Skip to main content

Understanding and Treating Lateral Ankle Sprains and their Consequences

A Constraints-Based Approach

Abstract

Lateral ankle sprains are a common consequence of physical activity. If not managed appropriately, a cascade of negative alterations to both the joint structure and a person’s movement patterns continue to stress the injured ligaments. These alterations result in an individual entering a continuum of disability as evidenced by the ~30 % of ankle sprains that develop into chronic ankle instability (CAI) and up to 78 % of CAI cases that develop into post-traumatic ankle osteoarthritis (OA). Despite this knowledge, no significant improvements in treatment efficacy have been made using traditional treatment paradigms. Therefore, the purpose of this review is to (1) provide an overview of the consequences associated with acute lateral ankle sprains, CAI and post-traumatic ankle OA; (2) introduce the patient-, clinician-, laboratory (PCL)-oriented) model that addresses the lateral ankle sprains and their consequences from a constraints perspective; and (3) introduce the dynamic systems theory as the framework to illustrate how multiple post-injury adaptations create a singular pathology that predisposes individuals with lateral ankle sprains to fall into a continuum of disability. The consequences associated with lateral ankle sprains, CAI and ankle OA are similar and encompass alterations to the structure of the ankle joint (e.g. ligament laxity, positional faults, etc.) and the sensorimotor function responsible for proper ankle joint function (e.g. postural control, gait, etc.). Further, the impairments have been quantified across a range of patient-oriented (e.g. self-report questionnaires), clinician-oriented (e.g. bedside measures of range of motion and postural control), and laboratory-oriented (e.g. arthrometry, gait analysis) outcome measures. The interaction of PCL-oriented outcomes is critically important for understanding the phenomenon of CAI across the continuum of disability. Through the integration of all three sources of evidence, we can clearly see that an ankle sprain is more than just a peripheral musculoskeletal pathology with only local consequences. The dynamic systems theory illustrates that the organization of human movement/function is shaped by the interaction of (1) organismic constraints (health of the person); (2) task constraints; and (3) environmental constraints. However, ankle sprains increase the organismic constraints (i.e. changes in joint structure and sensorimotor function) that significantly hinder an individual’s function and may be the underlying cause for the continuum of disability associated with CAI. To treat and/or prevent an individual from entering the continuum of disability, greater protection of the ankle ligaments is needed immediately after injury. Subsequent rehabilitation should then focus on goal-oriented rehabilitation (i.e. quality of the movement pattern) rather that task-oriented rehabilitation (i.e. do these exercises). When evaluating patients with ankle inversion trauma and/or instability, it is imperative to remember that an ankle sprain is not simply a local joint injury; it can result in a constrained sensorimotor system that leads to a continuum of disability and life-long consequences such as high injury recurrence and decreased quality of life if not managed properly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311–9.

    PubMed  Google Scholar 

  2. 2.

    Fernandez WG, Yard EE, Comstock RD. Epidemiology of lower extremity injuries among U.S. high school athletes. Acad Emer Med. 2007;14(7):641–5.

    Google Scholar 

  3. 3.

    McKay GD. Ankle injuries in basketball: injury rate and risk factors. Br J Sports Med. 2001;35:103–8.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Konradsen L, Magnusson P. Increased inversion angle replication error in functional ankle instability. Knee Surg Sports Traumatol Arthrosc. 2000;8:246–51.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    McKeon PO. A new twist on ankle sprains: sensorimotor rehab keeps a local injury from developing into a cascade of disability. Ad Phys Ther Rehab. 2010;21(13):29–32.

    Google Scholar 

  6. 6.

    McKeon PO, Hubbard-Turner TJ, Wikstrom EA. Consequences of ankle inversion trauma: a novel recognition and treatment paradigm. In: Zaslav KR, editor. An international perspective on topics in sports medicine and sports injury. Rijeka: InTech; 2012.

    Google Scholar 

  7. 7.

    Hubbard TJ, Hertel J. Mechanical contributions to chronic lateral ankle instability. Sports Med. 2006;36(3):263–77.

    PubMed  Article  Google Scholar 

  8. 8.

    Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Br J Sports Med. 2005;39(3):1–4.

    Article  Google Scholar 

  9. 9.

    Smith RW, Reischl SF. Treatment of ankle sprains in young athletes. Am J Sports Med. 1986;14(6):465–71.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Peters JW, Trevino SG, Renstrom PA. Chronic lateral ankle instability. Foot Ankle. 1991;12(3):182–91.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364–75.

    PubMed  Google Scholar 

  12. 12.

    Harrington KD. Degenerative arthritis of the ankle secondary to long-standing lateral ligmanet instability. J Bone Joint Surg. 1979;61:354–61.

    PubMed  CAS  Google Scholar 

  13. 13.

    Hintermann B, Boss A, Schafer D. Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med. 2002;30(3):402–9.

    PubMed  Google Scholar 

  14. 14.

    Hirose K, Murakami G, Minowa T, et al. Lateral ligament injury of the ankle and associated cartilage degeneration in the talocural join: anatomic study using elderly cadavers. J Orthop Sci. 2004;9(1):37–43.

    PubMed  Article  Google Scholar 

  15. 15.

    Taga I, Shino K, Inoue N, et al. Articular cartilage lesions in ankles with lateral ligament injury: an arthroscopic study. Am J Sports Med. 1993;21:120–6.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Hashimoto T, Inokuchi S. A kinematic study of ankle joint instability due to rupture of the lateral ligaments. Foot Ankle Int. 1997;18:729–34.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Verhagen RA, de Keizer G, Van Dijk CN. Long-term follow-up of inversion trauma of the ankle. Arch Orthop Trauma Surg. 1995;114:92–6.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    WHO. Global Health Risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2012.

  19. 19.

    McKeon PO, Medina-McKeon JM, Mattacola CG, et al. Finding context: a new model for interpreting clinical evidence. Int J Athl Ther Train. 2011;16(5):10–3.

    Google Scholar 

  20. 20.

    Hoch MC, McKeon PO. Integrating contemporary models of motor control and health in chronic ankle instability. ATSHC. 2010;2(2):82–8.

    Google Scholar 

  21. 21.

    de Vries JS, Kingma I, Blakevoort L, et al. Difference in balance measures between patients with chronic ankle instability and patients after an acute ankle inversion trauma. Knee Surg Sports Traumatol Arthrosc. 2010;18(5):601–6.

    PubMed  Article  Google Scholar 

  22. 22.

    Evans T, Hertel J, Sebastianelli W. Bilateral deficits in postural control following lateral ankle sprain. Foot Ankle Int. 2004;25(11):833–9.

    PubMed  Google Scholar 

  23. 23.

    Brostrom L. Sprained ankles V: treatment and prognosis in recent ligament ruptures. Acta Chir Scand. 1966;132:537–50.

    PubMed  CAS  Google Scholar 

  24. 24.

    Youdas JW, McLean TJ, Krause DA, et al. Changes in active ankle dorsiflexion range of motion after acute inversion ankle sprain. J Sport Rehab. 2009;18:358–74.

    Google Scholar 

  25. 25.

    Aiken AB, Pelland L, Brison R, et al. Short-term natural recovery of ankle sprains following discharge from emergency departments. J Orthop Sports Phys Ther. 2008;38(9):566–71.

    PubMed  Google Scholar 

  26. 26.

    Denegar CR, Hertel J, Fonseca J. The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. J Orthop Sports Phys Ther. 2002;32(4):166–73.

    PubMed  Google Scholar 

  27. 27.

    Hubbard TJ, Hertel J. Anterior positional fault of the fibula after sub-acute lateral ankle sprains. Man Ther. 2008;13(1):63–7.

    PubMed  Article  Google Scholar 

  28. 28.

    Konradsen L, Olesen S, Hansen H. Ankle sensorimotor control and eversion strength after acute ankle inversion injuries. Am J Sports Med. 1998;26:72–7.

    PubMed  CAS  Google Scholar 

  29. 29.

    Koralewicz LM, Engh GA. Comparison of proprioception in arthritic and age-matched normal knees. J Bone Joint Surg Am. 2000;82-A(11):1582–8.

    PubMed  CAS  Google Scholar 

  30. 30.

    Holme E, Magnusson SP, Becher K, et al. The effect of supervised rehabilitation on strength, postural sway, position sense and reinjury risk after acute ankle ligament sprain. Scand J Med Sci Sports. 1999;9(2):104–9.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    McKeon PO, Hertel J. Systematic review of postural control and lateral ankle instability. Part 1: can deficits be detected with instrumented testing? J Athl Train. 2008;43(3):293–304.

    PubMed  Article  Google Scholar 

  32. 32.

    Wikstrom EA, Naik S, Lodha N, et al. Balance capabilities after lateral ankle trauma and intervention: a meta-analysis. Med Sci Sports Exerc. 2009;39(6):1287–95.

    Google Scholar 

  33. 33.

    Wikstrom EA, Naik S, Lodha N, et al. Bilateral balance impairments after lateral ankle trauma: a systematic review and meta-analysis. Gait Posture. 2010;32(2):82–6.

    PubMed  Article  Google Scholar 

  34. 34.

    Crosbie J, Green T, Refshauge K. Effects of reduced ankle dorsiflexion following lateral ligament sprain on temporal and spatial gait parameters. Gait Posture. 1999;9:167–72.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med. 2008;27(3):353–70, vii.

    Google Scholar 

  36. 36.

    Hiller CE, Kilbreath SL, Refshauge KM. Chronic ankle instability: evolution of the model. J Athl Train. 2011;46(2):133–41.

    PubMed  Article  Google Scholar 

  37. 37.

    Martin RL, Irrgang JJ. A survey of self-reported outcome instruments for the foot and ankle. J Orthop Sports Phys Ther. 2007;37(2):72–84.

    PubMed  Article  Google Scholar 

  38. 38.

    Hale SA, Hertel J. Reliability and sensitivity of the foot and ankle disability index in subjects with chronic ankle instability. J Athl Train. 2005;40(1):35–40.

    PubMed  Google Scholar 

  39. 39.

    Tropp H, Odenrick P, Gillquist J. Stabilometry recordings in functional and mechanical instability of the ankle joint. Int J Sports Med. 1985;6(3):180–2.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Hertel J, Denegar CR, Monroe MM, et al. Talocural and subtalar joint instability after lateral ankle sprain. Med Sci Sports Exer. 1999;31(11):1501–8.

    CAS  Article  Google Scholar 

  41. 41.

    Lentell G, Baas B, Lopez D, et al. The contributions of proprioceptive deficits, muscle function, and anatomic laxity to functional instability of the ankle. J Orthop Sports Phys Ther. 1995;21(4):206–15.

    PubMed  CAS  Google Scholar 

  42. 42.

    Louwerens JWK, Ginai AZ, Van Linge B, et al. Stress radiography of the talocrural and subtalar joints. Foot Ankle. 1995;16:148–55.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Hubbard TJ, Kramer LC, Denegar CR, et al. Contributing factors to chronic ankle instability. Foot Ankle Int. 2007;28(3):343–54.

    PubMed  Article  Google Scholar 

  44. 44.

    Hubbard TJ, Hertel J, Sherbondy P. Fibular position in those with self-reported chronic ankle instability. J Orthop Sports Phys Ther. 2006;36(1):3–9.

    PubMed  Google Scholar 

  45. 45.

    Wikstrom EA, Hubbard TJ. Talar positional fault in person with chronic ankle instability. Arch Phys Med Rehabil. 2010;91(8):1267–71.

    PubMed  Article  Google Scholar 

  46. 46.

    Hoch MC, McKeon PO. Normative range of weight-bearing lunge test performance asymmetry in healthy adults. Man Ther. 2011;16(5):516–9.

    PubMed  Article  Google Scholar 

  47. 47.

    Docherty CL, McLeod TCV, Shultz SJ. Postural control deficits in participants with functional ankle instability as measured by the balance error scoring system. Clin J Sports Med. 2006;16:203–8.

    Article  Google Scholar 

  48. 48.

    Gribble PA, Hertel J, Denegar CR, et al. The effects of fatigue and chronic ankle instability on dynamic postural control. J Athl Train. 2004;39(4):321–9.

    PubMed  Google Scholar 

  49. 49.

    Hertel J, Braham RA, Hale SA, et al. Simplifying the star excursion balance test: analyses of subjects with and without chronic ankle instability. J Orthop Sports Phys Ther. 2006;36(3):131–7.

    PubMed  Google Scholar 

  50. 50.

    Olmsted LC, Carcia CR, Hertel J, et al. Efficacy of the star excursion in balance tests in detecting reach deficits in subjects with chronic ankle instability. J Athl Train. 2002;37(4):501.

    Google Scholar 

  51. 51.

    Sedory EJ, McVey ED, Cross KM, et al. Arthrogenic muscle response of the quadriceps and hamstrings with chronic ankle instability. J Athl Train. 2007;42(3):355–60.

    PubMed  Google Scholar 

  52. 52.

    Caulfield BM, Garrett M. Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. Int J Sports Med. 2002;23(1):64–8.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Gribble PA, Hertel J, Denegar CR. Chronic ankle instability and fatigue create proximal joint alterations during performance of the star excursion balance test. Int J Sports Med. 2007;28(3):236–42.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Monaghan K, Dean E, Caulfield B. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional ankle instability of the ankle joint. Clin Biomech. 2006;21:168–74.

    Article  Google Scholar 

  55. 55.

    Delahunt E, Monaghan K, Caulfield B. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional ankle instability of the ankle joint. Am J Sports Med. 2006;34(12):1070–976.

    Article  Google Scholar 

  56. 56.

    Drewes LK, McKeon PO, Kerrigan DC, et al. Dorsiflexion deficit during jogging with chronic ankle instability. J Sci Med Sport. 2009;12(6):685–7.

    PubMed  Article  Google Scholar 

  57. 57.

    Hass CJ, Bishop M, Doidge D, et al. Chronic ankle instability alters central organization of movement. Am J Sports Med. 2010;38(4):829–34.

    PubMed  Article  Google Scholar 

  58. 58.

    Wikstrom EA, Bishop M, Inamdar AD, et al. Gait termination control strategies are altered in chronic ankle instability subjects. Med Sci Sports Exer. 2010;42(1):197–205.

    Article  Google Scholar 

  59. 59.

    Hubbard TJ, Hicks-Little CA, Cordova ML. Mechanical and sensorimotor implications with ankle osteoarthritis. Arch Phys Med Rehabil. 2009;90:1136–41.

    PubMed  Article  Google Scholar 

  60. 60.

    Khazzam M, Long JT, Marks RM, et al. Preoperative gait characterization of patients with ankle arthrosis. Gait Posture. 2006;24:85–93.

    PubMed  Article  Google Scholar 

  61. 61.

    Valderrabano V, Nigg BM, von Tscharner V, et al. Gait analysis in ankle osteoarthritis and total ankle replacement. Clin Biomech. 2007;22:894–904.

    Article  Google Scholar 

  62. 62.

    Horisberger M, Hintermann B, Valderrabano V. Alterations of plantar pressure distribution in posttraumatic end-stage ankle osteoarthritis. Clin Biomech. 2009;24(3):303–7.

    Article  Google Scholar 

  63. 63.

    Valderrabano V, von Tscharner V, Nigg BM, et al. Lower leg muscle atrophy in ankle osteoarthritis. J Orthop Res. 2006;24:2159–69.

    PubMed  Article  Google Scholar 

  64. 64.

    Nuesch C, Valderrabano V, Huber C, et al. Gait patterns of asymmetric ankle osteoarthritis patients. Clin Biomech. 2012;27:613–8.

    Article  Google Scholar 

  65. 65.

    Nüesch C, Huber C, Pagenstert G, et al. Muscle activation of patients suffering from asymmetric ankle osteoarthritis during isometric contractions and level walking: a time frequency analysis. J Electromyogr Kinesiol. 2012;22(6):939–46.

    PubMed  Article  Google Scholar 

  66. 66.

    Wikstrom EA, Anderson RB. Alterations in gait initiation are present in those with post-traumatic ankle osteoarthritis: a pilot study. J Appl Biomech. 2012. (Epub 2012 Jul 6).

  67. 67.

    Wiewiorski M, Dopke K, Steiger C, et al. Muscular atrophy of the lower leg in unilateral post traumatic osteoarthritis of the ankle joint. Int Orthop. 2012;36(10):2079–85.

    PubMed  Article  Google Scholar 

  68. 68.

    Davids K, Glazier P, Araujo D, et al. Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Med. 2003;33(4):245–60.

    PubMed  Article  Google Scholar 

  69. 69.

    Davids K, Glazier P. Deconstructing neurobiological coordination: the role of the biomechanics-motor control nexus. Exerc Sport Sci Rev. 2010;38(2):86–90.

    PubMed  Article  Google Scholar 

  70. 70.

    McKeon PO, Hertel J. The dynamical-systems approach to studying athletic injury. Athl Ther Today. 2006;11(1):31–3.

    Google Scholar 

  71. 71.

    Latash ML, Scholz JP, Schoner G. Motor control strategies revealed in the structure of motor variability. Exer Sport Sci Rev. 2002;30:26–31.

    Article  Google Scholar 

  72. 72.

    Stergiou N, Harbourne R, Cavanaugh J. Optimal movement variability: a new theoretical perspective for neurological physical therapy. J Neurol Phys Ther. 2006;30(3):120–9.

    PubMed  Google Scholar 

  73. 73.

    McKeon PO, Hertel J. Spatiotemporal postural control deficits are present in those with chronic ankle instability. BMC Musculoskelet Disord. 2008;9:76.

    PubMed  Article  Google Scholar 

  74. 74.

    Drewes LK, McKeon PO, Paolini G, et al. Altered ankle kinematics and shank-rear-foot coupling in those with chronic ankle instability. J Sport Rehab. 2009;18(3):375–88.

    Google Scholar 

  75. 75.

    Beynnon BD, Renstrom PA, Alosa DM, et al. Ankle ligament injury risk factors: a prospective study of college athletes. J Orthop Res. 2001;19(2):213–20.

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Yeung MS, Chan KM, So CH, et al. An epidemiological survey on ankle sprain. Br J Sports Med. 1994;28(2):112–6.

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Br J Sports Med. 2005;39(3):e14.

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Mattacola CG, Dwyer MK. Rehabilitation of the ankle after acute sprain or chronic instability. J Athl Train. 2002;37(4):413–29.

    PubMed  Google Scholar 

  79. 79.

    Hubbard TJ, Wikstrom EA. Ankle sprain: pathophysiology, predisposing factors, and management strategies. Open Access J Sports Med. 2010;1:115–22.

    Article  Google Scholar 

  80. 80.

    Beynnon BD, Renstrom PA, Haugh L, et al. A prospective, randomized clinical investigation of the treatment of first-time ankle sprains. Am J Sports Med. 2006;34(9):1401–12.

    PubMed  Article  Google Scholar 

  81. 81.

    Lamb SE, Marsh JL, Nakash R, et al. Mechanical supports for acute, severe ankle sprain: a pragmatic, multicentre, randomised controlled trial. Lancet. 2009;373:575–81.

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Wikstrom EA, McKeon PO. Manipulative therapy effectiveness following acute lateral ankle sprains: a systematic review. Athl Train Sports Health Care. 2011;6(3):271–9.

    Article  Google Scholar 

  83. 83.

    McKeon PO. First words: cultivating functional variability. The dynamical systems approach to rehabilitation. Athl Ther Today. 2009;14(4):1–3.

    Google Scholar 

  84. 84.

    McKeon PO. Dynamic systems theory as a guide to balance training development for chronic ankle instability. Athl Train Sports Health Care. 2012;4(5):230–6.

    Article  Google Scholar 

  85. 85.

    McKeon PO, Ingersoll CD, Kerrigan DC, et al. Balance training improves function and postural control in those with chronic ankle instability. Med Sci Sports Exerc. 2008;40(10):1810–9.

    PubMed  Article  Google Scholar 

  86. 86.

    Hilgendorf JR, Vela LI, Gobert DV. Influence of vestibular-ocular reflex training on postural stability, dynamic visual acuity, and gaze stabilization in patients with chronic ankle instability. Athl Train Sports Health Care. 2012;4(5):220–9.

    Article  Google Scholar 

  87. 87.

    Sandrey MA, Schafer J. Effects of a 4-week dynamic balance-training program supplemented with Graston instrumented-assisted soft tissue mobilization for chronic ankle instability. Med Sci Sports Exer. 2011;43(5):529.

    Google Scholar 

  88. 88.

    Strauss JE, Forsberg JA, Lippert FG. Chronic lateral ankle instability and associated conditions: a rationale for treatment. Foot Ankle Int. 2007;28(10):1041–4.

    PubMed  Article  Google Scholar 

  89. 89.

    Alanen V, Taimela S, Kinnunen J, et al. Incidence and clinical significance of bone bruises after supination injury of the ankle: a double-blind, prospective study. J Bone Joint Surg Br. 1998;80(3):513–5.

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Hertel J, Denegar CR, Monroe MM, et al. Talocrural and subtalar joint instability after lateral ankle sprain. Med Sci Sports Exerc. 1999;31(11):1501–8.

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Valderrabano V, Horsiberger M, Russell I, et al. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009;467(7):1800–6.

    PubMed  Article  Google Scholar 

  92. 92.

    Avci S, Sayh U. Comparison of the results of short-term rigid and semi-rigid cast immobilization for the treatment of grade 3 inversion injuries of the ankle. Injury. 1998;29:581–4.

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Cetti R, Christensen SE, Corfitzen MT. Ruptured fibular ankle ligament plaster or pilton brace? Br J Sport Med. 1984;18:104–9.

    CAS  Article  Google Scholar 

  94. 94.

    Hubbard TJ, Cordova ML. Mechanical instability after an acute lateral ankle sprain. Arch Phys Med Rehabil. 2009;90(7):1142–6.

    PubMed  Article  Google Scholar 

  95. 95.

    Freeman MA. Treatment of ruptures of the lateral ligament of the ankle. J Bone Joint Surg. 1965;47B:661–8.

    Google Scholar 

  96. 96.

    Konradsen L, Holmer P, Sondergaard L. Early mobilizing treatment for grade III ankle ligmanet injuries. Foot Ankle. 1991;12:660–8.

    Article  Google Scholar 

  97. 97.

    Munk B, Holm-Christensen K, Lind T. Long-term outcome after ruptured lateral ankle ligaments. Acta Orthop Scand. 1995;66:452–4.

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

No funding was provided for the preparation of this paper and none of the authors have had a real or perceived conflict of interest to report.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erik A. Wikstrom.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wikstrom, E.A., Hubbard-Turner, T. & McKeon, P.O. Understanding and Treating Lateral Ankle Sprains and their Consequences. Sports Med 43, 385–393 (2013). https://doi.org/10.1007/s40279-013-0043-z

Download citation

Keywords

  • Ankle Sprain
  • Dynamic System Theory
  • Joint Position Sense
  • Sensorimotor System
  • Organismic Constraint