Skip to main content

Do Olympic Athletes Train as in the Paleolithic Era?

Abstract

Every 4 years, approximately 10,000 athletes participate in the Olympic Games. These athletes have dedicated several years of physical training to achieve the best possible performance on a given day. Their preparation has been supported by expert coaches and an army of sport scientists, whose overall responsibility is to ensure that the athletes are in peak condition for their event. Although every athlete prepares specifically for the unique physiological challenges of their event, all athletes have one common characteristic: they are Homo sapiens. They share a unique genome, which is the result of evolutionary forces beyond their individual control. Although studies on the influence of different genetic polymorphisms on selected athletic events have been proven to be of limited utility, a body of evidence—from molecular biology to whole-body measures—suggests that training adaptations are enhanced when the stimulus closely resembles the activity pattern of human ancestors. Because genetic evolutionary changes occur slowly in Homo sapiens, and the traditional physical activity and dietary patterns of Homo sapiens have undergone rapid and dramatic changes in previous centuries, we propose that modern humans are physiologically better adapted to training modes and nutritional strategies similar to the ones that their hominid ancestors evolved on, rather than those supported by modern societies. Such an ancestral pattern was mainly characterized by the prevalence of daily bouts of prolonged, low-intensity, aerobic-based activities interspersed with periodic, short-duration, high-intensity bursts of activity. On some occasions, such activity patterns were undertaken with low carbohydrate availability. Specific activities that enhanced strength and power were typically performed after aerobic activities. We present scientific evidence to support the appropriateness of this model, and we propose that future studies should address this hypothesis in a multitude of different sporting activities, by assessing the genetic responses to and performance-based outcomes of different training stimuli. Such information would provide data on which sport scientists and coaches could better prepare athletes and manage their training process.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Koch LG, Britton SL. Aerobic metabolism underlies complexity and capacity. J Physiol. 2008;586(1):83–95.

    PubMed  Article  CAS  Google Scholar 

  2. Wood B, Harrison T. The evolutionary context of the first hominins. Nature. 2011;470(7334):347–52.

    PubMed  Article  CAS  Google Scholar 

  3. Raichlen DA, Polk JD. Linking brains and brawn: exercise and the evolution of human neurobiology. Proc Biol Sci. 2013;280(1750):20122250.

    PubMed  Article  Google Scholar 

  4. O’Keefe JH, Vogel R, Lavie CJ, et al. Achieving hunter–gatherer fitness in the 21st century: back to the future. Am J Med. 2010;123(12):1082–6.

    PubMed  Article  Google Scholar 

  5. O’Keefe JH, Vogel R, Lavie CJ, et al. Exercise like a hunter–gatherer: a prescription for organic physical fitness. Prog Cardiovasc Dis. 2011;53(6):471–9.

    PubMed  Article  Google Scholar 

  6. Booth FW, Chakravarthy MV, Spangenburg EE. Exercise and gene expression: physiological regulation of the human genome through physical activity. J Physiol. 2002;543(Pt 2):399–411.

    PubMed  Article  CAS  Google Scholar 

  7. Booth FW, Chakravarthy MV, Gordon SE, et al. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol. 2002;93(1):3–30.

    PubMed  Google Scholar 

  8. Eaton SB, Konner M, Shostak M. Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med. 1988;84(4):739–49.

    PubMed  Article  CAS  Google Scholar 

  9. Booth FW, Gordon SE, Carlson CJ, et al. Waging war on modern chronic diseases: primary prevention through exercise biology. J Appl Physiol. 2000;88(2):774–87.

    PubMed  CAS  Google Scholar 

  10. Cordain L, Gotshall RW, Eaton SB, et al. Physical activity, energy expenditure and fitness: an evolutionary perspective. Int J Sports Med. 1998;19(5):328–35.

    PubMed  Article  CAS  Google Scholar 

  11. Booth FW, Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genomics. 2007;28(2):146–57.

    PubMed  CAS  Google Scholar 

  12. Eaton SB, Strassman BI, Nesse RM, et al. Evolutionary health promotion. Prev Med. 2002;34(2):109–18.

    PubMed  Article  Google Scholar 

  13. Williams GC, Nesse RM. The dawn of Darwinian medicine. Q Rev Biol. 1991;66(1):1–22.

    PubMed  Article  CAS  Google Scholar 

  14. Lieberman DE. What we can learn about running from barefoot running: an evolutionary medical perspective. Exerc Sport Sci Rev. 2012;40(2):63–72.

    PubMed  Article  Google Scholar 

  15. Puthucheary Z, Skipworth JR, Rawal J, et al. The ACE gene and human performance: 12 years on. Sports Med. 2011;41(6):433–48.

    PubMed  Article  Google Scholar 

  16. Puthucheary Z, Skipworth JR, Rawal J, et al. Genetic influences in sport and physical performance. Sports Med. 2011;41(10):845–59.

    PubMed  Article  Google Scholar 

  17. Timmons JA, Knudsen S, Rankinen T, et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol. 2010;108(6):1487–96.

    PubMed  Article  CAS  Google Scholar 

  18. Boullosa DA, Nakamura FY, Ruiz JR. Effectiveness of polarized training for rowing performance (letter). Int J Sports Physiol Perform. 2010;5(4):431–2.

    PubMed  Google Scholar 

  19. Cordain L, Friel J. The Paleolithic athlete: the original cross trainer. In: Sands RR, Sands LR, editors. The anthropology of sport and human movement: a biocultural perspective. Lanham: Lexington Books; 2010. p. 267–76.

    Google Scholar 

  20. Kuipers RS, Joordens JC, Muskiet FA. A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res Rev. 2012;25(1):96–129.

    PubMed  Article  Google Scholar 

  21. Konner M, Eaton SB. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract. 2010;25(6):594–602.

    PubMed  Article  Google Scholar 

  22. Stiner MC. Thirty years on the “Broad Spectrum Revolution” and paleolithic demography. Proc Natl Acad Sci USA. 2001;98(13):6993–6.

    PubMed  Article  CAS  Google Scholar 

  23. Cordain L, Miller JB, Eaton SB, et al. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter–gatherer diets. Am J Clin Nutr. 2000;71(3):682–92.

    PubMed  CAS  Google Scholar 

  24. Hochachka PW. Fuels and pathways as designed systems for support of muscle work. J Exp Biol. 1985;115:149–64.

    PubMed  CAS  Google Scholar 

  25. Cerling TE, Wynn JG, Andanje SA, et al. Woody cover and hominin environments in the past 6 million years. Nature. 2011;476(7358):51–6.

    PubMed  Article  CAS  Google Scholar 

  26. Pontzer H, Raichlen DA, Wood BM, et al. Hunter–gatherer energetics and human obesity. PLos One. 2012;7(7):e40503.

    PubMed  Article  CAS  Google Scholar 

  27. Hochachka PW, Gunga HC, Kirsch K. Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance? Proc Natl Acad Sci USA. 1998;95(4):1915–20.

    PubMed  Article  CAS  Google Scholar 

  28. Dudley R. Limits to human locomotor performance: phylogenetic origins and comparative perspectives. J Exp Biol. 2001;204(Pt 18):3235–40.

    PubMed  CAS  Google Scholar 

  29. Hochachka PW, Beatty CL, Burelle Y, et al. The lactate paradox in human high-altitude physiological performance. News Physiol Sci. 2002;17:122–6.

    PubMed  CAS  Google Scholar 

  30. Hochachka PW, Rupert JL, Monge C. Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp Biochem Physiol A Mol Integr Physiol. 1999;124(1):1–17.

    PubMed  Article  CAS  Google Scholar 

  31. Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432(7015):345–52.

    PubMed  Article  CAS  Google Scholar 

  32. Lieberman DE, Raichlen DA, Pontzer H, et al. The human gluteus maximus and its role in running. J Exp Biol. 2006;209(Pt 11):2143–55.

    PubMed  Article  Google Scholar 

  33. Pontzer H, Rolian C, Rightmire GP, et al. Locomotor anatomy and biomechanics of the Dmanisi hominins. J Hum Evol. 2010;58(6):492–504.

    PubMed  Article  Google Scholar 

  34. Rolian C, Lieberman DE, Hallgrímsson B. The coevolution of human hands and feet. Evolution. 2010;64(6):1558–68.

    PubMed  Article  Google Scholar 

  35. Liebenberg L. Persistence hunting by modern hunter–gatherers. Curr Anthropol. 2006;47(6):1017–25.

    Article  Google Scholar 

  36. Lieberman DE, Bramble DM, Raichlen DA, et al. Brains, brawn, and the evolution of human endurance running capabilities. In: Grine FE, Fleagle JG, Leakey RE, editors. The first humans: origin and early evolution of the genus Homo. New York: Springer; 2009. p. 77–98.

    Chapter  Google Scholar 

  37. Kempermann G, Fabel K, Ehninger D, et al. Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci. 2010;4(189):1–9.

    Google Scholar 

  38. Hurtado A, Hawkes K, Hill K, et al. Female subsistence strategies among Ache hunter–gatherers of eastern Paraguay. Hum Ecol. 1985;13(1):1–28.

    Article  Google Scholar 

  39. Panter-Brick C. Sexual division of labor: energetic and evolutionary scenarios. Am J Hum Biol. 2002;14(5):627–40.

    PubMed  Article  Google Scholar 

  40. Van Damme R, Wilson RS, Vanhooydonck B, et al. Performance constraints in decathletes. Nature. 2002;415(6873):755–6.

    PubMed  Article  Google Scholar 

  41. Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—part II: recommendations for training. Sports Med. 2011;41(9):741–56.

    PubMed  Article  Google Scholar 

  42. Kiely J. Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242–50.

    PubMed  Google Scholar 

  43. Kiviniemi AM, Hautala AJ, Kinnunen H, et al. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743–51.

    PubMed  Article  Google Scholar 

  44. Kiviniemi AM, Hautala AJ, Kinnunen H, et al. Daily exercise prescription on the basis of HR variability among men and women. Med Sci Sports Exerc. 2010;42(7):1355–63.

    PubMed  Google Scholar 

  45. Ruuska PS, Hautala AJ, Kiviniemi AM, et al. Self-rated mental stress and exercise training response in healthy subjects. Front Physiol. 2012;3:51.

    PubMed  Article  Google Scholar 

  46. Bartholomew JB, Stults-Kolehmainen MA, Elrod CC, et al. Strength gains after resistance training: the effect of stressful, negative life events. J Strength Cond Res. 2008;22(4):1215–21.

    PubMed  Article  Google Scholar 

  47. Ruiz JR, Morán M, Arenas J, et al. Strenuous endurance exercise improves life expectancy: it’s in our genes. Br J Sports Med. 2011;45(3):159–61.

    PubMed  Article  Google Scholar 

  48. Sanchis-Gomar F, Olaso-Gonzalez G, Corella D, et al. Increased average longevity among the “Tour de France” cyclists. Int J Sports Med. 2011;32(8):644–7.

    PubMed  Article  CAS  Google Scholar 

  49. Fiuza-Luces C, Ruiz JR, Rodríguez-Romo G, et al. Are ‘endurance’ alleles ‘survival’ alleles? Insights from the ACTN3 R577X polymorphism. PLoS One. 2011;6(3):e17558.

    PubMed  Article  CAS  Google Scholar 

  50. Gómez-Gallego F, Ruiz JR, Buxens A, et al. Are elite endurance athletes genetically predisposed to lower disease risk? Physiol Genomics. 2010;41(1):82–90.

    Google Scholar 

  51. Kokkinos P, Myers J, Kokkinos JP, et al. Exercise capacity and mortality in Black and White men. Circulation. 2008;117(5):614–22.

    PubMed  Article  Google Scholar 

  52. Noakes TD. The limits of human endurance: what is the greatest endurance performance of all time? Which factors regulate performance at extreme altitude? Adv Exp Med Biol. 2007;618:255–76.

    PubMed  Article  Google Scholar 

  53. Mujika I, Chatard JC, Busso T, et al. Effects of training on performance in competitive swimming. Can J Appl Physiol. 1995;20(4):395–406.

    PubMed  Article  CAS  Google Scholar 

  54. Steinacker JM, Lormes W, Lehmann M, et al. Training of rowers before world championships. Med Sci Sports Exerc. 1998;30(7):1158–63.

    PubMed  Article  CAS  Google Scholar 

  55. Fiskerstrand A, Seiler KS. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303–10.

    PubMed  Article  CAS  Google Scholar 

  56. Esteve-Lanao J, San Juan AF, Earnest CP, et al. How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc. 2005;37(3):496–504.

    PubMed  Article  Google Scholar 

  57. Zapico AG, Calderón FJ, Benito PJ, et al. Evolution of physiological and haematological parameters with training load in elite male road cyclists: a longitudinal study. J Sports Med Phys Fitness. 2007;47(2):191–6.

    PubMed  CAS  Google Scholar 

  58. Ingham SA, Fudge BW, Pringle JS. Training distribution, physiological profile, and performance for a male international 1500-m runner. Int J Sports Physiol Perform. 2012;7(2):193–5.

    PubMed  Google Scholar 

  59. Neal CM, Hunter AM, Brennan L, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114(4):461–71.

    Google Scholar 

  60. Esteve-Lanao J, Foster C, Seiler S, et al. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21(3):943–9.

    PubMed  Google Scholar 

  61. Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl. 2):1–10.

    PubMed  Article  Google Scholar 

  62. Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(Suppl. 2):11–23.

    PubMed  Article  Google Scholar 

  63. Škof B, Strojnik V. Neuromuscular fatigue and recovery dynamics following prolonged continuous run at anaerobic threshold. Br J Sports Med. 2006;40(3):219–22.

    PubMed  Article  Google Scholar 

  64. Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39(8):1366–73.

    PubMed  Article  Google Scholar 

  65. Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469–90.

    PubMed  Article  Google Scholar 

  66. Ekkekakis P, Parfitt G, Petruzzello SJ. The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Med. 2011;41(8):641–71.

    PubMed  Article  Google Scholar 

  67. Issurin VB. Generalized training effects induced by athletic preparation: a review. J Sports Med Phys Fitness. 2009;49(4):333–45.

    PubMed  CAS  Google Scholar 

  68. Hautala A, Martinmaki K, Kiviniemi A, et al. Effects of habitual physical activity on response to endurance training. J Sports Sci. 2012;30(6):563–9.

    PubMed  Article  Google Scholar 

  69. Ross R, McGuire KA. Incidental physical activity is positively associated with cardiorespiratory fitness. Med Sci Sports Exerc. 2011;43(11):2189–94.

    PubMed  Article  Google Scholar 

  70. Bailey RC, Olson J, Pepper SL, et al. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27(7):1033–4.

    PubMed  Article  CAS  Google Scholar 

  71. Duncan JS, Badland HM, Schofield G. Combining GPS with heart rate monitoring to measure physical activity in children: a feasibility study. J Sci Med Sport. 2009;12(5):583–5.

    PubMed  Article  Google Scholar 

  72. Rampinini E, Coutts AJ, Castagna C, et al. Variation in top level soccer match performance. Int J Sports Med. 2007;28(12):1018–24.

    PubMed  Article  CAS  Google Scholar 

  73. Dogramaci SN, Watsford ML, Murphy AJ. Time-motion analysis of international and national level futsal. J Strength Cond Res. 2011;25(3):646–51.

    PubMed  Article  Google Scholar 

  74. Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60.

    PubMed  Article  CAS  Google Scholar 

  75. Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901–11.

    PubMed  Article  CAS  Google Scholar 

  76. Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000;30(6):385–94.

    PubMed  Article  CAS  Google Scholar 

  77. Paavolainen L, Häkkinen K, Rusko H. Effects of explosive type strength training on physical performance characteristics in cross-country skiers. Eur J Appl Physiol Occup Physiol. 1991;62(4):251–5.

    PubMed  Article  CAS  Google Scholar 

  78. Paavolainen L, Häkkinen K, Hämäläinen I, et al. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86(5):1527–33.

    PubMed  CAS  Google Scholar 

  79. Chtara M, Chamari K, Chaouachi M, et al. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005;39(8):555–60.

    PubMed  Article  CAS  Google Scholar 

  80. Doma K, Deakin GB. The effects of strength training and endurance training order on running-economy and -performance. Appl Physiol Nutr Metab. 2013;38(6):651–6.

    Google Scholar 

  81. Vuorimaa T, Virlander R, Kurkilahti P, et al. Acute changes in muscle activation and leg extension performance after different running exercises in elite long distance runners. Eur J Appl Physiol. 2006;96(3):282–91.

    PubMed  Article  Google Scholar 

  82. Boullosa DA, Tuimil JL, Alegre LM, et al. Concurrent fatigue and potentiation in endurance athletes. Int J Sports Physiol Perform. 2011;6(1):82–93.

    PubMed  Google Scholar 

  83. Coffey VG, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190–2.

    PubMed  CAS  Google Scholar 

  84. Coffey VG, Pilegaard H, Garnham AP, et al. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol. 2009;106(4):1187–97.

    PubMed  Article  CAS  Google Scholar 

  85. Wilkinson SB, Phillips SM, Atherton PJ, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(Pt 15):3701–17.

    PubMed  Article  CAS  Google Scholar 

  86. Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, et al. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc. 2012;44(9):1680–8.

    PubMed  Article  CAS  Google Scholar 

  87. Chakravarthy MV, Booth FW. Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol. 2004;96(1):3–10.

    PubMed  Article  Google Scholar 

  88. Pilegaard H, Saltin B, Neufer PD. Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes. 2003;52(3):657–62.

    PubMed  Article  CAS  Google Scholar 

  89. Hansen AK, Fischer CP, Plomgaard P, et al. Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol. 2005;98(1):93–9.

    PubMed  Article  Google Scholar 

  90. Yeo WK, Paton CD, Garnham AP, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105(5):1462–70.

    PubMed  Article  CAS  Google Scholar 

  91. Baar K, McGee S. Optimizing training adaptations by manipulating glycogen. Eur J Sport Sci. 2008;8(2):97–106.

    Article  Google Scholar 

  92. Hawley JA, Tipton KD, Millard-Stafford ML. Promoting training adaptations through nutritional interventions. J Sports Sci. 2006;24(7):709–21.

    PubMed  Article  Google Scholar 

  93. Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20(Suppl. 2):48–58.

    PubMed  Article  Google Scholar 

  94. Ehlert T, Simon P, Moser DA. Epigenetics in sports. Sports Med. 2013;43(2):93–110.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor John A. Hawley (School of Medical Sciences, RMIT University, Melbourne, VIC, Australia) for his valuable editorial comments and suggestions, and Dr. Fábio Yuzo Nakamura (Department of Physical Education, Universidade Estadual de Londrina, Londrina, Paraná, Brazil) for his nice contributions to an earlier version of the manuscript. No funding was used in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Boullosa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boullosa, D.A., Abreu, L., Varela-Sanz, A. et al. Do Olympic Athletes Train as in the Paleolithic Era?. Sports Med 43, 909–917 (2013). https://doi.org/10.1007/s40279-013-0086-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0086-1

Keywords

  • Resistance Exercise
  • Aerobic Exercise
  • Endurance Athlete
  • Training Stimulus
  • Lactate Threshold