Skip to main content

Advertisement

Log in

Sodium Phosphate as an Ergogenic Aid

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Legal nutritional ergogenic aids can offer athletes an additional avenue to enhance their performance beyond what they can achieve through training. Consequently, the investigation of new nutritional ergogenic aids is constantly being undertaken. One emerging nutritional supplement that has shown some positive benefits for sporting performance is sodium phosphate. For ergogenic purposes, sodium phosphate is supplemented orally in capsule form, at a dose of 3–5 g/day for a period of between 3 and 6 days. A number of exercise performance-enhancing alterations have been reported to occur with sodium phosphate supplementation, which include an increased aerobic capacity, increased peak power output, increased anaerobic threshold and improved myocardial and cardiovascular responses to exercise. A range of mechanisms have been posited to account for these ergogenic effects. These include enhancements in 2,3-Diphosphoglycerate (2,3-DPG) concentrations, myocardial efficiency, buffering capacity and adenosine triphosphate/phosphocreatine synthesis. Whilst there is evidence to support the ergogenic benefits of sodium phosphate, many studies researching this substance differ in terms of the administered dose and dosing protocol, the washout period employed and the fitness level of the participants recruited. Additionally, the effect of gender has received very little attention in the literature. Therefore, the purpose of this review is to critically examine the use of sodium phosphate as an ergogenic aid, with a focus on identifying relevant further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benardot D. Advanced sports nutrition. Champaign: Human Kinetics; 2006.

    Google Scholar 

  2. Maughan RJ. Nutritional ergogenic aids and exercise performance. Nutr Res Rev. 1999;12(2):255–80.

    Article  PubMed  CAS  Google Scholar 

  3. Fukuda DH, Smith AE, Kendall KL, et al. Phosphate supplementation: an update. Strength Cond J. 2010;32(5):53–6.

    Article  Google Scholar 

  4. Kreider RB, Wilborn CD, Taylor L, et al. ISSN exercise and sport nutrition review: research and recommendations. J Int Soc Sports Nutr. 2010;7:7–50.

    Article  PubMed  Google Scholar 

  5. Gaasbeek A, Meinders AE. Hypophosphatemia: an update on its etiology and treatment. Am J Med. 2005;118(10):1094–101.

    Article  PubMed  CAS  Google Scholar 

  6. Groff JL, Gropper SS. Macrominerals: advanced nutrition and human metabolism. Belmont: Wadsworth; 2000.

    Google Scholar 

  7. Kreider RB. Phosphate supplementation in exercise and sport. In: Driskell JA, Wolinsky I, editors. Macroelements, water and electrolytes in sport nutrition. Boca Raton: CRC Press; 1999. p. 29–46.

    Google Scholar 

  8. Tremblay MS, Galloway SDR, Sexsmith JR. Ergogenic effects of phosphate loading: physiological fact or methodological fiction? Can J Appl Physiol. 1994;19(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  9. Markowitz GS, Perazella MA. Acute phosphate nephropathy. Kidney Int. 2009;76(10):1027–34.

    Article  PubMed  CAS  Google Scholar 

  10. Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010;24(9):3562–71.

    Article  PubMed  CAS  Google Scholar 

  11. Burnett SM, Gunawardene SC, Bringhurst FR, et al. Regulation of C-Terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.

    Article  PubMed  CAS  Google Scholar 

  12. Czuba M, Zajac A, Poprzecki S, et al. Effects of sodium phosphate loading on aerobic power and capacity in off road cyclists. J Sports Sci Med. 2009;8(4):591–9.

    Google Scholar 

  13. Avioli L. Calcium and phosphorus. In: Shils M, Young V, editors. Modern nutrition in health and disease. Philadelphia: Lea & Febiger; 1988. p. 254–88.

    Google Scholar 

  14. Guyton A. Textbook of medical physiology. 8th ed. Philadelphia: WB Saunders; 1990.

    Google Scholar 

  15. Benesch R, Benesch RE. Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature. 1969;221(5181):618–22.

    Article  PubMed  CAS  Google Scholar 

  16. Berner YN, Shike M. Consequences of phosphate imbalance. Annu Rev Nutr. 1988;8:121–48.

    Article  PubMed  CAS  Google Scholar 

  17. Cade R, Conte M, Zauner C, et al. Effects of phosphate loading on 2,3-diphosphoglycerate and maximal oxygen uptake. Med Sci Sports Exerc. 1984;16(3):263–8.

    PubMed  CAS  Google Scholar 

  18. Kreider RB, Miller GW, Schenck D, et al. Effects of phosphate loading on metabolic and myocardial responses to maximal and endurance exercise. Int J Sport Nutr. 1992;2(1):20–47.

    PubMed  CAS  Google Scholar 

  19. Kreider RB, Miller GW, Williams MH, et al. Effects of phosphate loading on oxygen uptake, ventilatory anaerobic threshold, and run performance. Med Sci Sports Exerc. 1990;22(2):250–5.

    PubMed  CAS  Google Scholar 

  20. Bremner K, Bubb WA, Kemp GJ, et al. The effect of phosphate loading on erythrocyte 2,3-bisphosphoglycerate levels. Clin Chim Acta. 2002;323:111–4.

    Article  PubMed  CAS  Google Scholar 

  21. Duhm J. Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflügers Arch. 1971;326(4):341–56.

    Article  PubMed  CAS  Google Scholar 

  22. Goss F, Robertson R, Riechman S, et al. Effect of potassium phosphate supplementation on perceptual and physiological responses to maximal graded exercise. Int J Sport Nutr Exerc Metab. 2001;11(1):53–62.

    PubMed  CAS  Google Scholar 

  23. Goran M, Fields DA, Hunter GR, et al. Total body fat does not influence maximal aerobic capacity. Int J Obes. 2000;24:841–8.

    Article  CAS  Google Scholar 

  24. McArdle DW, Katch IF, Katch LV. Essentials of exercise physiology. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  25. Folland JP, Stern R, Brickley G. Sodium phosphate loading improves laboratory cycling time-trial performance in trained cyclists. J Sci Med Sport. 2008;11(5):464–8.

    Article  PubMed  Google Scholar 

  26. Stewart I, McNaughton L, Davies P, et al. Phosphate loading and the effects on VO2max in trained cyclists. Res Q Exerc Sport. 1990;61(1):80–4.

    Article  PubMed  CAS  Google Scholar 

  27. Llohn AH, Vetlesen A, Fagerhol MK, et al. The effect of pre-storage cooling on 2,3-DPG levels in red cells stored in SAG-M. Transfus Apher Sci. 2005;33(2):113–8.

    Article  PubMed  Google Scholar 

  28. Czuba M, Zajac A, Poprzecki S, et al. The influence of sodium phosphate supplementation on VO2max, serum 2,3-diphosphoglycerate level and heart rate in off-road cyclists. J Hum Kinet. 2008;19:149–64.

    Article  Google Scholar 

  29. Rubin MF, Narins RG. Hypophosphatemia: pathophysiological and practical aspects of its therapy. Semin Nephrol. 1990;10(6):536–45.

    PubMed  CAS  Google Scholar 

  30. Fuller TJ, Nichols WW, Brenner BJ, et al. Reversible depression in myocardial performance in dogs with experimental phosphorus deficiency. J Clin Invest. 1978;62:1194–200.

    Article  PubMed  CAS  Google Scholar 

  31. Newman JH, Neff TA, Ziporin P. Acute respiratory-failure associated with hypophosphatemia. N Engl J Med. 1977;296(19):1101–3.

    Article  PubMed  CAS  Google Scholar 

  32. O’Connor LR, Wheeler WS, Bethune JE. Effect of hypophosphatemia on myocardial performance in man. N Engl J Med. 1977;297(17):901–3.

    Article  PubMed  Google Scholar 

  33. Lichtman MA, Miller DR, Cohen J, et al. Reduced red cell glycolysis, 2, 3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin-oxygen affinity caused by hypophosphatemia. Ann Intern Med. 1971;74(4):562–8.

    Article  PubMed  CAS  Google Scholar 

  34. Stoff JS. Phosphate homeostasis and hypophosphatemia. Am J Med. 1982;72:489–95.

    Article  PubMed  CAS  Google Scholar 

  35. Zazzo JF, Troche G, Ruel P, et al. High incidence of hypophosphatemia in surgical intensive care patients: efficacy of phosphorus therapy on myocardial function. Intensive Care Med. 1995;21(10):826–31.

    Article  PubMed  CAS  Google Scholar 

  36. Farber M, Sullivan T, Fineberg N, et al. Effect of decrease O2 affinity of hemoglobin on work performance during exercise in healthy humans. J Lab Clin Med. 1984;104:166–75.

    PubMed  CAS  Google Scholar 

  37. Lunne D, Zauner C, Cade R, et al. Effect of phosphate loading on RBC 2–3 DPG, cardiac-output, and oxygen utilization at rest and during vigorous exercise. Clin Res. 1990;28(5):810.

    Google Scholar 

  38. Bredle DL, Stager JM, Brechue WF, et al. Phosphate supplementation, cardiovascular function, and exercise performance in humans. J Appl Physiol. 1988;65(4):1821–6.

    PubMed  CAS  Google Scholar 

  39. Wu F, Zhang EY, Zhang J, et al. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts. J Physiol. 2008;586(17):4193–208.

    Article  PubMed  CAS  Google Scholar 

  40. Vander AJ, Shermanm JH, Luciano DS. Human physiology: the mechanisms of body function. 6th ed. New York: McGraw Hill; 1994.

    Google Scholar 

  41. Galloway SDR, Tremblay MS, Sexsmith JR, et al. The effects of acute phosphate supplementation in subjects of different aerobic fitness levels. Eur J Appl Physiol. 1996;72:224–30.

    Article  CAS  Google Scholar 

  42. Chasiotis D. Role of cyclic AMP and inorganic phosphate in the regulation of muscle glycogenolysis during exercise. Med Sci Sports Exerc. 1988;20(6):545–50.

    PubMed  CAS  Google Scholar 

  43. Brazy PC, Mandel LJ, Gullans SR, et al. Interactions between phosphate and oxidative metabolism in proximal renal tubules. Am J Physiol Renal Physiol. 1984;16(4):575–81.

    Google Scholar 

  44. Passonneau JV, Lowry OH. Phosphofructokinase and the Pasteur effect. Mol Cell Biol Res Commun. 1962;7:10–5.

    CAS  Google Scholar 

  45. Brazy PC, Gullans SR, Mandel LJ, et al. Metabolic requirement for inorganic phosphate by the rabbit proximal tubule. Evidence for a crabtree effect. J Clin Invest. 1982;70(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  46. Brazy PC, Mandel LJ. Does the availability of inorganic phosphate regulate cellular oxidative metabolism. News Physiol Sci. 1986;1:100–3.

    CAS  Google Scholar 

  47. Embden G, Grafe E, Schmitz E. Increase of working capacity through administration of phosphate. Z Phys Chem. 1921;113:67–107.

    CAS  Google Scholar 

  48. Riabuschinsky NP. The effect of phosphate on work and respiratory exchange. Z Gesamte Exp Med. 1930;72(1):20–31.

    Article  Google Scholar 

  49. Flinn F. The so-called action of sodium in delaying onset of fatigue. Public Health Rep. 1926;41:1463–76.

    Article  CAS  Google Scholar 

  50. Johnson W, Black D. Comparison of effects of certain blood alkalinizers and glucose upon competitive endurance performance. J Appl Physiol. 1953;5:577–8.

    PubMed  CAS  Google Scholar 

  51. Keller W, Kraut H. Work and nutrition. World Rev Nutr Diet. 1959;3:65–81.

    CAS  Google Scholar 

  52. Mannix ET, Stager JM, Harris A, et al. Oxygen delivery and cardiac output during exercise following oral phosphate-glucose. Med Sci Sports Exerc. 1990;22(3):341–7.

    PubMed  CAS  Google Scholar 

  53. Schenck D, Kreider RB, Miller GW, et al. Effects of phosphate loading on 40 km cycling performance. Med Sci Sports Exerc. 1991;23(4):S76.

    Google Scholar 

  54. Brennan KM, Connolly DAJ. Effects of sodium phosphate supplementation on maximal oxygen consumption and blood lactate. Med Sci Sports Exerc. 2001;33(5):S164.

    Google Scholar 

  55. Chobanian MC, Anderson ME, Brazy PC. An NMR-study of cellular phosphates and membrane-transport in renal proximal tubules. Am J Physiol Renal Physiol. 1995;268(3):F375–84.

    CAS  Google Scholar 

  56. West JS, Ayton T, Wallman KE, Guelfi KJ. The effect of 6 days of sodium phosphate supplementation on appetite, energy intake, and aerobic capacity in trained men and women. Int J Sport Nutr Exerc Metab. 2012;22(6):422–9.

    PubMed  CAS  Google Scholar 

  57. O’Brien M. Women and sport. Appl Ergon. 1985;16(1):25–39.

    Article  PubMed  Google Scholar 

  58. Casais MN, Rosa Diez G, Pérez S, et al. Hyperphosphatemia after sodium phosphate laxatives in low risk patients: Prospective study. World J Gastroenterol. 2009;15(47):5960–5.

    Google Scholar 

  59. Brodthagen UA, Norregaard Hansen K, et al. Red cell 2,3-DPG, ATP, and mean cell volume in highly trained athletes: effect of long-term submaximal exercise. Eur J Appl Physiol Occup Physiol. 1985;53(4):334–8.

    Google Scholar 

  60. Hespel P, Lijnen P, Fagard R, et al. Effects of training on erythrocyte 2,3-diphosphoglycerate in normal men. Eur J Appl Physiol Occup Physiol. 1988;57(4):456–61.

    Article  PubMed  CAS  Google Scholar 

  61. Mairbaurl H, Humpeler E, Schwaberger G, et al. Training-dependent changes of red-cell density and erythrocytic oxygen-transport. J Appl Physiol. 1983;55(5):1403–7.

    PubMed  CAS  Google Scholar 

  62. Remes K, Vuopio P, Harkonen M. Effect of long-term training and acute physical exercise on red cell 2,3-diphosphoglycerate. Eur J Appl Physiol Occup Physiol. 1979;42(3):199–207.

    Article  PubMed  CAS  Google Scholar 

  63. Humpeler E, Amor H. Sex differences in the oxygen affinity of hemoglobin. Pflügers Arch. 1973;343(2):151–6.

    Article  PubMed  CAS  Google Scholar 

  64. Samaja M, Rovida E, Motterlini R, et al. Human red cell age oxygen affinity and oxygen transport. Respir Physiol. 1990;79(1):69–80.

    Article  PubMed  CAS  Google Scholar 

  65. Bonner HW, Tate CA, Buffington CK. Changes in erythrocyte 2,3 diphosphoglycerate in women following short term maximal exercise. Eur J Appl Physiol Occup Physiol. 1975;34(4):227–32.

    Article  PubMed  CAS  Google Scholar 

  66. Janse de Jonge XAK. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33(11):833–51.

    Article  Google Scholar 

  67. Dick IM, Devine A, Beilby J, et al. Effects of endogenous estrogen on renal calcium and phosphate handling in elderly women. Am J Physiol Endocrinol Metab. 2005;288:430–5.

    Article  Google Scholar 

  68. Birch K. Circamensal rhythms in physical performance. Biol Rhythm Res. 2000;31(1):1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No funding was provided to support the writing and preparation of this manuscript. There are no relevant conflicts of interest for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Buck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, C.L., Wallman, K.E., Dawson, B. et al. Sodium Phosphate as an Ergogenic Aid. Sports Med 43, 425–435 (2013). https://doi.org/10.1007/s40279-013-0042-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0042-0

Keywords

Navigation