The Use of Carbohydrates During Exercise as an Ergogenic Aid

Abstract

Carbohydrate and fat are the two primary fuel sources oxidized by skeletal muscle tissue during prolonged (endurance-type) exercise. The relative contribution of these fuel sources largely depends on the exercise intensity and duration, with a greater contribution from carbohydrate as exercise intensity is increased. Consequently, endurance performance and endurance capacity are largely dictated by endogenous carbohydrate availability. As such, improving carbohydrate availability during prolonged exercise through carbohydrate ingestion has dominated the field of sports nutrition research. As a result, it has been well-established that carbohydrate ingestion during prolonged (>2 h) moderate-to-high intensity exercise can significantly improve endurance performance. Although the precise mechanism(s) responsible for the ergogenic effects are still unclear, they are likely related to the sparing of skeletal muscle glycogen, prevention of liver glycogen depletion and subsequent development of hypoglycemia, and/or allowing high rates of carbohydrate oxidation. Currently, for prolonged exercise lasting 2–3 h, athletes are advised to ingest carbohydrates at a rate of 60 g·h−1 (~1.0–1.1 g·min−1) to allow for maximal exogenous glucose oxidation rates. However, well-trained endurance athletes competing longer than 2.5 h can metabolize carbohydrate up to 90 g·h−1 (~1.5–1.8 g·min−1) provided that multiple transportable carbohydrates are ingested (e.g. 1.2 g·min−1 glucose plus 0.6 g·min−1 of fructose). Surprisingly, small amounts of carbohydrate ingestion during exercise may also enhance the performance of shorter (45–60 min), more intense (>75 % peak oxygen uptake; VO2peak) exercise bouts, despite the fact that endogenous carbohydrate stores are unlikely to be limiting. The mechanism(s) responsible for such ergogenic properties of carbohydrate ingestion during short, more intense exercise bouts has been suggested to reside in the central nervous system. Carbohydrate ingestion during exercise also benefits athletes involved in intermittent/team sports. These athletes are advised to follow similar carbohydrate feeding strategies as the endurance athletes, but need to modify exogenous carbohydrate intake based upon the intensity and duration of the game and the available endogenous carbohydrate stores. Ample carbohydrate intake is also important for those athletes who need to compete twice within 24 h, when rapid repletion of endogenous glycogen stores is required to prevent a decline in performance. To support rapid post-exercise glycogen repletion, large amounts of exogenous carbohydrate (1.2 g·kg−1·h−1) should be provided during the acute recovery phase from exhaustive exercise. For those athletes with a lower gastrointestinal threshold for carbohydrate ingestion immediately post-exercise, and/or to support muscle re-conditioning, co-ingesting a small amount of protein (0.2–0.4 g·kg−1·h−1) with less carbohydrate (0.8 g·kg−1·h−1) may provide a feasible option to achieve similar muscle glycogen repletion rates.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Romijn J, Coyle E, Sidossis L, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:E380–91.

    CAS  PubMed  Google Scholar 

  2. 2.

    van Loon L, Greenhaff P, Constantin-Teodosiu D, et al. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295–304.

    PubMed  Google Scholar 

  3. 3.

    van Loon L, Jeukendrup A, Saris W, et al. Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J Appl Physiol. 1999;87(4):1413–20.

    PubMed  Google Scholar 

  4. 4.

    McArdle W, Katch F, Katch V. Carbohydrates, lipids, and proteins. In: Darcy P, editor. Exercise physiology. Baltimore Lippincott Williams & Wilkins; 2001. p. 11–3.

  5. 5.

    Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25(1):7–23.

    CAS  PubMed  Google Scholar 

  6. 6.

    Bergstrom J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19:218–28.

    CAS  PubMed  Google Scholar 

  7. 7.

    Jeukendrup A. Carbohydrate intake during exercise and performance. Nutrition. 2004;20:669–77.

    CAS  PubMed  Google Scholar 

  8. 8.

    Krogh A, Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy. Biochem J. 1920;14(3–4):290–363.

    CAS  PubMed  Google Scholar 

  9. 9.

    Levine S, Gordon B, Derick C. Some changes in chemical constituents of blood following a marathon race. JAMA. 1924;82:1778.

    CAS  Google Scholar 

  10. 10.

    Gordon B, Kohn L, Levine S, et al. Sugar content of the blood in runners following a marathon race with especial reference to the prevention of hypoglyemia: further observations. JAMA. 1925;85(7):508–9.

    CAS  Google Scholar 

  11. 11.

    Christensen E. Der Stoffwechsel und die Respiratorischen Funktionen bei schwerer korperlicher Arbeit. Scand Arch Physiol. 1932;81:160–71.

    Google Scholar 

  12. 12.

    Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized in muscle cells in man. Nature. 1966;210(5033):309–10.

    CAS  PubMed  Google Scholar 

  13. 13.

    Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–50.

    CAS  PubMed  Google Scholar 

  14. 14.

    Hawley J, Schabort E, Noakes T, et al. Carbohydrate-loading and exercise performance. An update. Sports Med. 1997;24(2):73–81.

    CAS  PubMed  Google Scholar 

  15. 15.

    Bonen A, Malcolm S, Kilgour R, et al. Glucose ingestion before and during intense exercise. J Appl Physiol. 1981;50(4):766–71.

    CAS  PubMed  Google Scholar 

  16. 16.

    Felig P, Cherif A, Minagawa A, et al. Hypolgycemia during prolonged exercise in normal men. N Engl J Med. 1982;306(15):395–900.

    Google Scholar 

  17. 17.

    Ivy J, Costill D, Fink W, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports Exerc. 1979;11(1):6–11.

    CAS  Google Scholar 

  18. 18.

    Coyle E, Coggan A, Hemert M, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.

    CAS  PubMed  Google Scholar 

  19. 19.

    Coyle E, Hagberg J, Hurley B, et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol. 1983;55:230–5.

    CAS  PubMed  Google Scholar 

  20. 20.

    Fielding R, Costill D, Fink W, et al. Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc. 1985;17(4):472–6.

    CAS  PubMed  Google Scholar 

  21. 21.

    Hargreaves M, Costill D, Coggan A, et al. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med Sci Sports Exerc. 1984;16(3):219–22.

    CAS  PubMed  Google Scholar 

  22. 22.

    Ivy J, Miller W, Dover V, et al. Endurance improved by ingestion of a glucose polymer supplement. Med Sci Sports Exerc. 1983;15(6):466–71.

    CAS  PubMed  Google Scholar 

  23. 23.

    Mitchell J, Costill D, Houmard J, et al. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc. 1988;20(2):110–5.

    CAS  PubMed  Google Scholar 

  24. 24.

    Neufer P, Costill D, Flynn M, et al. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62(3):983–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    Bjorkman O, Sahlin K, Hagenfeldt L, et al. Influence of glucose and fructose ingestion on the capacity for long-term exercise in well-trained men. Clin Physiol. 1984;4:483–94.

    CAS  PubMed  Google Scholar 

  26. 26.

    Coggan A, Coyle E. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63(6):2388–95.

    CAS  PubMed  Google Scholar 

  27. 27.

    Angus D, Hargreaves M, Dancey J, et al. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000;88(1):113–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    Tsintzas O, Williams C, Boobis L, et al. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol. 1996;81(2):801–9.

    CAS  PubMed  Google Scholar 

  29. 29.

    Maughan R, Bethell L, Leiper J. Effects of ingested fluids on exercise capacity and on cardiovascular and metabolic responses to prolonged exercise in man. Exp Physiol. 1996;81(5):847–59.

    CAS  PubMed  Google Scholar 

  30. 30.

    Langenfeld M, Seifert J, Rudge S, et al. Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. J Sports Med Phys Fitness. 1994;34(3):263–70.

    CAS  PubMed  Google Scholar 

  31. 31.

    Tsintzas K, Liu R, Williams C, et al. The effect of carbohydrate ingestion on performance during a 30-km race. Int J Sport Nutr. 1993;3(2):127–39.

    CAS  PubMed  Google Scholar 

  32. 32.

    Wright D, Sherman W, Dernbach A. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71(3):1082–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Murray R, Eddy D, Murray T, et al. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.

    CAS  PubMed  Google Scholar 

  34. 34.

    Vandenbogaerde T, Hopkins W. Effects of acute carbohydrate supplementation on endurance performance. Sports Med. 2011;41(9):773–92.

    PubMed  Google Scholar 

  35. 35.

    Hulston C, Jeukendrup A. No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009;19(3):275–84.

    CAS  PubMed  Google Scholar 

  36. 36.

    Tsintzas O, Williams C, Boobis L, et al. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol. 1995;489(Pt 1):243–50.

    CAS  PubMed  Google Scholar 

  37. 37.

    Tsintzas O, Williams C, Constantin-Teodosiu D, et al. Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: effect of carbohydrate ingestion. J Physiol. 2001;15(537):305–11.

    Google Scholar 

  38. 38.

    Stellingwerff T, Boon H, Gijsen AP, et al. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflugers Arch. 2007;454(4):635–47.

    CAS  PubMed  Google Scholar 

  39. 39.

    Erickson M, Schwartzkopf R, McKenzie R. Effects of caffeine, fructose and glucose ingestion on muscle glycogen utilization during exercise. Med Sci Sports Exerc. 1987;19:579–83.

    CAS  PubMed  Google Scholar 

  40. 40.

    Flynn M, Costill D, Hawley J, et al. Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med Sci Sports Exerc. 1987;19(1):37–40.

    CAS  PubMed  Google Scholar 

  41. 41.

    Mitchell J, Costill D, Houmard J, et al. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol. 1989;67(5):1843–9.

    CAS  PubMed  Google Scholar 

  42. 42.

    Hargreaves M, Briggs C. Effect of carbohydrate ingestion on exercise metabolism. J Appl Physiol. 1988;65(4):1553–5.

    CAS  PubMed  Google Scholar 

  43. 43.

    Gollnick P, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.

    CAS  PubMed  Google Scholar 

  44. 44.

    Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.

    CAS  PubMed  Google Scholar 

  45. 45.

    Bosch A, Dennis S, Noakes T. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76:2364–72.

    CAS  PubMed  Google Scholar 

  46. 46.

    Jeukendrup A, Raben A, Gijsen A, et al. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol. 1999;515(Prt 2):579–89.

    Google Scholar 

  47. 47.

    Howlett K, Angus D, Proietto J, et al. Effect of increased blood glucose availability on glucose kinetics during exercise. J Appl Physiol. 1998;84(4):1413–7.

    CAS  PubMed  Google Scholar 

  48. 48.

    Claassen A, Lambert E, Bosch A, et al. Variability in exercise capacity and metabolic response during endurance exercise after a low carbohydrate diet. Int J Sport Nutr Exerc Metab. 2005;15(2):97–116.

    CAS  PubMed  Google Scholar 

  49. 49.

    Jeukendrup A. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. 2010;13:452–7.

    CAS  PubMed  Google Scholar 

  50. 50.

    Jeukendrup A, Jentjiens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29:407–24.

    CAS  PubMed  Google Scholar 

  51. 51.

    Burelle Y, Lamoureux M, Peronnet F, et al. Comparison of exogenous glucose, fructose and galactose oxidation during exercise using 13C-labeling. Br J Nutr. 2006;96(1):56–61.

    CAS  PubMed  Google Scholar 

  52. 52.

    Leijssen D, Saris W, Jeukendrup A, et al. Oxidation of exogenous [13C]glucose during exercise. J Appl Physiol. 1995;79(3):720–5.

    CAS  PubMed  Google Scholar 

  53. 53.

    Rowlands D, Wallis G, Shaw C, et al. Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation. Med Sci Sports Exerc. 2005;37(9):1510–6.

    CAS  PubMed  Google Scholar 

  54. 54.

    Sawka M, Burke L, Eichnet E, et al. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.

    PubMed  Google Scholar 

  55. 55.

    Rodriguez N, Di Marco N, Langley S. American College of Sports Medicine position stand: nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.

    PubMed  Google Scholar 

  56. 56.

    Pfeiffer B, Stellingwerff T, Hodgson A, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344–51.

    CAS  PubMed  Google Scholar 

  57. 57.

    Smith J, Pascoe D, Passe D, et al. Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 2013;45(2):336–41.

    CAS  PubMed  Google Scholar 

  58. 58.

    Smith J, Zachwieja J, Peronnet F, et al. Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response. J Appl Physiol. 2010;108(6):1520–9.

    CAS  PubMed  Google Scholar 

  59. 59.

    Hulston C, Wallis G, Jeukendrup A. Exogenous CHO oxidation with glucose plus fructose intake during exercise. Med Sci Sports Exerc. 2009;41:357–63.

    CAS  PubMed  Google Scholar 

  60. 60.

    Jentjens R, Achten J, Jeukendrup A. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36:1551–8.

    CAS  PubMed  Google Scholar 

  61. 61.

    Jentjens R, Jeukendrup A. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br J Nutr. 2005;93(4):485–92.

    CAS  PubMed  Google Scholar 

  62. 62.

    Jentjens R, Moseley L, Waring R, et al. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96(4):1277–84.

    CAS  PubMed  Google Scholar 

  63. 63.

    Jentjens R, Shaw C, Birtles T, et al. Oxidation of combined ingestion of glucose and sucrose during exercise. Metabolism. 2005;54(5):610–8.

    CAS  PubMed  Google Scholar 

  64. 64.

    Jentjens R, Underwood K, Achten J, et al. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.

    CAS  PubMed  Google Scholar 

  65. 65.

    Jentjens R, Venables M, Jeukendrup A. Oxidation of exogenous glucose, sucrose and maltose during prolonged cycling execise. J Appl Physiol. 2004;96:1285–91.

    CAS  PubMed  Google Scholar 

  66. 66.

    Jeukendrup A, Moseley L, Mainwaring G, et al. Exogenous carbohydrate oxidation during ultra endurance exercise. J Appl Physiol. 2006;100(4):1134–41.

    CAS  PubMed  Google Scholar 

  67. 67.

    Rowlands DS, Thorburn MS, Thorp RM, et al. Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 2008;104(6):1709–19.

    CAS  PubMed  Google Scholar 

  68. 68.

    Currell K, Jeukendrup A. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40:275–81.

    CAS  PubMed  Google Scholar 

  69. 69.

    Jeukendrup A. Carbohydrate feeding during exercise. Eur J Sport Sci. 2008;8:77–86.

    Google Scholar 

  70. 70.

    Kellett G. The facilitated component of intestinal glucose absorption. J Physiol. 2001;531:585–95.

    CAS  PubMed  Google Scholar 

  71. 71.

    Ferraris R, Diamond J. Regulation of intestinal sugar transport. Physiol Rev. 1997;77(1):257–302.

    CAS  PubMed  Google Scholar 

  72. 72.

    Janssen G, Kuipers H, Willems G, et al. Plasma activity of muscle enzymes: quantification of skeletal muscle damage and relationship with metabolic variables. Int J Sports Med. 1989;10(Suppl 3):S160–8.

    PubMed  Google Scholar 

  73. 73.

    Wallis G, Rowlands D, Shaw C, et al. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37(3):426–32.

    CAS  PubMed  Google Scholar 

  74. 74.

    Rowlands D, Swift M, Ros M, et al. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012;37(3):425–36.

    CAS  PubMed  Google Scholar 

  75. 75.

    O’Brien W, Rowlands D. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 2011;300(1):G181–9.

    PubMed  Google Scholar 

  76. 76.

    Cox G, Clark S, Cox A, et al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126–34.

    CAS  PubMed  Google Scholar 

  77. 77.

    Pfeiffer B, Stellingwerff T, Zaltas E, et al. Oxidation of solid versus liquid carbohydrate sources during exercise. Med Sci Sports Exerc. 2010;42(11):2030–7.

    CAS  PubMed  Google Scholar 

  78. 78.

    Pfeiffer B, Stellingwerff T, Zaltas E, et al. Carbohydrate oxidation from a carbohydrate gel compared to a drink during exercise. Med Sci Sports Exerc. 2010;42(11):2038–45.

    CAS  PubMed  Google Scholar 

  79. 79.

    Murdoch S, Bazzarre T, Snider I, et al. Differences in the effects of carbohydrate food form on endurance performance to exhaustion. Int J Sport Nutr. 1993;3(1):41–54.

    CAS  PubMed  Google Scholar 

  80. 80.

    Lugo M, Sherman W, Wimer G, et al. Metabolic responses when different forms of carbohydrate energy are consumed during cycling. Int J Sport Nutr. 1993;3(4):398–407.

    CAS  PubMed  Google Scholar 

  81. 81.

    Neufer P, Costill D, Fink W, et al. Effects of exercise and carbohydrate composition on gastric emptying. Med Sci Sports Exerc. 1986;18(6):658–62.

    CAS  PubMed  Google Scholar 

  82. 82.

    Carter J, Jeukendrup A, Mundel T, et al. Carbohydrate supplementation improves moderate and high-intensity exercise in the heat. Pflugers Arch. 2003;446(2):211–9.

    CAS  PubMed  Google Scholar 

  83. 83.

    Jeukendrup A, Brouns F, Wagenmakers A, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18(2):25–9.

    Google Scholar 

  84. 84.

    Below P, Mora-Rodríguez R, González-Alonso J, et al. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc. 1995;27(2):200–10.

    CAS  PubMed  Google Scholar 

  85. 85.

    el-Sayed M, Balmer J, Rattu A. Carbohydrate ingestion improves endurance performance during a 1 h simulated time trial. J Sports Sci. 1997;15(2):223–30.

    Google Scholar 

  86. 86.

    Anantaraman R, Carmines A, Gaesser G, et al. Effects of carbohydrate supplementation on performance during 1 h of high intensity exercise. Int J Sports Med. 1995;16(7):461–5.

    CAS  PubMed  Google Scholar 

  87. 87.

    Carter J, Jeukendrup A, Mann C, et al. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36(9):1543–50.

    PubMed  Google Scholar 

  88. 88.

    Carter J, Jeukendrup A, Mann C, et al. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36(9):1543–50.

    PubMed  Google Scholar 

  89. 89.

    Gant N, Stinear C, Byblow W. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010;1350:151–8.

    CAS  PubMed  Google Scholar 

  90. 90.

    Maresch C, Herrera-Soto J, Armstrong L, et al. Perceptual responses in the heat after brief intravenous versus oral rehydration. Med Sci Sports Exerc. 2001;33(6):1039–45.

    Google Scholar 

  91. 91.

    Riebe D, Maresch C, Armstrong L. Effects of oral and intravenous rehydration on ratings of perceived exertion and thirst. Med Sci Sports Exerc. 1997;29(1):117–24.

    CAS  PubMed  Google Scholar 

  92. 92.

    Beelen M, Berghuis J, Bonaparte B, et al. Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance. Int J Sport Nutr Exerc Metab. 2009;19:400–9.

    CAS  PubMed  Google Scholar 

  93. 93.

    Chambers E, Bridge M, Jones D. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;578(8):1779–94.

    Google Scholar 

  94. 94.

    Fares E, Kayser B. Carbohydrate mouth rinse effects on exercise capacity in pre and postprandial states. J Nutr Metab. 2011;385962.

  95. 95.

    Pottier A, Bouckaert J, Gilis W, et al. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports. 2010;20(1):105–11.

    CAS  PubMed  Google Scholar 

  96. 96.

    Rollo I, Cole M, Miller R, et al. The influence of mouth-rinsing a carbohydrate solution on 1 hour running performance. Med Sci Sports Exerc. 2010;42(4):798–804.

    CAS  PubMed  Google Scholar 

  97. 97.

    Whitham M, McKinney J. Effect of a carbohydrate mouthwash on running time-trial performance. J Sports Sci. 2007;25(12):1385–92.

    PubMed  Google Scholar 

  98. 98.

    Rollo I, Williams C, Nevill M. Influence of ingesting versus mouth rinsing a carbohydrate solution during a 1-h run. Med Sci Sports Exerc. 2011;43(3):468–75.

    PubMed  Google Scholar 

  99. 99.

    Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage. 2009;44(3):1008–21.

    PubMed  Google Scholar 

  100. 100.

    Frank G, Oberndorfer T, Simmons A, et al. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage. 2008;39(4):1559–69.

    PubMed  Google Scholar 

  101. 101.

    Lane S, Bird S, Burke L, et al. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl Physiol Nutr Metab. 2013;28(2):134–9.

    Google Scholar 

  102. 102.

    Gam S, Guelfi K, Fournier P. Opposition of carbohydrate in a mouth-rinse solution to the detrimental effect of mouth rinsing during cycling time trials. Int J Sport Nutr Exerc Metab. 2013;23(1):48–56.

    Google Scholar 

  103. 103.

    Clark V, Hopkins W, Hawley J, et al. Placebo effect of carbohydrate feedings during a 40-km cycling time trial. Med Sci Sports Exerc. 2000;32(9):1642–7.

    CAS  PubMed  Google Scholar 

  104. 104.

    Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.

    PubMed  Google Scholar 

  105. 105.

    Jeukendrup A, Chambers E. Oral carbohydrate sensing and exercise performance. Curr Opin Clin Nutr Metab Care. 2010;13(4):447–51.

    CAS  PubMed  Google Scholar 

  106. 106.

    Bangsbo J. The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol Scand. 1994;619(Suppl):1–155.

    Google Scholar 

  107. 107.

    Balsom P, Wood K, Olsson P, et al. Carbohydrate intake and multiple sprint sports: with special reference to football (soccer). Int J Sports Med. 1999;20(1):48–52.

    CAS  PubMed  Google Scholar 

  108. 108.

    Coggan A, Coyle E. Effect of carbohydrate feedings during high-intensity exercise. J Appl Physiol. 1988;65(4):1703–9.

    CAS  PubMed  Google Scholar 

  109. 109.

    Nicholas C, Nuttall F, Williams C. The Loughborough Intermittent Shuttle Test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97–104.

    CAS  PubMed  Google Scholar 

  110. 110.

    Nicholas CW, Williams C, Lakomy HK, Phillips G, Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J Sports Sci. 1995;13(4):283–90.

    CAS  PubMed  Google Scholar 

  111. 111.

    Davis J, Jackson D, Broadwell M, et al. Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and women. Int J Sport Nutr. 1997;7(4):261–73.

    CAS  PubMed  Google Scholar 

  112. 112.

    Davis J, Welsh R, Alerson N. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. Int J Sport Nutr Exerc Metab. 2000;10(4):476–85.

    CAS  PubMed  Google Scholar 

  113. 113.

    Davis J, Welsh R, De Volve K, et al. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int J Sports Med. 1999;20(5):309–14.

    CAS  PubMed  Google Scholar 

  114. 114.

    Nicholas C, Tsintzas K, Boobis L, et al. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med Sci Sports Exerc. 1999;31(9):1280–6.

    CAS  PubMed  Google Scholar 

  115. 115.

    Welsh R, Davis J, Burke J, et al. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc. 2002;34(4):723–31.

    PubMed  Google Scholar 

  116. 116.

    Patterson S, Gray S. Carbohydrate-gel supplementation and endurance performance during intermittent high-intensity shuttle running. Int J Sport Nutr Exerc Metab. 2007;17(5):445–555.

    CAS  PubMed  Google Scholar 

  117. 117.

    Foskett A, Williams C, Boobis L, et al. Carbohydrate availability and muscle energy metabolism during intermittent running. Med Sci Sports Exerc. 2008;40(1):96–103.

    CAS  PubMed  Google Scholar 

  118. 118.

    Davison G, McClean C, Brown J, et al. The effects of ingesting a carbohydrate-electrolyte beverage 15 minutes prior to high-intensity exercise performance. Res Sports Med. 2008;16(3):155–66.

    CAS  PubMed  Google Scholar 

  119. 119.

    Leatt P, Jacobs I. Effect of glucose polymer ingestion on glycogen depletion during a soccer match. Can J Sport Sci. 1989;14(2):112–6.

    CAS  PubMed  Google Scholar 

  120. 120.

    Carling C, Bloomfield J, Nelsen L, et al. The role of motion analysis in elite soccer: contemporary performance measurement techniques and work rate data. Sports Med. 2008;38(10):839–62.

    PubMed  Google Scholar 

  121. 121.

    Winnick J, Davis J, Welsh R, et al. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc. 2005;37(2):306–15.

    CAS  PubMed  Google Scholar 

  122. 122.

    Ali A, Williams C, Nicholas C, et al. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc. 2007;39(11):1969–76.

    CAS  PubMed  Google Scholar 

  123. 123.

    Utter A, Kang J, Nieman D, et al. Carbohydrate attenuates perceived exertion during intermittent exercise and recovery. Med Sci Sports Exerc. 2007;39(5):880–5.

    CAS  PubMed  Google Scholar 

  124. 124.

    Russell M, Benton D, Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J Sci Med Sport. 2012;15:348–54.

    PubMed  Google Scholar 

  125. 125.

    Currell K, Conway S, Jeukendrup A. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int J Sport Nutr Exerc Metab. 2009;19(1):34–46.

    PubMed  Google Scholar 

  126. 126.

    Vergauwen L, Brouns F, Hespel P. Carbohydrate supplementation improves stroke performance in tennis. Med Sci Sports Exerc. 1998;30(8):1289–95.

    CAS  PubMed  Google Scholar 

  127. 127.

    Clarke N, Drust B, MacLaren D, et al. Strategies for hydration and energy provision during soccer-specific exercise. Int J Sport Nutr Exerc Metab. 2005;15(6):625–40.

    CAS  PubMed  Google Scholar 

  128. 128.

    Clarke N, Drust B, Maclaren D, et al. Fluid provision and metabolic responses to soccer-specific exercise. Eur J Appl Physiol. 2008;104(6):1069–77.

    CAS  PubMed  Google Scholar 

  129. 129.

    Leiper J, Prentice A, Wrightson C, et al. Gastric emptying of a carbohydrate-electrolyte drink during a soccer match. Med Sci Sports Exerc. 2001;33(11):1932–8.

    CAS  PubMed  Google Scholar 

  130. 130.

    Burke L, Cox G. The complete guide to food for sports performance. 3rd ed. Sydney: Allen and Unwin; 2010.

    Google Scholar 

  131. 131.

    Mujika I, Burke L. Nutrition in Team Sports. Ann Nutr Metab. 2010;57(suppl 2):26–35.

    Google Scholar 

  132. 132.

    Leiper J, Broad N, Maughan R. Effect of intermittent high-intensity exercise on gastric emptying in man. Med Sci Sports Exerc. 2001;33(8):1270.

    CAS  PubMed  Google Scholar 

  133. 133.

    Bosch A, Weltan S, Dennis S, et al. Fuel substrate turnover and oxidation and glycogen sparing with carbohdyrate ingestion in non-carbohydrate-loaded cyclists. Pflugers Arch. 1996;432(6):1003–10.

    CAS  PubMed  Google Scholar 

  134. 134.

    Costill D, Sherman W, Fink W, et al. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr. 1981;34(9):1831–6.

    CAS  PubMed  Google Scholar 

  135. 135.

    Casey A, Short A, Hultman E, et al. Glycogen resynthesis in human muscle fibre types following exercise-induced glycogen depletion. J Physiol. 1995;483(1):265–71.

    CAS  PubMed  Google Scholar 

  136. 136.

    Keizer H, Kuipers H, van Kranenburg G. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1987;8:99–104.

    CAS  PubMed  Google Scholar 

  137. 137.

    Kochan R, Lamb D, Lutz S, et al. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise. Am J Physiol. 1979;236(6):E660–6.

    CAS  PubMed  Google Scholar 

  138. 138.

    Parkin J, Carey M, Martin I, et al. Muscle glycogen storage following prolonged exercise: effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc. 1997;29(2):220–4.

    CAS  PubMed  Google Scholar 

  139. 139.

    Nilsson L, Hultman E. Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest. 1974;33(1):5–10.

    CAS  PubMed  Google Scholar 

  140. 140.

    Décombaz J, Jentjens R, Ith M, et al. Fructose and galactose enhance post-exercise human liver glycogen synthesis. Med Sci Sports Exerc. 2011;43:1964–1971.

    Google Scholar 

  141. 141.

    Casey A, Mann R, Banister K, et al. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle measured by 13C MRS. Am J Physiol Endocrinol Metab. 2000;278(1):E65–75.

    CAS  PubMed  Google Scholar 

  142. 142.

    Moriarty K, McIntyre D, Bingham K, et al. Glycogen resynthesis in liver and muscle after exercise: measurement of teh rate of resyntehsis by 13C magnetic resonance spectroscopy. MAGMA. 1994;2(3):429–32.

    CAS  Google Scholar 

  143. 143.

    Conlee R, Lawler R, Ross P. Effects of glucose or fructose feeding on glycogen repletion in muscle and liver after exercise or fasting. Ann Nutr Metab. 1987;31(2):126–32.

    CAS  PubMed  Google Scholar 

  144. 144.

    McGuinness O, Cherrington A. Effects of fructose on hepatic glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):441–8.

    CAS  PubMed  Google Scholar 

  145. 145.

    Blom P, Hostmark A, Vaage O, et al. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987;19(5):491–6.

    CAS  PubMed  Google Scholar 

  146. 146.

    Ivy J, Lee M, Brozinick J, et al. Muscle glycogen storage after different amounts of carbohydrate ingestion. J Appl Physiol. 1988;65(5):2018–23.

    CAS  PubMed  Google Scholar 

  147. 147.

    van Loon L, Saris W, Kruijshoop M, et al. Maximizing postexercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.

    PubMed  Google Scholar 

  148. 148.

    Ivy J. Glycogen resynthesis after exercise: effect of carbohydrate intake. Int J Sports Med. 1988;19:142–5.

    Google Scholar 

  149. 149.

    Goodyear L, Hirshman M, King P, et al. Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J Appl Physiol. 1990;68(1):193–8.

    CAS  PubMed  Google Scholar 

  150. 150.

    Ivy J, Katz A, Cutler C, et al. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64(4):1480–5.

    CAS  PubMed  Google Scholar 

  151. 151.

    Jentjens R, van Loon L, Mann C, et al. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91(2):839–46.

    CAS  PubMed  Google Scholar 

  152. 152.

    van Hall G, Shirreffs S, Calbet J. Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. J Appl Physiol. 2000;88(5):1631–6.

    PubMed  Google Scholar 

  153. 153.

    Piehl Aulin K, Söderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81(4):346–51.

    Google Scholar 

  154. 154.

    Howarth KR, Moreau NA, Phillips SM, et al. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106(4):1394–402.

    CAS  PubMed  Google Scholar 

  155. 155.

    van Loon L, Kruijshoop M, Verhagen H, et al. Ingestion of protein hydrolysate and amino acid–carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr. 2000;130(10):2508–13.

    PubMed  Google Scholar 

  156. 156.

    van Loon L, Saris W, Verhagen H, et al. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.

    PubMed  Google Scholar 

  157. 157.

    Rabinowitz D, Merimee T, Maffezzoli R, et al. Patterns of hormonal release after glucose, protein, and glucose plus protein. Lancet. 1966;2(7461):454–6.

    CAS  PubMed  Google Scholar 

  158. 158.

    Cartee G, Young D, Sleeper M, et al. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol. 1989;256:494–9.

    Google Scholar 

  159. 159.

    Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.

    PubMed  Google Scholar 

  160. 160.

    Wallberg-Henriksson H, Constable S, Young D, et al. Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J Appl Physiol. 1988;65(2):909–13.

    CAS  PubMed  Google Scholar 

  161. 161.

    Berardi J, Price T, Noreen E, et al. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006;38(6):1106–13.

    CAS  PubMed  Google Scholar 

  162. 162.

    Ivy J, Goforth H, Damon B, et al. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93:1337–44.

    CAS  PubMed  Google Scholar 

  163. 163.

    Zawadzki K, Yaspelkis B, Ivy J. Carbohydrate–protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.

    CAS  PubMed  Google Scholar 

  164. 164.

    Beelen M, van Kranenburg J, Senden J, et al. Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc. 2012;44(4):692–700.

    CAS  PubMed  Google Scholar 

  165. 165.

    Reed M, Brozinick J, Lee M, et al. Muscle glycogen storage postexercise: effect of mode of carbohydrate administration. J Appl Physiol. 1989;88(2):386–92.

    Google Scholar 

  166. 166.

    Van Den Bergh A, Houtman S, Heerschap A, et al. Muscle glycogen recovery after exercise during glucose and fructose intake monitored by 13C-NMR. J Appl Physiol. 1996;81(4):1495–500.

    Google Scholar 

  167. 167.

    Fujisawa T, Mulligan K, Wada L, et al. The effect of exercise on fructose absorption. Am J Clin Nutr. 1993;58(1):75–9.

    CAS  PubMed  Google Scholar 

  168. 168.

    Henry R, Crapo P, Thorburn A. Current issues in fructose metabolism. Annu Rev Nutr. 1991;11:21–9.

    CAS  PubMed  Google Scholar 

  169. 169.

    Mayes P. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58:754S–65S.

    CAS  PubMed  Google Scholar 

  170. 170.

    Wallis G, Hulston C, Mann C, et al. Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion. Med Sci Sports Exerc. 2008;40(10):1789–94.

    CAS  PubMed  Google Scholar 

  171. 171.

    Jeukendrup A. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29(Suppl 1):S91–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to prepare this manuscript. The authors have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luc J. C. van Loon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cermak, N.M., van Loon, L.J.C. The Use of Carbohydrates During Exercise as an Ergogenic Aid. Sports Med 43, 1139–1155 (2013). https://doi.org/10.1007/s40279-013-0079-0

Download citation

Keywords

  • Muscle Glycogen
  • Carbohydrate Ingestion
  • Prolonged Exercise
  • Carbohydrate Solution
  • Carbohydrate Feeding