Training Transfer: Scientific Background and Insights for Practical Application

Abstract

Training transfer as an enduring, multilateral, and practically important problem encompasses a large body of research findings and experience, which characterize the process by which improving performance in certain exercises/tasks can affect the performance in alternative exercises or motor tasks. This problem is of paramount importance for the theory of training and for all aspects of its application in practice. Ultimately, training transfer determines how useful or useless each given exercise is for the targeted athletic performance. The methodological background of training transfer encompasses basic concepts related to transfer modality, i.e., positive, neutral, and negative; the generalization of training responses and their persistence over time; factors affecting training transfer such as personality, motivation, social environment, etc. Training transfer in sport is clearly differentiated with regard to the enhancement of motor skills and the development of motor abilities. The studies of bilateral skill transfer have shown cross-transfer effects following one-limb training associated with neural adaptations at cortical, subcortical, spinal, and segmental levels. Implementation of advanced sport technologies such as motor imagery, biofeedback, and exercising in artificial environments can facilitate and reinforce training transfer from appropriate motor tasks to targeted athletic performance. Training transfer of motor abilities has been studied with regard to contralateral effects following one limb training, cross-transfer induced by arm or leg training, the impact of strength/power training on the preparedness of endurance athletes, and the impact of endurance workloads on strength/power performance. The extensive research findings characterizing the interactions of these workloads have shown positive transfer, or its absence, depending on whether the combinations conform to sport-specific demands and physiological adaptations. Finally, cross-training as a form of concurrent exercising in different athletic disciplines has been examined in reference to the enhancement of general fitness, the preparation of recreational athletes, and the preparation of athletes for multi-sport activities such as triathlon, duathlon, etc.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Thorndike EL, Woodworth RS. The influence of improvement in one mental function upon the efficiency of other functions. Psychol Rev. 1901;8:247–61.

    Article  Google Scholar 

  2. 2.

    Adams JA. Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychol Bull. 1987;101:41–74.

    Article  Google Scholar 

  3. 3.

    Paradise A. State of the industry: ASTD’s annual review of trends in workplace learning and performance. Alexandria: ASTD; 2007.

    Google Scholar 

  4. 4.

    Baldwin TT, Ford KJ. Transfer of training: a review and directions for future research. Pers Psychol. 2006;41:63–105.

    Article  Google Scholar 

  5. 5.

    Gagne RM. The conditions of learning. New York: Holt, Rinehart & Winston; 1965.

    Google Scholar 

  6. 6.

    Barnet SM, Ceci SJ. When and where do we apply what we learn? A taxonomy for transfer. Psychol Bull. 2002;128:612–37.

    Article  Google Scholar 

  7. 7.

    Blume BD, Ford KJ, Baldwin TT, et al. Transfer of training: a meta-analytic review. J Manag. 2010;36:1065–110.

    Article  Google Scholar 

  8. 8.

    Cheng EW, Ho DC. A review of transfer of training studies in the past decade. Pers Rev. 2001;30:102–18.

    Article  Google Scholar 

  9. 9.

    Tziner A, Haccoun RR, Kadish A. Personal and situational characteristics influencing the effectiveness of transfer of training improvement strategies. J Occup Psychol. 1991;64:167–77.

    Article  Google Scholar 

  10. 10.

    Bandura A. Social cognitive theory of self-regulation. Org Behav Hum Decis Process. 1986;50:248–87.

    Article  Google Scholar 

  11. 11.

    Facteau AN, Dobbins GH, Russell JE, et al. The influence of general perceptions on the training environment on pretraining motivation and perceived training transfer. J Manag. 1995;21:1–25.

    Google Scholar 

  12. 12.

    Tannenbaum SI, Mathieu JE, Salas E, et al. Meeting trainees’ expectations: the influence of training fulfillment on the development of commitment, self-efficacy, and motivation. J Appl Psychol. 1991;76:759–69.

    Article  Google Scholar 

  13. 13.

    Roulillier JZ, Goldstein IL. The relationship between organizational transfer climate and positive transfer of training. Hum Resour Dev Q. 1993;4:377–90.

    Article  Google Scholar 

  14. 14.

    Tracey JB, Tannenbaum SI, Kavanagh MJ. Applying training skills on the job: the importance of the work environment. J Appl Psychol. 1995;80:239–52.

    Article  Google Scholar 

  15. 15.

    Zatsiorsky VM. Science and practice of strength training. Champaign: Human Kinetics; 1995.

    Google Scholar 

  16. 16.

    Zatsiorsky VM. Cybernetics, mathematics, sport (in Russian). Moscow: FiS; 1969.

    Google Scholar 

  17. 17.

    Issurin V. Block periodization 2: fundamental concepts and training design. Muskegon: Ultimate Training Concepts; 2008.

    Google Scholar 

  18. 18.

    Kent M. The Oxford dictionary of sport science and medicine. 3rd ed. Oxford: University Press; 2006.

    Google Scholar 

  19. 19.

    Billat VL. Interval training for performance: a scientific and empirical practice. Sports Med. 2001;31:75–90.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33:1103–26.

    PubMed  Article  Google Scholar 

  21. 21.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5:276–91.

    PubMed  Google Scholar 

  22. 22.

    Bondarchuk AP. Constructing a training system. Track Tech. 1988;102:3254–69.

    Google Scholar 

  23. 23.

    Bondarchuk AP. Transfer of training in sports. Muskegon: Ultimate Training Concepts; 2008.

    Google Scholar 

  24. 24.

    Wissler C, Richardson WW. Diffusion of the motor impulse. Psychol Rev. 1900;7:29–38.

    Article  Google Scholar 

  25. 25.

    Bray CW. Transfer of learning. J Exp Psychol. 1928;11:443–67.

    Article  Google Scholar 

  26. 26.

    Hicks RE, Gualtieri CT, Schroeder SR. Cognitive and motor components of bilateral transfer. Am J Psychol. 1983;96:223–8.

    Article  Google Scholar 

  27. 27.

    Kumar S, Mandal MK. Bilateral transfer of skill in left- and right-handers. Laterality. 2005;10:337–44.

    PubMed  Article  Google Scholar 

  28. 28.

    Byrd R, Gibson M, Gleason MH. Bilateral transfer across ages 7 to 17 years. Percept Mot Skills. 1986;62:87–90.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Conroy GC. The effect of age on bilateral transfer. National Undergraduate Research Clearinghouse; 2001. http://www.webclearinghouse.net/. Accessed 4 Mar 2013.

  30. 30.

    O’Boyle MW, Hoff JE. Gender and handedness differences in mirror-tracing random forms. Neuropsychologia. 1987;25:977–82.

    Article  Google Scholar 

  31. 31.

    Liu J, Wrisberg CA. Immediate and delayed bilateral transfer of throwing accuracy in male and female children. Res Q Exerc Sports. 2005;76:20–7.

    Google Scholar 

  32. 32.

    Marx R. Ipsilateral and contralateral skill acquisition following random practice of unilateral mirror-drawing. Percept Mot Skills. 1996;83:715–22.

    Article  Google Scholar 

  33. 33.

    Thut G, Halsband U, Roelcke U, et al. Intermanual transfer of training: blood flow correlates in the human brain. Behav Brain Res. 1997;89:129–34.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Brown WS, Larson EB, Jeeves MA. Directional asymmetries in interhemispheric transfer time: evidence from visual evoked potentials. Neuropsychologia. 1994;32:439–48.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Cramer SC, Finkelstein SP, Schaechter JD, et al. Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements. J Neurophysiol. 1999;81:383–7.

    PubMed  CAS  Google Scholar 

  36. 36.

    Schultze K, Luders E, Jancke L. Intermanual transfer in a simple motor task. Cortex. 2002;38:805–15.

    Article  Google Scholar 

  37. 37.

    Kristeva R, Cheyne D, Deecke I. Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Clin Neurophysiol. 1991;81:284–98.

    CAS  Article  Google Scholar 

  38. 38.

    Hortobagyi T, Taylor JL, Petersen N, et al. Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol. 2003;90:2451–9.

    PubMed  Article  Google Scholar 

  39. 39.

    Basmajian D. Motor learning and control: a working hypothesis. Arch Physical Med Rehabil. 1977;58:38–41.

    CAS  Google Scholar 

  40. 40.

    Tokuhara Y, Hashimoto F, Kameyama O, et al. EMG biofeedback training for kayak paddlers: an application to the arm pull movement. In: Johnson I, editor. Biomechanics X-A. Champaign: Human Kinetics; 1987. p. 319–23.

    Google Scholar 

  41. 41.

    Krueger KM, Ruehl M, Scheel D, et al. Die Anwendbarkeit von EMG-Biofeedback zur Optimierung sportlicher Techniken im motorischen Lernprozess von Ausdauersportarten am Beispiel des Kanurennsports. Theorie und Praxis des Leistungsports. 1988;26:128–42.

    Google Scholar 

  42. 42.

    Aggelousis N, Mavromatis G, Gourgolis V, et al. Modifications of neuromuscular activity in performance of a novel motor skill. Percept Mot Skills. 2001;93:239–48.

    PubMed  CAS  Google Scholar 

  43. 43.

    McLean B, Lafortune M. Improving pedaling technique with “real time” biomechanical feedback. Excel. 1988;5:15–8.

    Google Scholar 

  44. 44.

    Chollet D, Micallef JP, Rabischong P. Biomechanical signals for external biofeedback to improve swimming technique. In: Swimming science V: proceedings of the Vth international symposium of biomechanics and medicine in swimming. Champaign: Human Kinetics; 1986. p. 389–96.

  45. 45.

    Baca A, Kornfeind P, Heller M. Feedback systems in rowing. Eng Sport. 2006;10:407–12.

    Article  Google Scholar 

  46. 46.

    Tenenbaum G, Corbett M, Kisantas A. Biofeedback: applications and methodological concerns. In: Blumenshtein B, Bar-Eli M, Tenenbaum G, editors. Brain and body in sport and exercise. New York: Wiley; 2005. p. 101–23.

    Google Scholar 

  47. 47.

    Zaichkowsky LD. The use of biofeedback for self-regulation of performance states. In: Unestal LE, editor. The mental aspects of gymnastics. Orebro: Veje; 1983. p. 95–105.

    Google Scholar 

  48. 48.

    Landers DM. Psychophysiological assessment and biofeedback. In: Sanweiss J, Wolf S, editors. Biofeedback and sport science. New York: Plenum; 1985. p. 63–105.

    Google Scholar 

  49. 49.

    Blumenshtein B, Bar-Eli M. Self-regulation training with biofeedback training in elite canoers and kayakers. In: Issurin V, editor. Science and practice of canoe/kayak high performance training. Netanya: Wingate Institute; 1998. p. 124–32.

    Google Scholar 

  50. 50.

    Bar-Eli M, Dreshman R, Blumenshtein B, et al. The effect of mental training with biofeedback on the performance of young swimmers. Appl Psychol Int Rev. 2002;51:567–81.

    Article  Google Scholar 

  51. 51.

    Kohl RM, Roenker DL. Bilateral transfer as a function of mental imagery. J Mot Behav. 1980;12:197–206.

    PubMed  CAS  Google Scholar 

  52. 52.

    Kohl RM, Roenker DL. Mechanism involvement during skill imagery. J Mot Behav. 1983;15:179–90.

    PubMed  CAS  Google Scholar 

  53. 53.

    Amemlya K, Ishizu T, Ayabe T, et al. Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioral study. Brain Res. 2010;1343:93–103.

    Article  CAS  Google Scholar 

  54. 54.

    Vealey RS, Greenleaf CA. Seeing is believing: understanding and using imagery in sport. In: Williams JM, editor. Applied sport psychology: personal growth to peak performance. 4th ed. Mountain View: Mayfield; 2001. p. 247–88.

    Google Scholar 

  55. 55.

    Morris T, Spittle M, Watt A. Imagery in sport. Champaign: Human Kinetics; 2005.

    Google Scholar 

  56. 56.

    Fetz DL, Landers DM. The effect of mental practice on motor-skill learning and performance: a meta-analysis. J Sport Psychol. 1983;2:211–20.

    Google Scholar 

  57. 57.

    Hale BD. Imagery training: a guide for sport coaches and performers. Leeds: National Coaching Foundation; 1998.

    Google Scholar 

  58. 58.

    Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17:187–202.

    Article  Google Scholar 

  59. 59.

    Cunnington R, Iansek R, Bradshaw JL, et al. Movement-related potentials associated with movement preparation and motor imagery. Exp Brain Res. 1996;111:429–36.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Holmes P, Caimels C. A neuroscientific review of imagery and observation use in sport. J Mot Behav. 2008;40:433–45.

    PubMed  Article  Google Scholar 

  61. 61.

    Van Gyn GH, Wenger HA, Gaul CA. Imagery as a method of enhancing transfer from training to performance. J Sport Exerc Psychol. 1990;12:366–75.

    Google Scholar 

  62. 62.

    Hird JS, Landers DM, Thomas JR, et al. Physical practice is superior to mental practice in enhancing cognitive and motor performance. J Sport Exerc Psychol. 1991;13:281–93.

    Google Scholar 

  63. 63.

    Smith D, Wright C, Allsopp A, et al. It’s all in the mind: PETTLEP-based imagery and sports performance. J Appl Sport Psychol. 2007;19:80–93.

    Article  Google Scholar 

  64. 64.

    Driediger M, Hall G, Callow N. Imagery use by injured athletes: a qualitative analysis. J Sports Sci. 2006;24:261–71.

    PubMed  Article  Google Scholar 

  65. 65.

    Dal Monte A. Exercise testing and ergometers. In: Dirix A, Knuttgen HG, Tittel K, editors. The Olympic book of spot medicine. Oxford: Blackwell; 1988. p. 121–50.

  66. 66.

    Satava RM. Medical applications of virtual reality. J Med Syst. 1995;19:275–80.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Mahoney DP. Defensive driving. Comput Graph World. 1997;20:71–3.

    Google Scholar 

  68. 68.

    Hue P, Delannay B, Beuland J-C. Virtual reality training simulator for long time flight. In: Seidel RJ, Chantelier PR, editors. Virtual reality, training’s future?. New York: Plenum; 1997. p. 69–76.

    Google Scholar 

  69. 69.

    Nagano A, Gerritsen KG. Effects of neuromuscular strength training on vertical jumping performance—a computer simulation study. J Appl Biomech. 2001;17:113–28.

    Google Scholar 

  70. 70.

    Ettema GJ, Braten S, Bobbert MF. Dynamics of the in-run in ski jumping: a simulation study. J Appl Biomech. 2005;21:247–60.

    PubMed  Google Scholar 

  71. 71.

    Kortnik T, Bajd T, Munih M. Virtual environment for lower-extremities training. Gait Posture. 2008;27:323–31.

    Article  Google Scholar 

  72. 72.

    Ida H, Fukuhara K, Ishi M, et al. Examination of anticipatory performance with computationally simulated tennis serve motion. J Sport Exerc Psychol. 2007;29:172–6.

    Google Scholar 

  73. 73.

    Walls J, Bertrand L, Gale TJ, et al. Assessment of upwind dinghy sailing performance using a virtual reality dinghy simulator. J Sci Med Sport. 1998;1:61–72.

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Kelly A, Hubbard M. Design and construction of a bobsled driver training simulator. Sports Eng. 2000;3:13–25.

    Article  Google Scholar 

  75. 75.

    Frisoli A, Ruffaldi E, Filippeschi A, et al. In-door skill training in rowing practice with a VR based simulator. Int J Sport Psychol. 2010;10:14–7.

    Google Scholar 

  76. 76.

    Wei Ying L, Koh M. E-learning: new opportunities for teaching and learning in gymnastics. Br J Teach Phys Educ. 2006;37:22–5.

    Google Scholar 

  77. 77.

    Carolan B, Cafarelli E. Adaptations in coactivation after isometric resistance training. J Appl Physiol. 1992;73:911–7.

    PubMed  CAS  Google Scholar 

  78. 78.

    Garfinkel S, Cafarelli E. Relative changes in maximal force, EMG, and muscle cross-sectional area after isometric training. Med Sci Sports Exerc. 1992;24:1220–7.

    PubMed  CAS  Google Scholar 

  79. 79.

    Kannus P, Alosa D, Cook L, et al. Effect of one-legged exercise on the strength, power and endurance of the contralateral leg. A randomized, controlled study using isometric and concentric isokinetic training. Eur J Appl Physiol. 1992;64:117–26.

    CAS  Article  Google Scholar 

  80. 80.

    Hortobagyi T, Lambert NJ, Hill JP. Greater cross education following training with lengthening than shortening. Med Sci Sports Exerc. 1997;29:107–12.

    PubMed  CAS  Google Scholar 

  81. 81.

    Hortobagyi T, Scott K, Lambert J, et al. Cross-education of muscle strength is greater with simulated than voluntary contractions. Mot Control. 1999;3:205–19.

    CAS  Google Scholar 

  82. 82.

    Evetovich TK, Housh TJ, Johnson GO, et al. The effect of concentric isokinetic strength training of the quadriceps femoris on electromyography and muscle strength in the trained and untrained limb. J Strength Cond Res. 2001;15:439–45.

    PubMed  CAS  Google Scholar 

  83. 83.

    Shima N, Ishida K, Katayama K, et al. Cross education of muscular strength during unilateral resistance training and detraining. Eur J Appl Physiol. 2002;86:287–94.

    PubMed  Article  Google Scholar 

  84. 84.

    Zhou S, Oakman A, Davie AJ. Effects of unilateral voluntary and electromyostimulation training on muscular strength on the contralateral limb. Hong Kong J Sports Med Sci. 2002;XIV:1–11.

    Google Scholar 

  85. 85.

    Farthing JP, Chilibeck PD. The effect of eccentric training at different velocities on cross-education. Eur J Appl Physiol. 2003;89:570–7.

    PubMed  Article  Google Scholar 

  86. 86.

    Hubal M, Gordish-Dressman H, Thompson PD, et al. Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc. 2005;37:964–72.

    PubMed  Google Scholar 

  87. 87.

    Munn J, Herbert RD, Hancock MJ, et al. Training with unilateral resistance exercise increases contralateral strength. Eur J Appl Physiol. 2005;99:1880–4.

    Article  Google Scholar 

  88. 88.

    Wilkinson SB, Tarnopolsky MA, Grant EJ. Hypertrophy with unilateral exercise occurs without increases in endogenous anabolic hormone concentration. Eur J Appl Physiol. 2006;98:546–55.

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Fimland MS, Helgerud J, Solstad GM, et al. Neural adaptations underlying cross-education after unilateral strength training. Eur J Appl Physiol. 2009;107:723–30.

    PubMed  Article  Google Scholar 

  90. 90.

    Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol. 2004;96:1861–6.

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Zhou S. Chronic neural adaptations to unilateral exercise: mechanisms of cross-education. Exerc Sport Sci Rev. 2000;28:177–84.

    PubMed  CAS  Google Scholar 

  92. 92.

    Lee M, Hinder MR, Gandevia SC, et al. The ipsilateral motor cortex contribution to cross-limb transfer of performance gains after ballistic motor practice. J Physiol. 2010;588:201–12.

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Lee M, Carrrol TJ. Cross education. Possible mechanisms for the contralateral effects of unilateral resistance training. Sports Med. 2007;37:1–14.

    PubMed  Article  Google Scholar 

  94. 94.

    Carrol TJ, Herbert RD, Munn J, et al. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol. 2006;101:1514–22.

    Article  Google Scholar 

  95. 95.

    Hellebrandt FA. Cross education: ipsilateral and contralateral effects of unimanual training. J App Physiol. 1951;4:136–44.

    CAS  Google Scholar 

  96. 96.

    Yasuda Y, Miyamura M. Cross transfer effects of muscular training on blood flow in the ipsilateral and contralateral forearms. Eur J Appl Physiol. 1983;51:321–9.

    CAS  Article  Google Scholar 

  97. 97.

    Lewis S, Thompson P, Areskog NH, et al. Transfer effect of endurance training to exercise with untrained limbs. Eur J Appl Physiol. 1980;44:25–34.

    CAS  Article  Google Scholar 

  98. 98.

    Pogliaghi S, Terziotti P, Cevese A, et al. Adaptations to endurance training in the healthy elderly: arm cranking versus leg cycling. Eur J Appl Physiol. 2006;97:723–31.

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Bhambani YN, Eriksson P, Gomes PS. Transfer effects of endurance training with the arms and legs. Med Sci Sports Exerc. 1991;23:1035–41.

    Google Scholar 

  100. 100.

    Loftin B, Boileau A, Massey BJ, et al. Effect of arm training on central and peripheral circulatory function. Med Sci Sports Exerc. 1988;20:136–41.

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Tordi N, Belli A, Mougin F, et al. Specific and transfer effects induced by arm and leg training. Int J Sports Med. 2001;22:517–24.

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Roesler K, Hoppeler H, Conley KE, et al. Transfer effect in endurance exercise: adaptations in trained and untrained muscles. Eur J Appl Physiol. 1985;1985(54):355–62.

    Article  Google Scholar 

  103. 103.

    Magel JR, Mcardel WD, Michael T, et al. Metabolic and cardiovascular adjustment to arm training. J Appl Physiol. 1978;45:75–9.

    PubMed  CAS  Google Scholar 

  104. 104.

    Swensen TC, Howley ET. Effect of one- and two-leg training on arm and two-leg maximum aerobic power. Eur J Appl Physiol Occup Physiol. 1993;66:285–8.

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Franklin BA. Aerobic exercise training programs for the upper body. Med Sci Sports Exerc. 1989;21:141–8.

    Google Scholar 

  106. 106.

    Ridge BR, Pyke FS, Roberts AD. Responses to kayak ergometer performance after kayak and bicycle ergometer training. Med Sci Sports Exerc. 1976;8:18–22.

    CAS  Google Scholar 

  107. 107.

    Viru A. Adaptation in sport training. Boca Raton: CRC; 1995.

    Google Scholar 

  108. 108.

    Mujika I, Padilla S, Pyne D, et al. Physiological changes associated with pre-event taper in athletes. Sports Med. 2004;34:891–927.

    PubMed  Article  Google Scholar 

  109. 109.

    Johnston RE, Quinn TJ, Ketzler R, et al. Strength training in female distance runners: impact on running economy. J Strength Cond Res. 1997;11:224–9.

    Google Scholar 

  110. 110.

    Hoff J, Helgerud J, Wisloff U. Maximal strength training improves work economy in trained female cross-country skiers. Med Sci Sports Exerc. 1999;31:870–7.

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Millet GP, Jaouen B, Borrani F, et al. Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med Sci Sports Exerc. 2002;34:1351–9.

    PubMed  Article  Google Scholar 

  112. 112.

    Spurs RW, Murphy AJ, Watsford MI. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89:1–7.

    Article  Google Scholar 

  113. 113.

    Chtara M, Chamari K, Chaouachi M, et al. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005;39:555–60.

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Mikkola J, Rusko H, Nummella A, et al. Concurrent endurance and explosive type strength training improves neuromuscular and anaerobic characteristics in young distance runners. Int J Sports Med. 2007;28:602–11.

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Izquierdo-Gabarren N, Gonzalez De Txabarri Esposito R, Garcia-Pallares J, et al. Concurrent endurance and strength training not to failure optimizes performance gain. Med Sci Sports Exerc. 2010;42:1191–9.

    PubMed  Google Scholar 

  116. 116.

    Bell GJ, Petersen SR, Quinney HA, et al. The effect of velocity-specific strength training on peak torque anaerobic rowing power. J Sports Sci. 1989;7:205–14.

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Bulgakova NZ, Vorontsov AR, Fomichenko TG. Improving the technical preparedness of young swimmers by using strength training. Sov Sport Rev. 1990;25:102–4.

    Google Scholar 

  118. 118.

    Tanaka H, Costill DL, Thomas R, et al. Dry-land resistance training for competitive swimming. Med Sci Sports Exerc. 1993;25:952–9.

    PubMed  CAS  Google Scholar 

  119. 119.

    Murray T, Grant S, Hagerman F, et al. A comparison of traditional and non-traditional off-season training programs of elite athletes. Med Sci Sports Exerc. 1994;26:375.

    Google Scholar 

  120. 120.

    Gallagher D, DiPietro L, Visek AJ, et al. The effects of concurrent endurance and resistance training on 2000-m rowing ergometer times in collegiate male rowers. J Strength Cond Res. 2010;24:1208–14.

    PubMed  Article  Google Scholar 

  121. 121.

    Ferrauti A, Bergermann M, Fernandez J. Effects of concurrent strength and endurance training on running performance and running economy in recreational marathon runners. J Strength Cond Res. 2010;24:2770–8.

    PubMed  Article  Google Scholar 

  122. 122.

    Sadowski J, Mastalerz A, Gromsz W, et al. Effectiveness of the power dry-land training programmes in youth swimmers. J Hum Kinet. 2012;32:77–86.

    PubMed  Article  Google Scholar 

  123. 123.

    Kraemer WJ, Patton JF, Gordon SE, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78:976–89.

    PubMed  CAS  Google Scholar 

  124. 124.

    Nelson AG, Arnall DA, Loy SF. Consequences of combining strength and endurance training regimes. Phys Ther. 1990;70:287–94.

    PubMed  CAS  Google Scholar 

  125. 125.

    Hakkinen K, Kraemer AM, Gorostiaga E, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89:42–52.

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Sale DG, MacDougall JD, Jacobs I, et al. Interaction between concurrent strength and endurance training. J Appl Physiol. 1990;68:260–70.

    PubMed  CAS  Google Scholar 

  127. 127.

    Ghilbeck PD, Syrotuik DG, Bell GJ. The effect of concurrent endurance and strength training on quantitative estimates of sarcolemmal and intermyofibrillar mitochondria. Int J Sport Med. 2002;23:33–9.

    Article  Google Scholar 

  128. 128.

    Shorten MR. Muscle elasticity and human performance. Med Sport Sci. 1987;25:1–18.

    Google Scholar 

  129. 129.

    Wilson GJ, Wood GA, Elliott BC. Optimal stiffness of series elastic component in a stretch-shortening cycle ability. J Appl Physiol. 1991;70:825–33.

    PubMed  CAS  Google Scholar 

  130. 130.

    Shephard RJ. General consideration. In: Shephard RJ, Astrand P-O, editors. Endurance in sport. London: Blackwell; 1992. p. 21–35.

    Google Scholar 

  131. 131.

    Clausen JP, Klausen K, Rasmussen B, et al. Central and peripheral circulatory changes after training of the arms or legs. Am J Physiol. 1973;225:675–82.

    PubMed  CAS  Google Scholar 

  132. 132.

    Selye H. The physiology and pathology of exposure to stress. Montreal: ACTA; 1950.

    Google Scholar 

  133. 133.

    Dudley GA, Fleck SJ. Strength and endurance training. Are they mutually exclusive? Sports Med. 1987;4:79–85.

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Leveritt M, Abernethy PJ, Barry BK, et al. Concurrent strength and endurance training. Sports Med. 1999;28:413–27.

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Gonzalez-Badillo JJ, Izquirdo M, Gorostiaga EM. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J Strength Cond Res. 2006;20:73–81.

    PubMed  Google Scholar 

  136. 136.

    Pyne D, Touretski G. An analysis of the training of Olympic Sprint Champion Alexandre Popov. Aust Swim Coach. 1993;10(5):5–14.

    Google Scholar 

  137. 137.

    Garcia-Pallares J, Garcia-Fernandes M, Sanches-Medina L, et al. Performance changes in world-class kayakers following two different training periodization models. Eur J Appl Physiol. 2010;110:99–107.

    PubMed  Article  Google Scholar 

  138. 138.

    Issurin VB. New horizons for the methodology and physiology of training periodization. Sports Med. 2010;40(3):189–206.

    PubMed  Article  Google Scholar 

  139. 139.

    McCarthy JP, Agre JC, Graf BK, et al. Compatibility of adaptive responses with combining strength and endurance training. Med Sci Sports Exerc. 1995;27:429–36.

    PubMed  CAS  Google Scholar 

  140. 140.

    Glowacki SP, Martin SE, Maurer A, et al. Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc. 2004;36:2119–27.

    PubMed  Google Scholar 

  141. 141.

    Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol. 1980;45:255–63.

    CAS  Article  Google Scholar 

  142. 142.

    Dudley GA, Djamil R. Incompatibility of endurance- and strength-training modes of exercises. J Appl Physiol. 1985;59:1446–51.

    PubMed  CAS  Google Scholar 

  143. 143.

    Costill DL, Coyle EF, Fink WF. Adaptations in skeletal muscles following strength training. J Appl Physiol. 1979;46:96–9.

    PubMed  CAS  Google Scholar 

  144. 144.

    Putman CT, Xu X, Gilles E, et al. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol. 2004;92:376–84.

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Ronnenstad BR, Hansen EA, Raastad T. High volume endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur J Appl Physiol. 2012;112:1457–66.

    Article  Google Scholar 

  146. 146.

    Elliott MC, Wagner PP, Chiu L. Power athletes and distance training. Physiological and biomechanical rationale for change. Sports Med. 2007;37:47–67.

    PubMed  Article  Google Scholar 

  147. 147.

    Fitts RH, Costill DI, Gardetto PR. Effect of swim exercise training on human muscle fiber function. J Appl Physiol. 1989;66:465–75.

    PubMed  CAS  Google Scholar 

  148. 148.

    Chromiak JA, Mulvaney DR. A review: the effects of combined strength and endurance training on strength development. J Appl Sport Sci Rev. 1990;4:55–60.

    Google Scholar 

  149. 149.

    Zatsiorsky VM, Kramer WJ. Science and practice of strength training. 2nd ed. Champaign: Human Kinetics; 2006.

    Google Scholar 

  150. 150.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81:1725–89.

    PubMed  CAS  Google Scholar 

  151. 151.

    Enoka RM. Morphological features and activation patterns of motor units. J Clin Neurophysiol. 1995;12:538–59.

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Semmmler JG, Enoka RM. Neural contributions to change in muscle strength. In: Zatsiorsky VM, editor. Biomechanics in sport. Performance enhancement and injury prevention. Encyclopedia of sports medicine, vol. IX. Oxford: Blackwell; 2000. p. 3–20.

  153. 153.

    Komi PV, Nikol C. Stretch-shortening cycle of muscle function. In: Zatsiorsky VM, editor. Biomechanics in sport. Performance enhancement and injury prevention. Encyclopedia of sports medicine, vol. IX. Oxford: Blackwell; 2000. p. 87–102.

  154. 154.

    Kramer WJ, Staron RS, Hagerman FC, et al. The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol. 1998;78:69–76.

    Article  Google Scholar 

  155. 155.

    Avecedo EO, Kramer WJ, Kamimori GH, et al. Stress hormones, effort sense, and perception stress during incremental exercise: an exploratory investigation. J Strength Cond Res. 2007;21:283–7.

    Article  Google Scholar 

  156. 156.

    Bell GJ, Syrotuik D, Socha D, et al. Effect of strength training and concurrent strength and endurance training on strength, testosterone, and cortisol. J Strength Cond Res. 1997;11(1):57–64.

    Google Scholar 

  157. 157.

    Bell JJ, Syrotuik D, Martin TP, et al. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentration in humans. Eur J Appl Physiol. 2000;81(5):418–27.

    PubMed  CAS  Article  Google Scholar 

  158. 158.

    Wang L, Masher H, Psilander N, et al. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol. 2011;111:1335–44.

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Hernandez JM, Fedele MJ, Farrell PA. Time course evaluation of protein synthesis and glucose uptake after acute resistance exercise in rats. J Appl Physiol. 2000;90:1142–9.

    Google Scholar 

  160. 160.

    Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol. 2001;91:1017–28.

    PubMed  CAS  Google Scholar 

  161. 161.

    Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda). 2006;21:48–60.

    CAS  Article  Google Scholar 

  162. 162.

    Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006;38:1965–70.

    PubMed  Article  Google Scholar 

  163. 163.

    Booth FW, Watson PA. Control of adaptations in protein levels in response to exercise. Fed Proc. 1985;44:2293–300.

    PubMed  CAS  Google Scholar 

  164. 164.

    Rennie MI, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr. 2000;20:457–83.

    PubMed  CAS  Article  Google Scholar 

  165. 165.

    Tanaka H. Effects of cross-training. Transfer of training effects on VO2max between cycling, running and swimming. Sports Med. 1994;8:330–9.

    Article  Google Scholar 

  166. 166.

    Loy SF, Hoffmann JJ, Holland GJ. Benefits and practical use of cross-training in sports. Sports Med. 1995;19:1–8.

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Foster C, Hector LL, Welsh R, et al. Effects of specific versus cross-training on running performance. Eur J Appl Physiol. 1995;70:367–72.

    CAS  Article  Google Scholar 

  168. 168.

    Ruby B, Robergs R, Leadbetter G, et al. Cross-training between cycling and running in untrained females. J Sports Med Phys Fit. 1996;36:246–54.

    CAS  Google Scholar 

  169. 169.

    Millet GP, Candau RB, Barbier B, et al. Modeling the transfers of training effects on performance in elite triathletes. Int J Sports Med. 2002;23:55–63.

    PubMed  CAS  Article  Google Scholar 

  170. 170.

    Millet GP, Voleck VE, Bentley DJ. Physiological differences between cycling and running. Lessons from triathletes. Sports Med. 2009;39:170–206.

    Article  Google Scholar 

Download references

Acknowledgments

No funding was used to assist in the preparation of this review. The author is grateful to Mr. Mike Garmise for editing the English text. The author has no conflicts of interest which are relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir B. Issurin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Issurin, V.B. Training Transfer: Scientific Background and Insights for Practical Application. Sports Med 43, 675–694 (2013). https://doi.org/10.1007/s40279-013-0049-6

Download citation

Keywords

  • Strength Training
  • Technical Skill
  • Endurance Training
  • Motor Imagery
  • Biofeedback Training