Skip to main content

Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring

Abstract

The measurement of heart rate variability (HRV) is often considered a convenient non-invasive assessment tool for monitoring individual adaptation to training. Decreases and increases in vagal-derived indices of HRV have been suggested to indicate negative and positive adaptations, respectively, to endurance training regimens. However, much of the research in this area has involved recreational and well-trained athletes, with the small number of studies conducted in elite athletes revealing equivocal outcomes. For example, in elite athletes, studies have revealed both increases and decreases in HRV to be associated with negative adaptation. Additionally, signs of positive adaptation, such as increases in cardiorespiratory fitness, have been observed with atypical concomitant decreases in HRV. As such, practical ways by which HRV can be used to monitor training status in elites are yet to be established. This article addresses the current literature that has assessed changes in HRV in response to training loads and the likely positive and negative adaptations shown. We reveal limitations with respect to how the measurement of HRV has been interpreted to assess positive and negative adaptation to endurance training regimens and subsequent physical performance. We offer solutions to some of the methodological issues associated with using HRV as a day-to-day monitoring tool. These include the use of appropriate averaging techniques, and the use of specific HRV indices to overcome the issue of HRV saturation in elite athletes (i.e., reductions in HRV despite decreases in resting heart rate). Finally, we provide examples in Olympic and World Champion athletes showing how these indices can be practically applied to assess training status and readiness to perform in the period leading up to a pinnacle event. The paper reveals how longitudinal HRV monitoring in elites is required to understand their unique individual HRV fingerprint. For the first time, we demonstrate how increases and decreases in HRV relate to changes in fitness and freshness, respectively, in elite athletes.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112:3729–41.

    PubMed  Article  Google Scholar 

  2. 2.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13.

    PubMed  Article  Google Scholar 

  3. 3.

    Hautala AJ, Kiviniemi AM, Tulppo MP. Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev. 2009;33(2):107–15.

    PubMed  Article  Google Scholar 

  4. 4.

    Buchheit M, Simpson MB. Al Haddad H, Bourdon PC, Mendez-Villanueva A. Monitoring changes in physical performance with heart rate measures in young soccer players. Eur J Appl Physiol. 2011;112:711–23.

    PubMed  Article  Google Scholar 

  5. 5.

    Buchheit M, Papelier Y, Laursen PB, Ahmaidi S. Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol. 2007;293(1):H8–10.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Hynynen E, Uusitalo A, Konttinen N, Rusko H. Heart rate variability during night sleep and after awakening in overtrained athletes. Med Sci Sports Exerc. 2006;38(2):313–7.

    PubMed  Article  Google Scholar 

  7. 7.

    Hynynen E, Uusitalo A, Konttinen N, Rusko H. Cardiac autonomic responses to standing up and cognitive task in overtrained athletes. Int J Sports Med. 2008;29(7):552–8.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Bosquet L, Merkari S, Arvisais D, Aubert AE. Is heart rate a convenient tool to monitor over-reaching? A systematic review of the literature. Br J Sports Med. 2008;42(9):709–14.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Lee CM, Wood RH, Welsch MA. Influence of short-term endurance exercise training on heart rate variability. Med Sci Sports Exerc. 2003;35(6):961–9.

    PubMed  Article  Google Scholar 

  10. 10.

    Mourot L, Bouhaddi M, Tordi N, Rouillon JD, Regnard J. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol. 2004;92(4–5):508–17.

    PubMed  Google Scholar 

  11. 11.

    Vesterinen V, Hakkinen K, Hynynen E, Mikkola J, Hokka L, Nummela A. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand J Med Sci Sports. 2013;23:171–80.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Atlaoui D, Pichot V, Lacoste L, Barale F, Lacour JR, Chatard JC. Heart rate variability, training variation and performance in elite swimmers. Int J Sports Med. 2007;28(5):394–400.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Garet M, Tournaire N, Roche F, Laurent R, Lacour JR, Barthelemy JC, et al. Individual Interdependence between nocturnal ANS activity and performance in swimmers. Med Sci Sports Exerc. 2004;36(12):2112–8.

    PubMed  Google Scholar 

  14. 14.

    Buchheit M, Al Haddad H, Mendez-Villanueva A, Quod MJ, Bourdon PC. Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players. Front Physiol. 2011;2:69.

    PubMed  Article  Google Scholar 

  15. 15.

    Manzi V, Castagna C, Padua E, Lombardo M, D’Ottavio S, Massaro M, et al. Dose–response relationship of autonomic nervous system responses to individualized training impulse in marathon runners. Am J Physiol Heart Circ Physiol. 2009;296(6):H1733–40.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Pagani M, Lucini D. Can autonomic monitoring predict results in distance runners? Am J Physiol Heart Circ Physiol. 2009;296(6):H1721–2.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Portier H, Louisy F, Laude D, Berthelot M, Guezennec CY. Intense endurance training on heart rate and blood pressure variability in runners. Med Sci Sports Exerc. 2001;33(7):1120–5.

    PubMed  CAS  Google Scholar 

  18. 18.

    Iellamo F, Legramante JM, Pigozzi F, Spataro A, Norbiato G, Lucini D, et al. Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes. Circulation. 2002;105(23):2719–24.

    PubMed  Article  Google Scholar 

  19. 19.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996; 17:354–81

    Google Scholar 

  20. 20.

    Buchheit M, Chivot A, Parouty J, Mercier D, Al Haddad H, Laursen PB, et al. Monitoring endurance running performance using cardiac parasympathetic function. Eur J Appl Physiol. 2010;108(6):1153–67.

    PubMed  Article  Google Scholar 

  21. 21.

    Iwasaki K, Zhang R, Zuckerman JH, Levine BD. Dose–response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol. 2003;95(4):1575–83.

    PubMed  Google Scholar 

  22. 22.

    Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, et al. Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sci Sports Exerc. 2002;34(10):1660–6.

    PubMed  Article  Google Scholar 

  23. 23.

    Pichot V, Roche F, Gaspoz JM, Enjolras F, Antoniadis A, Minini P, et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc. 2000;32(10):1729–36.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kaikkonen P, Rusko H, Martinmaki K. Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scand J Med Sci Sports. 2008;18(4):511–9.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39(8):1366–73.

    PubMed  Article  Google Scholar 

  26. 26.

    Buchheit M, Simon C, Piquard F, Ehrhart J, Brandenberger G. Effects of increased training load on vagal- related indexes of heart rate variability: a novel sleep approach. Am J Physiol Heart Circ Physiol. 2004;287(6):H2813–8.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Mourot L, Bouhaddi M, Perrey S, Rouillon JD, Regnard J. Quantitative Poincare plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol. 2004;91(1):79–87.

    PubMed  Article  Google Scholar 

  28. 28.

    Yamamoto K, Miyachi M, Saitoh T, Yoshioka A, Onodera S. Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc. 2001;33(9):1496–502.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Meeusen R, Duclos M, Gleeson M, Steinacker J, Rietjens G, Urhausen A. Prevention, diagnosis and treatment of overtraining syndrome. Eur J Sport Sci. 2006;6:1–14.

    Article  Google Scholar 

  30. 30.

    Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186–205.

    PubMed  Article  Google Scholar 

  31. 31.

    Hedelin R, Wiklund U, Bjerle P, Henriksson-Larsen K. Cardiac autonomic imbalance in an overtrained athlete. Med Sci Sports Exerc. 2000;32(9):1531–3.

    PubMed  CAS  Google Scholar 

  32. 32.

    Uusitalo ALT, Uusitalo AJ, Rusko HK. Heart rate and blood pressure variability during heavy training and overtraining in the female athlete. Int J Sports Med. 2000;21(1):45–53.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Uusitalo AL, Uusitalo AJ, Rusko HK. Endurance training, overtraining and baroreflex sensitivity in female athletes. Clin Physiol. 1998;18(6):510–20.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Bosquet L, Papelier Y, Leger L, Legros P. Night heart rate variability during overtraining in male endurance athletes. J Sports Med Phys Fitness. 2003;43(4):506–12.

    PubMed  CAS  Google Scholar 

  35. 35.

    Hedelin R, Kentta G, Wiklund U, Bjerle P, Henriksson-Larsen K. Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc. 2000;32(8):1480–4.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Halson SL, Jeukendrup AE. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004;34(14):967–81.

    PubMed  Article  Google Scholar 

  37. 37.

    Baumert M, Brechtel L, Lock J, Hermsdorf M, Wolff R, Baier V, et al. Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained athletes. Clin J Sport Med. 2006;16(5):412–7.

    PubMed  Article  Google Scholar 

  38. 38.

    Kuipers H. Training and overtraining: an introduction. Med Sci Sports Exerc. 1998;30(7):1137–9.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Kuipers H, Keizer HA. Overtraining in elite athletes: review and directions for the future. Sports Med. 1988;6(2):79–92.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Bosquet L, Gamelin FX, Berthoin S. Is aerobic endurance a determinant of cardiac autonomic regulation? Eur J Appl Physiol. 2007;100(3):363–9.

    PubMed  Article  Google Scholar 

  41. 41.

    Al Haddad H, Laursen PB, Chollet D, Ahmaidi S, Buchheit M. Reliability of resting and postexercise heart rate measures. Int J Sports Med. 2011;32(8):598–605.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Evaluating training adaptation with heart rate measures: a methodological comparison. Int J Sports Physiol Perform. Epub 8 Mar 2013.

  43. 43.

    Stanley J, Peake JM, Buchheit M. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability. Eur J Appl Physiol. 2013;113:371–84.

    PubMed  Article  Google Scholar 

  44. 44.

    Penttila J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, et al. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol. 2001;21(3):365–76.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Hamilton RM, McKechnie PS, Macfarlane PW. Can cardiac vagal tone be estimated from the 10-second ECG? Int J Cardiol. 2004;95(1):109–15.

    PubMed  Article  Google Scholar 

  46. 46.

    Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):889–919.

    PubMed  Article  Google Scholar 

  47. 47.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl. 2):1–10.

    PubMed  Article  Google Scholar 

  48. 48.

    Fiskerstrand A, Seiler KS. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303–10.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Tucker R, Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br J Sports Med. 2012;46(8):555–61.

    PubMed  Article  Google Scholar 

  50. 50.

    Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36(9):781–96.

    PubMed  Article  Google Scholar 

  51. 51.

    Goldberger JJ, Ahmed MW, Parker MA, Kadish AH. Dissociation of heart rate variability from parasympathetic tone. Am J Physiol Heart Circ Physiol. 1994;266:H2152–7.

    CAS  Google Scholar 

  52. 52.

    Goldberger JJ, Challapalli S, Tung R, Parker MA, Kadish AH. Relationship of heart rate variability to parasympathetic effect. Circulation. 2001;103(15):1977–83.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Kiviniemi AM, Hautala AJ, Seppanen T, Makikallio TH, Huikuri HV, Tulppo MP. Saturation of high- frequency oscillations of RR intervals in healthy subjects and patients after acute myocardial infarction during ambulatory conditions. Am J Physiol Heart Circ Physiol. 2004;287(5):H1921–7.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Hedman AE, Hartikainen JE, Tahvanainen KU, Hakumaki MO. The high frequency component of heart rate variability reflects cardiac parasympathetic modulation rather than parasympathetic ‘tone’. Acta Physiol Scand. 1995;155(3):267–73.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Malik M, Camm AJ, Amaral LA, Goldberger AL, Ivanov P, Stanley HE, et al. Components of heart rate variability: what they really mean and what we really measure. Am J Cardiol. 1993;72:821–2.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Sacknoff D, Gleim G, Stachenfeld N, Glace B, Coplan N. Suppression of high-frequency power spectrum of heart rate variability in well-trained endurance athletes. Circulation. 1992;86:I-658.

    Google Scholar 

  57. 57.

    Borresen J, Lambert MI. Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med. 2008;38(8):633–46.

    PubMed  Article  Google Scholar 

  58. 58.

    Hautala A, Tulppo MP, Makikallio TH, Laukkanen R, Nissila S, Huikuri HV. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin Physiol. 2001;21(2):238–45.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Iellamo F, Pigozzi F, Spataro A, Di Salvo V, Fagnani F, Roselli A, et al. Autonomic and psychological adaptations in Olympic rowers. J Sports Med Phys Fitness. 2006;46:598–604.

    Google Scholar 

  60. 60.

    Mujika I, Goya A, Padilla S, Grijalba A, Gorostiaga E, Ibanez J. Physiological responses to a 6-d taper in middle-distance runners: influence of training intensity and volume. Med Sci Sports Exerc. 2000;32(2):511–7.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Buchheit M, Laursen PB, Al Haddad H, Ahmaidi S. Exercise-induced plasma volume expansion and post exercise parasympathetic reactivation. Eur J Appl Physiol. 2009;105(3):471–81.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Convertino VA. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc. 1991;23(12):1338–48.

    PubMed  CAS  Google Scholar 

  63. 63.

    Kaikkonen P, Nummela A, Rusko H. Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol. 2007;102(1):79–86.

    PubMed  Article  Google Scholar 

  64. 64.

    Iellamo F, Pigozzi F, Parisi A, Di Salvo V, Vago T, Norbiato G, et al. The stress of competition dissociates neural and cortisol homeostasis in elite athletes. J Sports Med Phys Fitness. 2003;43(4):539–45.

    PubMed  CAS  Google Scholar 

  65. 65.

    Parouty J, Al Haddad H, Quod M, Lepretre PM, Ahmaidi S, Buchheit M. Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. Eur J Appl Physiol. 2010;109:483–90.

    PubMed  Article  Google Scholar 

  66. 66.

    Hedelin R, Bjerle P, Henriksson-Larsen K. Heart rate variability in athletes: relationship with central and peripheral performance. Med Sci Sports Exerc. 2001;33(8):1394–8.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Bannister EW, editor. Modeling elite athletic performance. Champaign: Human Kinetics; 1991.

    Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Plews.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Plews, D.J., Laursen, P.B., Stanley, J. et al. Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring. Sports Med 43, 773–781 (2013). https://doi.org/10.1007/s40279-013-0071-8

Download citation

Keywords

  • Heart Rate Variability
  • Elite Athlete
  • Training Load
  • Heart Rate Variability Index
  • Interval Ratio