–9.PubMedGoogle Scholar
  37. 37.
    Kettunen JA, Kvist M, Alanen E, Kujala UM. Long-term prognosis for jumper’s knee in male athletes. A prospective follow-up study. Am J Sports Med. 2002;30(5):689–92.PubMedGoogle Scholar
  38. 38.
    Leis S, Weber M, Schmelz M, Birklein F. Facilitated neurogenic inflammation in unaffected limbs of patients with complex regional pain syndrome. Neurosci Lett. 2004;359(3):163–6.PubMedGoogle Scholar
  39. 39.
    Schwenkreis P, Janssen F, Rommel O, Pleger B, Volker B, Hosbach I, et al. Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand. Neurology. 2003;61(4):515–9.PubMedGoogle Scholar
  40. 40.
    Stanton TR, Lin CW, Smeets RJ, Taylor D, Law R, Lorimer Moseley G. Spatially defined disruption of motor imagery performance in people with osteoarthritis. Rheumatology (Oxford). 2012;51(8):1455–64.Google Scholar
  41. 41.
    Donnelly E, Ascenzi MG, Farnum C. Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon. J Orthop Res. 2010;28(1):77–82.PubMedCentralPubMedGoogle Scholar
  42. 42.
    McNeilly CM, Banes AJ, Benjamin M, Ralphs JR. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat. 1996;189(Pt 3):593–600.PubMedGoogle Scholar
  43. 43.
    Maeda E, Ye S, Wang W, Bader DL, Knight MM, Lee DA. Gap junction permeability between tenocytes within tendon fascicles is suppressed by tensile loading. Biomech Model Mechanobiol. 2012;11(3–4):439–47.PubMedGoogle Scholar
  44. 44.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008.Google Scholar
  45. 45.
    Waggett AD, Benjamin M, Ralphs JR. Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol. 2006;85(11):1145–54.PubMedGoogle Scholar
  46. 46.
    Goldberg GS, Valiunas V, Brink PR. Selective permeability of gap junction channels. Biochim Biophys Acta. 2004;1662(1–2):96–101.PubMedGoogle Scholar
  47. 47.
    Maeda S, Tsukihara T. Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci. 2011;68(7):1115–29.PubMedGoogle Scholar
  48. 48.
    Roufosse CA, Direkze NC, Otto WR, Wright NA. Circulating mesenchymal stem cells. Int J Biochem Cell Biol. 2004;36(4):585–97.PubMedGoogle Scholar
  49. 49.
    Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.PubMedGoogle Scholar
  50. 50.
    Scott A, Lian O, Bahr R, Hart DA, Duronio V, Khan KM. Increased mast cell numbers in human patellar tendinosis: correlation with symptom duration and vascular hyperplasia. Br J Sports Med. 2008;42(9):753–7.PubMedGoogle Scholar
  51. 51.
    Kasantikul V, Shuangshoti S. Positivity to glial fibrillary acidic protein in bone, cartilage, and chordoma. J Surg Oncol. 1989;41(1):22–6.PubMedGoogle Scholar
  52. 52.
    Bossolasco P, Cova L, Calzarossa C, Rimoldi SG, Borsotti C, Deliliers GL, et al. Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol. 2005;193(2):312–25.PubMedGoogle Scholar
  53. 53.
    Wieseler-Frank J, Maier SF, Watkins LR. Glial activation and pathological pain. Neurochem Int. 2004;45(2–3):389–95.PubMedGoogle Scholar
  54. 54.
    Neumann H. Control of glial immune function by neurons. Glia. 2001;36(2):191–9.PubMedGoogle Scholar
  55. 55.
    Jessen KR, Mirsky R. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 2005;6(9):671–82.PubMedGoogle Scholar
  56. 56.
    Cao H, Zhang YQ. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008;32(5):972–83.PubMedGoogle Scholar
  57. 57.
    Classen SR, Paulson PR, Zacharias SR. Systemic lupus erythematosus: perinatal and neonatal implications. J Obstet Gynecol Neonatal Nursing. 1998;27(5):493–500.Google Scholar
  58. 58.
    Cetti R, Junge J, Vyberg M. Spontaneous rupture of the Achilles tendon is preceded by widespread and bilateral tendon damage and ipsilateral inflammation: a clinical and histopathologic study of 60 patients. Acta Orthop Scand. 2003;74(1):78–84.PubMedGoogle Scholar
  59. 59.
    Alfredson H, Thorsen K, Lorentzon R. In situ microdialysis in tendon tissue: high levels of glutamate, but not prostaglandin E2 in chronic Achilles tendon pain. Knee Surg Sports Traumatol Arthrosc. 1999;7(6):378–81.PubMedGoogle Scholar
  60. 60.
    Feindel WH, Weddell G, Sinclair DC. Pain sensibility in deep somatic structures. J Neurol Neurosurg Psychiatry. 1948;11(2):113–7.PubMedGoogle Scholar
  61. 61.
    Bjur D, Alfredson H, Forsgren S. The innervation pattern of the human Achilles tendon: studies of the normal and tendinosis tendon with markers for general and sensory innervation. Cell Tissue Res. 2005;320(1):201–6.PubMedGoogle Scholar
  62. 62.
    Danielson P, Alfredson H, Forsgren S. Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerve-related cholinergic effects in chronic painful patellar tendon tendinosis. Microsc Res Tech. 2006;69(10):808–19.PubMedGoogle Scholar
  63. 63.
    Bjur D, Danielson P, Alfredson H, Forsgren S. Presence of a non-neuronal cholinergic system and occurrence of up- and down-regulation in expression of M2 muscarinic acetylcholine receptors: new aspects of importance regarding Achilles tendon tendinosis (tendinopathy). Cell Tissue Res. 2008;331(2):385–400.PubMedGoogle Scholar
  64. 64.
    Danielson P, Alfredson H, Forsgren S. Distribution of general (PGP 9.5) and sensory (substance P/CGRP) innervations in the human patellar tendon. Knee Surg Sports Traumatol Arthrosc. 2006;14(2):125–32.PubMedGoogle Scholar
  65. 65.
    Lian O, Dahl J, Ackermann PW, Frihagen F, Engebretsen L, Bahr R. Pronociceptive and antinociceptive neuromediators in patellar tendinopathy. Am J Sports Med. 2006;34(11):1801–8.PubMedGoogle Scholar
  66. 66.
    Danielson P, Alfredson H, Forsgren S. Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man. Microsc Res Tech. 2007;70(4):310–24.PubMedGoogle Scholar
  67. 67.
    Danielson P, Andersson G, Alfredson H, Forsgren S. Marked sympathetic component in the perivascular innervation of the dorsal paratendinous tissue of the patellar tendon in arthroscopically treated tendinosis patients. Knee Surg Sports Traumatol Arthrosc. 2008;16(6):621–6.PubMedGoogle Scholar
  68. 68.
    Goucke CR. The management of persistent pain. Med J Aust. 2003;178(9):444–7.PubMedGoogle Scholar
  69. 69.
    Shaw HM, Santer RM, Watson AH, Benjamin M. Adipose tissue at entheses: the innervation and cell composition of the retromalleolar fat pad associated with the rat Achilles tendon. J Anat. 2007;211(4):436–43.PubMedGoogle Scholar
  70. 70.
    Benjamin M, Redman S, Milz S, Buttner A, Amin A, Moriggl B, et al. Adipose tissue at entheses: the rheumatological implications of its distribution. A potential site of pain and stress dissipation? Ann Rheum Dis. 2004;63(12):1549–55.PubMedGoogle Scholar
  71. 71.
    Jozsa L, Reffy A, Kannus P, Demel S, Elek E. Pathological alterations in human tendons. Arch Orthop Trauma Surg. 1990;110(1):15–21.PubMedGoogle Scholar
  72. 72.
    Alfredson H, Ohberg L, Forsgren S. Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc. 2003;11(5):334–8.PubMedGoogle Scholar
  73. 73.
    Gisslen K, Gyulai C, Soderman K, Alfredson H. High prevalence of jumper’s knee and sonographic changes in Swedish elite junior volleyball players compared to matched controls. Br J Sports Med. 2005;39(5):298–301.PubMedGoogle Scholar
  74. 74.
    Kannus P, Jozsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73(10):1507–25.PubMedGoogle Scholar
  75. 75.
    Ackermann PW, Li J, Finn A, Ahmed M, Kreicbergs A. Autonomic innervation of tendons, ligaments and joint capsules. A morphologic and quantitative study in the rat. J Orthop Res. 2001;19(3):372–8.PubMedGoogle Scholar
  76. 76.
    Butler D. The sensitive nervous system. Adelaide: Noi Group Publications; 2009.Google Scholar
  77. 77.
    Slater H, Gibson W, Graven-Nielsen T. Sensory responses to mechanically and chemically induced tendon pain in healthy subjects. Eur J Pain. 2011;15(2):146–52.PubMedGoogle Scholar
  78. 78.
    Graven-Nielsen T, Arendt-Nielsen L, Svensson P, Jensen TS. Stimulus-response functions in areas with experimentally induced referred muscle pain—a psychophysical study. Brain Res. 1997;744(1):121–8.PubMedGoogle Scholar
  79. 79.
    Gibson W, Arendt-Nielsen L, Graven-Nielsen T. Referred pain and hyperalgesia in human tendon and muscle belly tissue. Pain. 2006;120(1–2):113–23.PubMedGoogle Scholar
  80. 80.
    Wight TN, Kinsella MG, Qwarnstrom EE. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol. 1992;4(5):793–801.PubMedGoogle Scholar
  81. 81.
    Fu SC, Chan KM, Rolf CG. Increased deposition of sulfated glycosaminoglycans in human patellar tendinopathy. Clin J Sport Med. 2007;17(2):129–34.PubMedGoogle Scholar
  82. 82.
    Kubo A, Katanosaka K, Mizumura K. Extracellular matrix proteoglycan plays a pivotal role in sensitization by low pH of mechanosensitive currents in nociceptive sensory neurones. J Physiol. 2012;590(Pt 13):2995–3007.PubMedGoogle Scholar
  83. 83.
    Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003;4(7):573–86.PubMedGoogle Scholar
  84. 84.
    Cook JL, Malliaras P, De Luca J, Ptasznik R, Morris M. Vascularity and pain in the patellar tendon of adult jumping athletes: a 5 month longitudinal study. Br J Sports Med. 2005;39(7):458–61 (discussion 61).Google Scholar
  85. 85.
    Ohberg L, Lorentzon R, Alfredson H. Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation. Knee Surg Sports Traumatol Arthrosc. 2001;9(4):233–8.PubMedGoogle Scholar
  86. 86.
    Danielson P. Reviving the “biochemical” hypothesis for tendinopathy: new findings suggest the involvement of locally produced signal substances. Br J Sports Med. 2009;43(4):265–8.PubMedGoogle Scholar
  87. 87.
    Cook JL, Khan KM, Harcourt PR, Kiss ZS, Fehrmann MW, Griffiths L, et al. Patellar tendon ultrasonography in asymptomatic active athletes reveals hypoechoic regions: a study of 320 tendons. Victorian Institute of Sport Tendon Study Group. Clin J Sport Med. 1998;8(2):73–7.PubMedGoogle Scholar
  88. 88.
    Alfredson H, Harstad H, Haugen S, Ohberg L. Sclerosing polidocanol injections to treat chronic painful shoulder impingement syndrome: results of a two-centre collaborative pilot study. Knee Surg Sports Traumatol Arthrosc. 2006;14(12):1321–6.PubMedGoogle Scholar
  89. 89.
    Alfredson H, Ohberg L. Neovascularisation in chronic painful patellar tendinosis: promising results after sclerosing neovessels outside the tendon challenge the need for surgery. Knee Surg Sports Traumatol Arthrosc. 2005;13(2):74–80.PubMedGoogle Scholar
  90. 90.
    Hoksrud AF, Bahr R. Injectable agents derived from or targeting vascularity: has clinical acceptance in managing tendon disorders superseded scientific evidence? J Musculoskelet Neuronal Interact. 2011;11(2):174–84.PubMedGoogle Scholar
  91. 91.
    van Sterkenburg MN, de Jonge MC, Sierevelt IN, van Dijk CN. Less promising results with sclerosing ethoxysclerol injections for midportion Achilles tendinopathy: a retrospective study. Am J Sports Med. 2010;38(11):2226–32.PubMedGoogle Scholar
  92. 92.
    Backman LJ, Andersson G, Wennstig G, Forsgren S, Danielson P. Endogenous substance P production in the Achilles tendon increases with loading in an in vivo model of tendinopathy-peptidergic elevation preceding tendinosis-like tissue changes. J Musculoskelet Neuronal Interact. 2011;11(2):133–40.PubMedGoogle Scholar
  93. 93.
    Andersson G, Danielson P, Alfredson H, Forsgren S. Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. Regul Pept. 2008;150(1–3):81–7.PubMedGoogle Scholar
  94. 94.
    Danielson P, Andersson G, Alfredson H, Forsgren S. Extensive expression of markers for acetylcholine synthesis and of M2 receptors in tenocytes in therapy-resistant chronic painful patellar tendon tendinosis: a pilot study. Life Sci. 2007;80(24–25):2235–8.PubMedGoogle Scholar
  95. 95.
    Zhao H, Asai S, Ishikawa K. Neither L-NAME nor l-arginine changes extracellular glutamate elevation and anoxic depolarization during global ischemia and reperfusion in rat. Neuroreport. 1999;10(2):313–8.PubMedGoogle Scholar
  96. 96.
    Parkitny L, McAuley JH, Walton D, Pena Costa LO, Refshauge KM, Wand BM, et al. Rasch analysis supports the use of the depression, anxiety, and stress scales to measure mood in groups but not in individuals with chronic low back pain. J Clin Epidemiol. 2012;65(2):189–98.PubMedGoogle Scholar
  97. 97.
    Hosaka Y, Kirisawa R, Ueda H, Yamaguchi M, Takehana K. Differences in tumor necrosis factor (TNF) alpha and TNF receptor-1-mediated intracellular signaling factors in normal, inflamed and scar-formed horse tendons. J Vet Med Sci. 2005;67(10):985–91.PubMedGoogle Scholar
  98. 98.
    Millar NL, Wei AQ, Molloy TJ, Bonar F, Murrell GA. Cytokines and apoptosis in supraspinatus tendinopathy. J Bone Joint Surg Br. 2009;91(3):417–24.PubMedGoogle Scholar
  99. 99.
    Gaida JE, Bagge J, Purdam C, Cook J, Alfredson H, Forsgren S. Evidence of the TNF-alpha system in the human Achilles tendon: expression of TNF-alpha and TNF receptor at both protein and mRNA levels in the tenocytes. Cells Tissues Organs. 2012;196:339–52.PubMedGoogle Scholar
  100. 100.
    John T, Lodka D, Kohl B, Ertel W, Jammrath J, Conrad C, et al. Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytes. J Orthop Res. 2010;28(8):1071–7.PubMedGoogle Scholar
  101. 101.
    Uchida H, Tohyama H, Nagashima K, Ohba Y, Matsumoto H, Toyama Y, et al. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. J Biomech. 2005;38(4):791–8.PubMedGoogle Scholar
  102. 102.
    Sorkin LS, Xiao WH, Wagner R, Myers RR. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience. 1997;81(1):255–62.PubMedGoogle Scholar
  103. 103.
    Tsuzaki M, Bynum D, Almekinders L, Yang X, Faber J, Banes AJ. ATP modulates load-inducible IL-1beta, COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem. 2003;89(3):556–62.PubMedGoogle Scholar
  104. 104.
    Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 2007;27(22):6006–18.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Wei F, Guo W, Zou S, Ren K, Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci. 2008;28(42):10482–95.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Ljung BO, Alfredson H, Forsgren S. Neurokinin 1-receptors and sensory neuropeptides in tendon insertions at the medial and lateral epicondyles of the humerus. Studies on tennis elbow and medial epicondylalgia. J Orthop Res. 2004;22(2):321–7.PubMedGoogle Scholar
  107. 107.
    Alfredson H, Lorentzon R. Sclerosing polidocanol injections of small vessels to treat the chronic painful tendon. Cardiovasc Hematol Agents Med Chem. 2007;5(2):97–100.PubMedGoogle Scholar
  108. 108.
    Levine JD, Fields HL, Basbaum AI. Peptides and the primary afferent nociceptor. J Neurosci. 1993;13(6):2273–86.PubMedGoogle Scholar
  109. 109.
    Backman LJ, Fong G, Andersson G, Scott A, Danielson P. Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation. PLoS ONE. 2011;6(11):e27209.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Vogelsang M, Heyer G, Hornstein OP. Acetylcholine induces different cutaneous sensations in atopic and non-atopic subjects. Acta Derm Venereol. 1995;75(6):434–6.PubMedGoogle Scholar
  111. 111.
    Newman EA. Glial cell inhibition of neurons by release of ATP. J Neurosci. 2003;23(5):1659–66.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Burnstock G. Introduction: ATP and its metabolites as potent extracellular agents. Curr Top Membr. 2003;54:1–27.Google Scholar
  113. 113.
    Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci. 2006;27(3):166–76.PubMedGoogle Scholar
  114. 114.
    Cook SP, McCleskey EW. Cell damage excites nociceptors through release of cytosolic ATP. Pain. 2002;95(1–2):41–7.PubMedGoogle Scholar
  115. 115.
    Scott A, Alfredson H, Forsgren S. VGluT2 expression in painful Achilles and patellar tendinosis: evidence of local glutamate release by tenocytes. J Orthop Res. 2008;26(5):685–92.PubMedGoogle Scholar
  116. 116.
    Schizas N, Weiss R, Lian O, Frihagen F, Bahr R, Ackermann PW. Glutamate receptors in tendinopathic patients. J Orthop Res. 2012;30:1447–52.PubMedGoogle Scholar
  117. 117.
    Molloy TJ, Kemp MW, Wang Y, Murrell GA. Microarray analysis of the tendinopathic rat supraspinatus tendon: glutamate signaling and its potential role in tendon degeneration. J Appl Physiol. 2006;101(6):1702–9.PubMedGoogle Scholar
  118. 118.
    Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281(30):21362–8.PubMedGoogle Scholar
  119. 119.
    Alfredson H, Lorentzon R. Intratendinous glutamate levels and eccentric training in chronic Achilles tendinosis: a prospective study using microdialysis technique. Knee Surg Sports Traumatol Arthrosc. 2003;11(3):196–9.PubMedGoogle Scholar
  120. 120.
    Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-d-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003;97(4):1108–16.PubMedGoogle Scholar
  121. 121.
    Alfredson H, Bjur D, Thorsen K, Lorentzon R, Sandstrom P. High intratendinous lactate levels in painful chronic Achilles tendinosis. An investigation using microdialysis technique. J Orthop Res. 2002;20(5):934–8.PubMedGoogle Scholar
  122. 122.
    Tuite DJ, Renstrom PA, O’Brien M. The aging tendon. Scand J Med Sci Sports. 1997;7(2):72–7.PubMedGoogle Scholar
  123. 123.
    Floridi A, Ippolito E, Postacchini F. Age-related changes in the metabolism of tendon cells. Connect Tissue Res. 1981;9(2):95–7.PubMedGoogle Scholar
  124. 124.
    Parkinson J, Samiric T, Ilic MZ, Cook J, Feller JA, Handley CJ. Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. Arthritis Rheum. 2010;62(10):3028–35.PubMedGoogle Scholar
  125. 125.
    Klein MB, Pham H, Yalamanchi N, Chang J. Flexor tendon wound healing in vitro: the effect of lactate on tendon cell proliferation and collagen production. J Hand Surg Am. 2001;26(5):847–54.PubMedGoogle Scholar
  126. 126.
    Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, et al. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen. 2003;11(6):504–9.PubMedGoogle Scholar
  127. 127.
    Ek-Vitorin JF, Calero G, Morley GE, Coombs W, Taffet SM, Delmar M. PH regulation of connexin43: molecular analysis of the gating particle. Biophys J. 1996;71(3):1273–84.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Christensen B, Dandanell S, Kjaer M, Langberg H. Effect of anti-inflammatory medication on the running-induced rise in patella tendon collagen synthesis in humans. J Appl Physiol. 2011;110(1):137–41.PubMedGoogle Scholar
  129. 129.
    Riley GP, Cox M, Harrall RL, Clements S, Hazleman BL. Inhibition of tendon cell proliferation and matrix glycosaminoglycan synthesis by non-steroidal anti-inflammatory drugs in vitro. J Hand Surg Br. 2001;26(3):224–8.PubMedGoogle Scholar
  130. 130.
    Magra M, Hughes S, El Haj AJ, Maffulli N. VOCCs and TREK-1 ion channel expression in human tenocytes. Am J Physiol Cell Physiol. 2007;292(3):C1053–60.PubMedGoogle Scholar
  131. 131.
    Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82(3):735–67.PubMedGoogle Scholar
  132. 132.
    Uchiyama Y, Guttapalli A, Gajghate S, Mochida J, Shapiro IM, Risbud MV. SMAD3 functions as a transcriptional repressor of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res. 2008;23(10):1619–28.PubMedGoogle Scholar
  133. 133.
    Uchiyama Y, Cheng CC, Danielson KG, Mochida J, Albert TJ, Shapiro IM, et al. Expression of acid-sensing ion channel 3 (ASIC3) in nucleus pulposus cells of the intervertebral disc is regulated by p75NTR and ERK signaling. J Bone Miner Res. 2007;22(12):1996–2006.PubMedGoogle Scholar
  134. 134.
    Jahr H, van Driel M, van Osch GJ, Weinans H, van Leeuwen JP. Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun. 2005;337(1):349–54.PubMedGoogle Scholar
  135. 135.
    Rong C, Chen FH, Jiang S, Hu W, Wu FR, Chen TY, et al. Inhibition of acid-sensing ion channels by amiloride protects rat articular chondrocytes from acid-induced apoptosis via a mitochondrial-mediated pathway. Cell Biol Int. 2012;36(7):635–41.PubMedGoogle Scholar
  136. 136.
    Yuan FL, Chen FH, Lu WG, Li X, Li JP, Li CW, et al. Inhibition of acid-sensing ion channels in articular chondrocytes by amiloride attenuates articular cartilage destruction in rats with adjuvant arthritis. Inflamm Res. 2010;59(11):939–47.PubMedGoogle Scholar
  137. 137.
    Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, et al. Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem. 2010;340(1–2):153–9.PubMedGoogle Scholar
  138. 138.
    Kolker SJ, Walder RY, Usachev Y, Hillman J, Boyle DL, Firestein GS, et al. Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release. Ann Rheum Dis. 2010;69(5):903–9.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med. 1994;331(2):69–73.PubMedGoogle Scholar
  140. 140.
    Risbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, et al. Nucleus pulposus cells express HIF-1 alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem. 2006;98(1):152–9.PubMedGoogle Scholar
  141. 141.
    Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV. Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol. 2007;293(2):C621–31.PubMedGoogle Scholar
  142. 142.
    Arnett TR. Extracellular pH regulates bone cell function. J Nutr. 2008;138(2):415S–8S.PubMedGoogle Scholar
  143. 143.
    Cortright DN, Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem. 2004;271(10):1814–9.PubMedGoogle Scholar
  144. 144.
    Wall ME, Banes AJ. Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 2005;5(1):70–84.PubMedGoogle Scholar
  145. 145.
    Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, et al. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol. 1995;73(7–8):349–65.PubMedGoogle Scholar
  146. 146.
    Sachs F. Stretch-activated ion channels: what are they? Physiology (Bethesda). 2010;25(1):50–6.Google Scholar
  147. 147.
    Catterall WA. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium. 1998;24(5–6):307–23.PubMedGoogle Scholar
  148. 148.
    McCleskey EW, Gold MS. Ion channels of nociception. Annu Rev Physiol. 1999;61:835–56.PubMedGoogle Scholar
  149. 149.
    Barres BA. Neuronal-glial interactions. A new form of transmission? Nature. 1989;339(6223):343–4.PubMedGoogle Scholar
  150. 150.
    Charles AC, Merrill JE, Dirksen ER, Sanderson MJ. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron. 1991;6(6):983–92.PubMedGoogle Scholar
  151. 151.
    Usowicz MM, Gallo V, Cull-Candy SG. Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature. 1989;339(6223):380–3.PubMedGoogle Scholar
  152. 152.
    Barres BA, Chun LL, Corey DP. Ion channels in vertebrate glia. Annu Rev Neurosci. 1990;13:441–74.PubMedGoogle Scholar
  153. 153.
    Johnson JW, Ascher P. Voltage-dependent block by intracellular Mg2+ of N-methyl-d-aspartate-activated channels. Biophys J. 1990;57(5):1085–90.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Jones NG, Slater R, Cadiou H, McNaughton P, McMahon SB. Acid-induced pain and its modulation in humans. J Neurosci. 2004;24(48):10974–9.PubMedGoogle Scholar
  155. 155.
    de Weille JR, Bassilana F, Lazdunski M, Waldmann R. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett. 1998;433(3):257–60.PubMedGoogle Scholar
  156. 156.
    Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409–16. doi: 10.1136/bjsm.2008.051193.
  157. 157.
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–84.PubMedGoogle Scholar
  158. 158.
    Minoshima S, Casey KL. Cerebral responses to warmth and heat and cold pain measured by positron emission tomography. Curr Rev Pain. 1999;3(4):316–20.PubMedGoogle Scholar
  159. 159.
    Casey KL. Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci U S A. 1999;96(14):7668–74.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Casey BJ. Images in neuroscience. Brain development. XII. Maturation in brain activation. Am J Psychiatry. 1999;156(4):504.PubMedGoogle Scholar
  161. 161.
    Crofford LJ, Casey KL. Central modulation of pain perception. Rheum Dis Clin North Am. 1999;25(1):1–13.PubMedGoogle Scholar
  162. 162.
    Coghill RC, Sang CN, Maisog JM, Iadarola MJ. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol. 1999;82(4):1934–43.PubMedGoogle Scholar
  163. 163.
    Henry DE, Chiodo AE, Yang W. Central nervous system reorganization in a variety of chronic pain states: a review. PM R. 2011;3(12):1116–25.PubMedGoogle Scholar
  164. 164.
    Chen CJ, Liu HL, Wei FC, Chu NS. Functional MR imaging of the human sensorimotor cortex after toe-to-finger transplantation. AJNR Am J Neuroradiol. 2006;27(8):1617–21.PubMedGoogle Scholar
  165. 165.
    Schieber MH. Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol. 2001;86(5):2125–43.PubMedGoogle Scholar
  166. 166.
    Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve. 2001;24(8):1000–19.PubMedGoogle Scholar
  167. 167.
    Bara-Jimenez W, Catalan MJ, Hallett M, Gerloff C. Abnormal somatosensory homunculus in dystonia of the hand. Ann Neurol. 1998;44(5):828–31.PubMedGoogle Scholar
  168. 168.
    Rossini PM, Martino G, Narici L, Pasquarelli A, Peresson M, Pizzella V, et al. Short-term brain ‘plasticity’ in humans: transient finger representation changes in sensory cortex somatotopy following ischemic anesthesia. Brain Res. 1994;642(1–2):169–77.PubMedGoogle Scholar
  169. 169.
    Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16(11):1258–66.PubMedGoogle Scholar
  170. 170.
    van Wilgen CP, Konopka KH, Keizer D, Zwerver J, Dekker R. Do patients with chronic patellar tendinopathy have an altered somatosensory profile? A quantitative sensory testing (QST) study. Scand J Med Sci Sports. 2013;23:149–55.PubMedGoogle Scholar
  171. 171.
    Paavola M, Kannus P, Paakkala T, Pasanen M, Jarvinen M. Long-term prognosis of patients with achilles tendinopathy. An observational 8-year follow-up study. Am J Sports Med. 2000;28(5):634–42.PubMedGoogle Scholar
  172. 172.
    Aroen A, Helgo D, Granlund OG, Bahr R. Contralateral tendon rupture risk is increased in individuals with a previous Achilles tendon rupture. Scand J Med Sci Sports. 2004;14(1):30–3.PubMedGoogle Scholar
  173. 173.
    Miniaci A, Mascia AT, Salonen DC, Becker EJ. Magnetic resonance imaging of the shoulder in asymptomatic professional baseball pitchers. Am J Sports Med. 2002;30(1):66–73.PubMedGoogle Scholar
  174. 174.
    Andersson G, Forsgren S, Scott A, Gaida JE, Stjernfeldt JE, Lorentzon R, et al. Tenocyte hypercellularity and vascular proliferation in a rabbit model of tendinopathy: contralateral effects suggest the involvement of central neuronal mechanisms. Br J Sports Med. 2011;45(5):399–406.PubMedGoogle Scholar
  175. 175.
    Williams IF, McCullagh KG, Goodship AE, Silver IA. Studies on the pathogenesis of equine tendonitis following collagenase injury. Res Vet Sci. 1984;36(3):326–38.PubMedGoogle Scholar
  176. 176.
    Rothman DJ. The origins and consequences of patient autonomy: a 25-year retrospective. Health Care Anal. 2001;9(3):255–64.PubMedGoogle Scholar
  177. 177.
    Maffulli N, Kenward MG, Testa V, Capasso G, Regine R, King JB. Clinical diagnosis of Achilles tendinopathy with tendinosis. Clin J Sport Med. 2003;13(1):11–5.PubMedGoogle Scholar
  178. 178.
    Almekinders LC, Weinhold PS, Maffulli N. Compression etiology in tendinopathy. Clin Sports Med. 2003;22(4):703–10.PubMedGoogle Scholar
  179. 179.
    Fernandez-Carnero J, Fernandez-de-las-Penas C, Sterling M, Souvlis T, Arendt-Nielsen L, Vicenzino B. Exploration of the extent of somato-sensory impairment in patients with unilateral lateral epicondylalgia. J Pain. 2009;10(11):1179–85.PubMedGoogle Scholar
  180. 180.
    Ruiz-Ruiz B, Fernandez-de-Las-Penas C, Ortega-Santiago R, Arendt-Nielsen L, Madeleine P. Topographical pressure and thermal pain sensitivity mapping in patients with unilateral lateral epicondylalgia. J Pain. 2011;12(10):1040–8.PubMedGoogle Scholar
  181. 181.
    van Wilgen P, van der Noord R, Zwerver J. Feasibility and reliability of pain pressure threshold measurements in patellar tendinopathy. J Sci Med Sport. 2011;14(6):477–81.PubMedGoogle Scholar
  182. 182.
    Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 2012;26:3103–17.PubMedGoogle Scholar
  183. 183.
    Weng X, Smith T, Sathish J, Djouhri L. Chronic inflammatory pain is associated with increased excitability and hyperpolarization-activated current (Ih) in C- but not Adelta-nociceptors. Pain. 2012;153(4):900–14.PubMedGoogle Scholar
  184. 184.
    Guillot X, Semerano L, Decker P, Falgarone G, Boissier MC. Pain and immunity. Joint Bone Spine. 2012;79(3):228–36.PubMedGoogle Scholar
  185. 185.
    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.PubMedCentralPubMedGoogle Scholar
  186. 186.
    Padi SS, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 2008;601(1–3):79–87.PubMedGoogle Scholar
  187. 187.
    Wu LJ, Steenland HW, Kim SS, Isiegas C, Abel T, Kaang BK, et al. Enhancement of presynaptic glutamate release and persistent inflammatory pain by increasing neuronal cAMP in the anterior cingulate cortex. Mol Pain. 2008;4:40.PubMedCentralPubMedGoogle Scholar
  188. 188.
    Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br J Sports Med. 2004;38(4):511–4.PubMedGoogle Scholar
  189. 189.
    Gandevia SC. Kinesthesia: roles for afferent signals and motor commands. In: Rothwell L, Shepherd J, editors. Handbook of physiology exercise: regulation and integration of multiple systems New York: Oxford University Press; 1996. p. 128–72.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ebonie Rio
    • 1
    Email author
  • Lorimer Moseley
    • 2
  • Craig Purdam
    • 3
  • Tom Samiric
    • 4
  • Dawson Kidgell
    • 5
  • Alan J. Pearce
    • 6
  • Shapour Jaberzadeh
    • 1
  • Jill Cook
    • 1
  1. 1.Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary Health CareMonash UniversityFrankstonAustralia
  2. 2.Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideAustralia
  3. 3.Department of Physical TherapiesAustralian Institute of SportsBruceAustralia
  4. 4.School of Public Health and Human BiosciencesLa Trobe UniversityMelbourneAustralia
  5. 5.School of Exercise and Nutrition Sciences, Deakin UniversityBurwoodAustralia
  6. 6.Faculty of Health, School of PsychologyDeakin UniversityBurwoodAustralia

Personalised recommendations