High-Intensity Interval Training, Solutions to the Programming Puzzle

Part II: Anaerobic Energy, Neuromuscular Load and Practical Applications

Abstract

High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2–4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used ‘classical’ HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2–4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p\( \dot{V} \)O2max] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can cover up to 6–8 km at v\( \dot{V} \)O2max per session) can cause significant strain on the neuromuscular/musculoskeletal system. For athletes training twice a day, and/or in team sport players training a number of metabolic and neuromuscular systems within a weekly microcycle, this added physiological strain should be considered in light of the other physical and technical/tactical sessions, so as to avoid overload and optimize adaptation (i.e. maximize a given training stimulus and minimize musculoskeletal pain and/or injury risk). In this part of the review, the different aspects of HIT programming are discussed, from work/relief interval manipulation to HIT periodization, using different examples of training cycles from different sports, with continued reference to the cardiorespiratory adaptations outlined in Part I, as well as to anaerobic glycolytic contribution and neuromuscular/musculoskeletal load.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Buchheit M, Laursen PB. High-intensity internal training, solutions to the programming puzzle. Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    PubMed  Article  Google Scholar 

  2. 2.

    Buchheit M, Kuitunen S, Voss SC, et al. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26:94–105.

    PubMed  Article  Google Scholar 

  3. 3.

    Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. Int J Sports Med. 2000;21:96–101.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–41.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Billat LV, Slawinksi J, Bocquet V, et al. Very short (15s–15s) interval-training around the critical velocity allows middle-aged runners to maintain VO2max for 14 minutes. Int J Sports Med. 2001;22:201–8.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc. 1997;29:390–5.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Hoff J, Helgerud J. Endurance and strength training for soccer players: physiological considerations. Sports Med. 2004;3:165–80.

    Article  Google Scholar 

  8. 8.

    Bompa TO, Haff GG. Periodization: theory and methodology of training. 5th ed. Champaign: Human Kinetics; 2009.

  9. 9.

    Francis C. Training for speed. Canberra (ACT): Faccioni Speed & Conditioning Consultants; 1997. p. 206.

    Google Scholar 

  10. 10.

    Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(Suppl. 2):11–23.

    PubMed  Article  Google Scholar 

  11. 11.

    Jacobs I. Lactate, muscle glycogen and exercise performance in man. Acta Physiol Scand Suppl. 1981;495:1–35.

    PubMed  CAS  Google Scholar 

  12. 12.

    Yeo WK, Paton CD, Garnham AP, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–70.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38:1165–74.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Yeo WK, McGee SL, Carey AL, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95:351–8.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Krustrup P, Ortenblad N, Nielsen J, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111:2987–95.

    PubMed  Article  Google Scholar 

  16. 16.

    Stoudemire NM, Wideman L, Pass KA, et al. The validity of regulating blood lactate concentration during running by ratings of perceived exertion. Med Sci Sports Exerc. 1996;28:490–5.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Steed J, Gaesser GA, Weltman A. Rating of perceived exertion and blood lactate concentration during submaximal running. Med Sci Sports Exerc. 1994;26:797–803.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Bonacci J, Chapman A, Blanch P, et al. Neuromuscular adaptations to training, injury and passive interventions: implications for running economy. Sports Med. 2009;39:903–21.

    PubMed  Article  Google Scholar 

  19. 19.

    Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;1:13–31.

    Article  Google Scholar 

  20. 20.

    Hanon C, Lehénaff D, Gajer B. A comparative analysis of two intermittent training sessions aiming at VO2max development in top elite athletes. Proceeding of the 8th European Congress of Sport Science, 9–12 July 2003, Salzburg.

  21. 21.

    Binnie MJ, Peeling P, Pinnington H, et al. Effect of training surface on acute physiological responses following interval training. J Strength Cond Res. 2013; 27:1047–56.

    Google Scholar 

  22. 22.

    Di Michele R, Del Curto L, Merni F. Mechanical and metabolic responses during a high-intensity circuit training workout in competitive runners. J Sports Med Phys Fitness. 2012;52:33–9.

    PubMed  Google Scholar 

  23. 23.

    Paton CD, Hopkins WG, Cook C. Effects of low- vs. high-cadence interval training on cycling performance. J Strength Cond Res. 2009;23:1758–63.

    PubMed  Article  Google Scholar 

  24. 24.

    Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000;30:385–94.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Blazevich A. Are training velocity and movement pattern important determinants of muscular rate of force development enhancement? Eur J Appl Physiol. 2012;112:3689–91.

    PubMed  Article  Google Scholar 

  26. 26.

    Buchheit M. Should we be recommending repeated sprints to improve repeated-sprint performance? Sports Med. 2012;42:169–72.

    PubMed  Article  Google Scholar 

  27. 27.

    Hill-Haas SV, Dawson B, Impellizzeri FM, et al. Physiology of small-sided games training in football: a systematic review. Sports Med. 2011;41:199–220.

    PubMed  Article  Google Scholar 

  28. 28.

    Hoff J, Wisloff U, Engen LC, et al. Soccer specific aerobic endurance training. Br J Sports Med. 2002;36:218–21.

    PubMed  Article  Google Scholar 

  29. 29.

    Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum; 1988. p. 599.

    Google Scholar 

  30. 30.

    Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.

    PubMed  Google Scholar 

  31. 31.

    Medbo JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64:50–60.

    PubMed  CAS  Google Scholar 

  32. 32.

    Bangsbo J. Quantification of anaerobic energy production during intense exercise. Med Sci Sports Exerc. 1998;30:47–52.

    PubMed  CAS  Google Scholar 

  33. 33.

    Yoshida T. Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. Eur J Appl Physiol Occup Physiol. 1984;53:200–5.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Margaria R, Edwards H, Dill DB. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol. 1933;106:689–715.

    CAS  Google Scholar 

  35. 35.

    Bergman BC, Wolfel EE, Butterfield GE, et al. Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol. 1999;87:1684–96.

    PubMed  CAS  Google Scholar 

  36. 36.

    Jacobs I, Kaiser P. Lactate in blood, mixed skeletal muscle, and FT or ST fibres during cycle exercise in man. Acta Physiol Scand. 1982;114:461–6.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Beneke R, Leithauser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6:8–24.

    PubMed  Google Scholar 

  38. 38.

    Rampinini E, Sassi A, Azzalin A, et al. Physiological determinants of Yo–Yo intermittent recovery tests in male soccer players. Eur J Appl Physiol. 2008;108:401–9.

    Article  Google Scholar 

  39. 39.

    Dupont G, Berthoin S. Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol. 2004; 29 Suppl.: S3–S16.

    Google Scholar 

  40. 40.

    Dupont G, Moalla W, Guinhouya C, et al. Passive versus active recovery during high-intensity intermittent exercises. Med Sci Sports Exerc. 2004;36:302–8.

    PubMed  Article  Google Scholar 

  41. 41.

    Billat LV, Koralsztein JP. Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med. 1996;22:90–108.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Hill DW, Rowell AL. Significance of time to exhaustion during exercise at the velocity associated with VO2max. Eur J Appl Physiol Occup Physiol. 1996;72:383–6.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Heck H, Mader A, Hess G, et al. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6:117–30.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Billat LV, Renoux J, Pinoteau J, et al. Validation d’une épreuve maximale de temps limiteà VMA (vitesse maximale aérobie) et à ·VO2max. Sci Sports. 1994;9:3–12.

    Article  Google Scholar 

  45. 45.

    Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max’ during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40:96–102.

    PubMed  CAS  Google Scholar 

  46. 46.

    Midgley AW, McNaughton LR, Carroll S. Physiological determinants of time to exhaustion during intermittent treadmill running at vV(.-)O(2max). Int J Sports Med. 2007;28:273–80.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37:1601–7.

    PubMed  Article  Google Scholar 

  48. 48.

    Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. Eur J Appl Physiol. 2003;89:337–43.

    PubMed  Article  Google Scholar 

  49. 49.

    Stepto NK, Martin DT, Fallon KE, et al. Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc. 2001;33:303–10.

    PubMed  CAS  Google Scholar 

  50. 50.

    Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sports. 2004;14:318–25.

    PubMed  Article  Google Scholar 

  51. 51.

    Rusko H, Nummela A, Mero A. A new method for the evaluation of anaerobic running power in athletes. Eur J Appl Physiol. 1993;66:97–101.

    CAS  Article  Google Scholar 

  52. 52.

    Belcastro AN, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J Appl Physiol. 1975;39:932–6.

    PubMed  CAS  Google Scholar 

  53. 53.

    Ahmaidi S, Granier P, Taoutaou Z, et al. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise. Med Sci Sports Exerc. 1996;28:450–6.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Brooks GA. Current concepts in lactate exchange. Med Sci Sports Exerc. 1991;23:895–906.

    PubMed  CAS  Google Scholar 

  55. 55.

    Slawinski J, Dorel S, Hug F, et al. Elite long sprint running: a comparison between incline and level training sessions. Med Sci Sports Exerc. 2008;40:1155–62.

    PubMed  Article  Google Scholar 

  56. 56.

    Astrand I, Astrand PO, Christensen EH, et al. Intermittent muscular work. Acta Physiol Scand. 1960;48:448–53.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Astrand I, Astrand PO, Christensen EH, et al. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand. 1960;48:454–60.

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Christensen EH, Hedman R, Saltin B. Intermittent and continuous running. (A further contribution to the physiology of intermittent work). Acta Physiol Scand. 1960;50:269–86.

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Pennisi E. In nature, animals that stop and start win the race. Science. 2000;288:83–5.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Billat VL, Slawinski J, Bocquet V, et al. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol. 2000;81:188–96.

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Dupont G, Blondel N, Lensel G, et al. Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol. 2002;27:103–15.

    PubMed  Article  Google Scholar 

  62. 62.

    Rozenek R, Funato K, Kubo J, et al. Physiological responses to interval training sessions at velocities associated with VO2max. J Strength Cond Res. 2007;21:188–92.

    PubMed  Google Scholar 

  63. 63.

    Bisciotti GN. L’incidenza fisiologica dei parametri di durata, intensità e recupero nell’ambito dell’allenamento intermittente. Sienza di Sport. 2004: 90–6.

  64. 64.

    Buchheit M, Laursen PB, Millet GP, et al. Predicting intermittent running performance: critical velocity versus endurance index. Int J Sports Med. 2007;29:307–15.

    PubMed  Article  Google Scholar 

  65. 65.

    Thevenet D, Leclair E, Tardieu-Berger M, et al. Influence of recovery intensity on time spent at maximal oxygen uptake during an intermittent session in young, endurance-trained athletes. J Sports Sci. 2008;26:1313–21.

    PubMed  Article  Google Scholar 

  66. 66.

    Thevenet D, Tardieu-Berger M, Berthoin S, et al. Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99:133–42.

    PubMed  Article  Google Scholar 

  67. 67.

    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89:548–54.

    PubMed  Article  Google Scholar 

  68. 68.

    Christmass MA, Dawson B, Arthur PG. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise. Eur J Appl Physiol Occup Physiol. 1999;80:436–47.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Christmass MA, Dawson B, Passeretto P, et al. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise. Eur J Appl Physiol. 1999;80:423–35.

    CAS  Article  Google Scholar 

  70. 70.

    Harris RC, Edwards RH, Hultman E, et al. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 1976;367:137–42.

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Dellal A, Keller D, Carling C, et al. Physiologic effects of directional changes in intermittent exercise in soccer players. J Strength Cond Res. 2010;24:3219–26.

    PubMed  Article  Google Scholar 

  72. 72.

    Osgnach C, Poser S, Bernardini R, et al. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42:170–8.

    PubMed  Google Scholar 

  73. 73.

    Haydar B. Al Haddad H, Buchheit M. Assessing inter-efforts recovery and change of direction abilities with the 30–15 Intermittent Fitness Test. J Sports Sci Med. 2011;10:346–54.

    Google Scholar 

  74. 74.

    Ahmaidi S, Collomp K, Prefaut C. The effect of shuttle test protocol and the resulting lactacidaemia on maximal velocity and maximal oxygen uptake during the shuttle exercise test. Eur J Appl Physiol. 1992;65:475–9.

    CAS  Article  Google Scholar 

  75. 75.

    Buchheit M, Haydar B, Hader K, et al. Assessing running economy during field running with changes of direction: application to 20-m shuttle-runs. Int J Sports Physiol Perform. 2011;6:380–95.

    PubMed  Google Scholar 

  76. 76.

    Buchheit M. Individualizing high-intensity interval training in intermittent sport athletes with the 30-15 Intermittent Fitness Test. NSCA Hot Topic Series [online]. Available from URL: www.nsca-lift.org. 2011; November. Accessed 2013 May 21.

  77. 77.

    Cometti G, Jaffiol T, Chalopin C, et al. Etude des effets de différentes séquences de travail de type intermittent sur la fréquence cardiaque, la lactatémie, et la détente [online]. Available from URL: http://expertise-performance.u-bourgogne.fr/pdf/lactate.pdf. Accessed 2002 Jan 19.

  78. 78.

    Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol. 1992;65:144–9.

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Abt G, Siegler JC, Akubat I, et al. The effects of a constant sprint-to-rest ratio and recovery mode on repeated sprint performance. J Strength Cond Res. 2011;25:1695–702.

    PubMed  Article  Google Scholar 

  80. 80.

    Little T, Williams AG. Effects of sprint duration and exercise: rest ratio on repeated sprint performance and physiological responses in professional soccer players. J Strength Cond Res. 2007;21:646–8.

    PubMed  Google Scholar 

  81. 81.

    Buchheit M, Haydar B, Ahmaidi S. Repeated sprints with directional changes: do angles matter? J Sports Sci. 2012;30:555–62.

    PubMed  Article  Google Scholar 

  82. 82.

    Dupont G, Millet GP, Guinhouya C, et al. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol. 2005;95:27–34.

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Buchheit M. Performance and physiological responses to repeated- sprint and jump sequences. Eur J Appl Physiol. 2010;101:1007–18.

    Article  Google Scholar 

  84. 84.

    Nakamura FY, Soares-Caldeira LF, Laursen PB, et al. Cardiac autonomic responses to repeated shuttle sprints. Int J Sports Med. 2009;30:808–13.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol. 2007;293:H133–41.

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med. 1992;13:528–33.

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Buchheit M, Cormie P, Abbiss CR, et al. Muscle deoxygenation during repeated sprint running: effect of active vs. passive recovery. Int J Sports Med. 2009;30:418–25.

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Castagna C, Abt G, Manzi V, et al. Effect of recovery mode on repeated sprint ability in young basketball players. J Strength Cond Res. 2008;22:923–9.

    PubMed  Article  Google Scholar 

  89. 89.

    Gorostiaga EM, Asiain X, Izquierdo M, et al. Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners. J Strength Cond Res. 2010;24:1138–49.

    PubMed  Article  Google Scholar 

  90. 90.

    Buchheit M, Bishop D, Haydar B, et al. Physiological responses to shuttle repeated-sprint running. Int J Sport Med. 2010;31:402–9.

    CAS  Article  Google Scholar 

  91. 91.

    Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995;482(Pt 2):467–80.

    PubMed  CAS  Google Scholar 

  92. 92.

    McCartney N, Spriet LL, Heigenhauser GJ, et al. Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol. 1986;60:1164–9.

    PubMed  CAS  Google Scholar 

  93. 93.

    Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75:712–9.

    PubMed  CAS  Google Scholar 

  94. 94.

    Putman CT, Jones NL, Lands LC, et al. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am J Physiol. 1995;269:E458–68.

    PubMed  CAS  Google Scholar 

  95. 95.

    Buchheit M, Duthie G, Ahmaidi S. Increasing passive recovery duration leads to greater performance despite higher blood lactate accumulation and physiological strain during repeated shuttle 30-s sprints. Proceeding of the 14th European Congress of Sport Science. 24–27Jun 2009, Olso, Norway.

  96. 96.

    Bogdanis GC, Nevill ME, Lakomy HK, et al. Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol Occup Physiol. 1996;74:461–9.

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Buchheit M, Abbiss C, Peiffer JJ, et al. Performance and physiological responses during a sprint interval training session: relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. Eur J Appl Physiol. 2012;111:767–79.

    Article  CAS  Google Scholar 

  98. 98.

    Buchheit M, Lepretre PM, Behaegel AL, et al. Cardiorespiratory responses during running and sport-specific exercises in handball players. J Sci Med Sport. 2009;12:399–405.

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Ross A, Leveritt M, Riek S. Neural influences on sprint running: training adaptations and acute responses. Sports Med. 2001;31:409–25.

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Bishop PA, Jones E, Woods AK. Recovery from training: a brief review. J Strength Cond Res. 2008;22:1015–24.

    PubMed  Article  Google Scholar 

  101. 101.

    Coffey V, Hawley J. The molecular bases of training adaptation. Sports Med. 2007;37:737–63.

    PubMed  Article  Google Scholar 

  102. 102.

    Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42:209–26.

    PubMed  Article  Google Scholar 

  103. 103.

    Small K, McNaughton LR, Greig M, et al. Soccer fatigue, sprinting and hamstring injury risk. Int J Sports Med. 2009;30:573–8.

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Gabbett TJ, Ullah S. Relationship between running loads and soft-tissue injury in elite team sport athletes. J Strength Cond Res. 2012;26:953–60.

    PubMed  Article  Google Scholar 

  105. 105.

    van Gent RN, Siem D, van Middelkoop M, et al. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med. 2007;41:469–80.

    Google Scholar 

  106. 106.

    Perrey S, Racinais S, Saimouaa K, et al. Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol. 2010; 109:1027–36.

    Google Scholar 

  107. 107.

    Lattier G, Millet GY, Martin A, et al. Fatigue and recovery after high-intensity exercise part I: neuromuscular fatigue. Int J Sports Med. 2004;25:450–6.

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Vuorimaa T, Virlander R, Kurkilahti P, et al. Acute changes in muscle activation and leg extension performance after different running exercises in elite long distance runners. Eur J Appl Physiol. 2006;96:282–91.

    PubMed  Article  Google Scholar 

  109. 109.

    Skof B, Strojnik V. Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload. Int J Sports Med. 2006;27:220–5.

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Girard O, Bishop DJ, Racinais S. Neuromuscular adjustments of the quadriceps muscle after repeated cycling sprints. PLoS One. 2013;8:e61793.

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Mendez-Villanueva A, Edge J, Suriano R, et al. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One. 2012;7:e51977.

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41:673–94.

    PubMed  Article  Google Scholar 

  113. 113.

    Fernandez-Del-Olmo M, Rodriguez FA, Marquez G, et al. Isometric knee extensor fatigue following a Wingate test: peripheral and central mechanisms. Scand J Med Sci Sports. 2013;23:57–65.

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992; 72:1631–48.

    Google Scholar 

  115. 115.

    Girard O, Micallef JP, Millet GP. Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol. 2011;111:125–34.

    PubMed  Article  Google Scholar 

  116. 116.

    Paavolainen L, Hakkinen K, Nummela A, et al. Neuromuscular characteristics and fatigue in endurance and sprint athletes during a new anaerobic power test. Eur J Appl Physiol Occup Physiol. 1994;69:119–26.

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Buchheit M, Spencer M, Ahmaidi S. Reliability, usefulness and validity of a repeated sprint and jump ability test. Int J Sports Physiol Perform. 2010;5:3–17.

    PubMed  Google Scholar 

  118. 118.

    Bosco C, Komi PV, Tihanyi J, et al. Mechanical power test and fiber composition of human leg extensor muscles. Eur J Appl Physiol Occup Physiol. 1983;51:129–35.

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Garrandes F, Colson SS, Pensini M, et al. Neuromuscular fatigue profile in endurance-trained and power-trained athletes. Med Sci Sports Exerc. 2007;39:149–58.

    PubMed  Article  Google Scholar 

  120. 120.

    Vuorimaa T, Hakkinen K, Vahasoyrinki P, et al. Comparison of three maximal anaerobic running test protocols in marathon runners, middle-distance runners and sprinters. Int J Sports Med. 1996;17(Suppl 2):S109–13.

    PubMed  Article  Google Scholar 

  121. 121.

    Hodgson M, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005;35:585–95.

    PubMed  Article  Google Scholar 

  122. 122.

    Bishop D, Spencer M. Determinants of repeated-sprint ability in well-trained team-sport athletes and endurance-trained athletes. J Sports Med Phys Fitness. 2004;44:1–7.

    PubMed  CAS  Google Scholar 

  123. 123.

    Ispirlidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18:423–31.

    PubMed  Article  Google Scholar 

  124. 124.

    Andersson H, Raastad T, Nilsson J, et al. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40:372–80.

    PubMed  Article  Google Scholar 

  125. 125.

    Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance exercise. J Sci Med Sport. 2001;4:447–59.

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Nummela A, Vuorimaa T, Rusko H. Changes in force production, blood lactate and EMG activity in the 400-m sprint. J Sports Sci. 1992;10:217–28.

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Paavolainen L, Nummela A, Rusko H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand J Med Sci Sports. 2000;10:286–91.

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Gottschall JS, Kram R. Ground reaction forces during downhill and uphill running. J Biomech. 2005;38:445–52.

    PubMed  Article  Google Scholar 

  129. 129.

    van Beijsterveldt AM, van de Port IG, Vereijken AJ, et al. Risk Factors for Hamstring injuries in male soccer players: a systematic review of prospective studies. Scand J Med Sci Sports. 2013;23:253–62.

    PubMed  Article  Google Scholar 

  130. 130.

    Byrnes WC, Clarkson PM, White JS, et al. Delayed onset muscle soreness following repeated bouts of downhill running. J Appl Physiol. 1985;59:710–5.

    PubMed  CAS  Google Scholar 

  131. 131.

    Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.

    PubMed  CAS  Google Scholar 

  132. 132.

    Altenburg TM, Degens H, van Mechelen W, et al. Recruitment of single muscle fibers during submaximal cycling exercise. J Appl Physiol. 2007;103:1752–6.

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Higashihara A, Ono T, Kubota J, et al. Functional differences in the activity of the hamstring muscles with increasing running speed. J Sports Sci. 2010;28:1085–92.

    PubMed  Article  Google Scholar 

  134. 134.

    di Prampero PE, Fusi S, Sepulcri L, et al. Sprint running: a new energetic approach. J Exp Biol. 2005;208:2809–16.

    PubMed  Article  Google Scholar 

  135. 135.

    Brughelli M, Cronin J, Levin G, et al. Understanding change of direction ability in sport: a review of resistance training studies. Sports Med. 2008;38:1045–63.

    PubMed  Article  Google Scholar 

  136. 136.

    Oliver JL. Is a fatigue index a worthwhile measure of repeated sprint ability? J Sci Med Sport. 2009;12:20–3.

    PubMed  Article  Google Scholar 

  137. 137.

    Lakomy J, Haydon DT. The effects of enforced, rapid deceleration on performance in a multiple sprint test. J Strength Cond Res. 2004;18:579–83.

    PubMed  Google Scholar 

  138. 138.

    Mendez-Villanueva A, Hamer P, Bishop D. Fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc. 2007;39:2219–25.

    PubMed  Article  Google Scholar 

  139. 139.

    Bravo DF, Impellizzeri FM, Rampinini E, et al. Sprint vs. interval training in football. Int J Sports Med. 2008;29:668–74.

    Article  Google Scholar 

  140. 140.

    Buchheit M, Millet GP, Parisy A, et al. Supramaximal training and post-exercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc. 2008;40:362–71.

    PubMed  Article  Google Scholar 

  141. 141.

    Buchheit M, Mendez-Villanueva A, Delhomel G, et al. Improving repeated sprint ability in young elite soccer players: repeated sprints vs. explosive strength training. J Strength Cond Res. 2010;24:2715–22.

    PubMed  Article  Google Scholar 

  142. 142.

    Tomazin K, Morin JB, Strojnik V, et al. Fatigue after short (100-m), medium (200-m) and long (400-m) treadmill sprints. Eur J Appl Physiol. 2012;112:1027–36.

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Buchheit M, Mendez-Villanueva A, Quod MJ, et al. Improving acceleration and repeated sprint ability in well-trained adolescent handball players: speed vs. sprint interval training. Int J Sports Physiol Perform. 2010;5:152–64.

    Google Scholar 

  144. 144.

    Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev. 2008;36:58–63.

    PubMed  Article  Google Scholar 

  145. 145.

    Omeyer C, Buchheit M. Vertical jump performance in response to different high-intensity running sessions [Master Thesis]. Faculté des sciences du sport (STAPS), Strasbourg, 2002.

  146. 146.

    Rusko HK, Tikkanen HO, Peltonen JE. Altitude and endurance training. J Sports Sci. 2004; 22: 928–44; discussion 45.

    Google Scholar 

  147. 147.

    Hreljac A. Impact and overuse injuries in runners. Med Sci Sports Exerc. 2004;36:845–9.

    PubMed  Google Scholar 

  148. 148.

    Billat V, Binsse V, Petit B, et al. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch Physiol Biochem. 1998;106:38–45.

    PubMed  CAS  Article  Google Scholar 

  149. 149.

    Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117–32.

    PubMed  Article  Google Scholar 

  150. 150.

    Thibault G. A graphical model for interval training. IAAF New Studies in Athletics. 2003;18:49–55.

    Google Scholar 

  151. 151.

    Hautala AJ, Kiviniemi AM, Tulppo MP. Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev. 2009;33:107–15.

    PubMed  Article  Google Scholar 

  152. 152.

    James DV, Barnes AJ, Lopes P, et al. Heart rate variability: response following a single bout of interval training. Int J Sports Med. 2002;23:247–51.

    PubMed  CAS  Article  Google Scholar 

  153. 153.

    Mourot L, Bouhaddi M, Perrey S, et al. Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clin Physiol Funct Imag. 2004;24:10–8.

    Article  Google Scholar 

  154. 154.

    Niewiadomski W, Gasiorowska A, Krauss B, et al. Suppression of heart rate variability after supramaximal exertion. Clin Physiol Funct Imag. 2007;27:309–19.

    CAS  Article  Google Scholar 

  155. 155.

    Buchheit M, Laursen PB, Al Haddad H, et al. Exercise-induced plasma volume expansion and post-exercise parasympathetic reactivation. Eur J Appl Physiol. 2009; 105:471–81.

    Google Scholar 

  156. 156.

    Kiviniemi AM, Hautala AJ, Kinnunen H, et al. Daily exercise prescription based on heart rate variability among men and women. Med Sci Sports Exerc. 2009.

  157. 157.

    Kiviniemi AM, Hautala AJ, Kinnunen H, et al. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101:743–51.

    PubMed  Article  Google Scholar 

  158. 158.

    Al Haddad H, Laursen PB, Ahmaidi S, et al. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform. 2009;4:435–47.

    Google Scholar 

  159. 159.

    Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39:1366–73.

    PubMed  Article  Google Scholar 

  160. 160.

    Hautala AJ, Tulppo MP, Makikallio TH, et al. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin Physiol. 2001;21:238–45.

    PubMed  CAS  Article  Google Scholar 

  161. 161.

    Buchheit M, Voss SC, Nybo L, et al. Physiological and performance adaptations to an in-season soccer camp in the heat: associations with heart rate and heart rate variability. Scand J Med Sci Sports. 2011;21:e477–85.

    PubMed  CAS  Article  Google Scholar 

  162. 162.

    Billat VL, Flechet B, Petit B, et al. Interval training at VO2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc. 1999;31:156–63.

    PubMed  CAS  Article  Google Scholar 

  163. 163.

    Breil FA, Weber SN, Koller S, et al. Block training periodization in alpine skiing: effects of 11-day HIT on VO2max and performance. Eur J Appl Physiol. 2010;109:1077–86.

    PubMed  Article  Google Scholar 

  164. 164.

    Issurin V. Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness. 2008;48:65–75.

    PubMed  CAS  Google Scholar 

  165. 165.

    Lum D, Landers G, Peeling P. Effects of a recovery swim on subsequent running performance. Int J Sports Med. 2010;31:26–30.

    PubMed  CAS  Article  Google Scholar 

  166. 166.

    Noakes T. Lore of running. Oxford University Press Southern African ed. Oxford. Champaign (IL): Leisure Press; 1991. p. 450.

  167. 167.

    Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the VO2max test predicts running performance. J Sports Sci. 1990;8:35–45.

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Paavolainen LM, Nummela AT, Rusko HK. Neuromuscular characteristics and muscle power as determinants of 5-km running performance. Med Sci Sports Exerc. 1999;31:124–30.

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10.

    PubMed  Article  Google Scholar 

  170. 170.

    Buchheit M, Mendez-Villanueva A, Simpson BM, et al. Match running performance and fitness in youth soccer. Int J Sports Med. 2010;31:818–25.

    PubMed  CAS  Article  Google Scholar 

  171. 171.

    Mendez-Villanueva A, Buchheit M, Simpson BM, et al. Match play intensity distribution in youth soccer. Int J sport Med. 2013;34:101–10.

    CAS  Google Scholar 

  172. 172.

    Mooney M, O’Brien B, Cormack S, et al. The relationship between physical capacity and match performance in elite Australian football: a mediation approach. J Sci Med Sport. 2011;14:447–52.

    PubMed  Article  Google Scholar 

  173. 173.

    Buchheit M, Simpson BM, Mendez-Villaneuva A. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. Int J sport Med. 2013; 34(1):40–8.

    Google Scholar 

  174. 174.

    Laursen PB, Shing CM, Peake JM, et al. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;11:1801–7.

    Google Scholar 

  175. 175.

    Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med. 2007;37:857–80.

    PubMed  Article  Google Scholar 

  176. 176.

    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability. Part II: recommendations for training. Sports Med. 2011;41:741–56.

    PubMed  Article  Google Scholar 

  177. 177.

    Buchheit M, Mendez-Villanueva A, Simpson BM, et al. Repeated-sprint sequences during youth soccer matches. Int J Sport Med. 2010;31:709–16.

    CAS  Article  Google Scholar 

  178. 178.

    Carling C, Le Gall F, Dupont G. Analysis of repeated high-intensity running performance in professional soccer. J Sports Sci. 2012;30:325–36.

    PubMed  Article  Google Scholar 

  179. 179.

    Buchheit M. The 30–15 Intermittent Fitness Test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22:365–74.

    PubMed  Article  Google Scholar 

  180. 180.

    Sassi A, Stefanescu A, Menaspa P, et al. The cost of running on natural grass and artificial turf surfaces. J Strength Cond Res. 2011;25:606–11.

    PubMed  Article  Google Scholar 

  181. 181.

    Gains GL, Swedenhjelm AN, Mayhew JL, et al. Comparison of speed and agility performance of college football players on field turf and natural grass. J Strength Cond Res. 2010;24:2613–7.

    PubMed  Article  Google Scholar 

  182. 182.

    Abbiss CR, Karagounis LG, Laursen PB, et al. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle. J Appl Physiol. 2011;110:1248–55.

    PubMed  CAS  Article  Google Scholar 

  183. 183.

    Plews DJ, Laursen PB, Kilding AE, et al. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Epub: Eur J Appl Physiol; 2012.

    Google Scholar 

  184. 184.

    Carter H, Jones AM, Barstow TJ, et al. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89:899–907.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review. The authors also thank Daniel Plews for his assistance in preparing Table 5.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Buchheit.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchheit, M., Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle. Sports Med 43, 927–954 (2013). https://doi.org/10.1007/s40279-013-0066-5

Download citation

Keywords

  • Blood Lactate
  • Neuromuscular Fatigue
  • Blood Lactate Accumulation
  • Neuromuscular Response
  • Team Sport Athlete