High-Intensity Interval Training, Solutions to the Programming Puzzle

Part I: Cardiopulmonary Emphasis

Abstract

High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their ‘red zone,’ which generally means reaching at least 90 % of their maximal oxygen uptake (\( \dot{V} \)O2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90 % of \( \dot{V} \)O2max (T@\( \dot{V} \)O2max). In addition to T@\( \dot{V} \)O2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@\( \dot{V} \)O2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10.

    PubMed  Article  Google Scholar 

  2. 2.

    Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:32–53.

    Google Scholar 

  3. 3.

    Billat LV. Interval training for performance: a scientific and empirical practice: special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;1:13–31.

    Article  Google Scholar 

  4. 4.

    Billat LV. Interval training for performance: a scientific and empirical practice: special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med. 2001;31:75–90.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32:53–73.

    PubMed  Article  Google Scholar 

  6. 6.

    Laursen PB. Interval training for endurance. In: Mujika I, editor. Endurance training: science and practice (pp. 41–50). Vitoria-Gasteiz: Iñigo Mujika; 2012. ISBN 978-84-939970-0-7.

  7. 7.

    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—Part II: recommendations for training. Sports Med. 2011;41:741–56.

    PubMed  Article  Google Scholar 

  8. 8.

    Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–11.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(Suppl. 2):11–23.

    PubMed  Article  Google Scholar 

  10. 10.

    Astrand I, Astrand PO, Christensen EH, et al. Intermittent muscular work. Acta Physiol Scand. 1960;48:448–53.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Astrand I, Astrand PO, Christensen EH, et al. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand. 1960;48:454–60.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Christensen EH, Hedman R, Saltin B. Intermittent and continuous running. (A further contribution to the physiology of intermittent work.). Acta Physiol Scand. 1960;50:269–86.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med. 1992;13:528–33.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Midgley AW, McNaughton LR. Time at or near VO2max during continuous and intermittent running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness. 2006;46:1–14.

    PubMed  CAS  Google Scholar 

  15. 15.

    Midgley AW, McNaughton LR, Wilkinson M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006;36:117–32.

    PubMed  Article  Google Scholar 

  16. 16.

    Altenburg TM, Degens H, van Mechelen W, et al. Recruitment of single muscle fibers during submaximal cycling exercise. J Appl Physiol. 2007;103:1752–6.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241:45–57.

    PubMed  CAS  Google Scholar 

  18. 18.

    Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med. 2007;37:857–80.

    PubMed  Article  Google Scholar 

  19. 19.

    Vollaard NB, Constantin-Teodosiu D, Fredriksson K, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106:1479–86.

    PubMed  Article  Google Scholar 

  20. 20.

    Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–51.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Buchheit M, Kuitunen S, Voss SC, et al. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26:94–105.

    PubMed  Article  Google Scholar 

  22. 22.

    Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. Int J Sports Med. 2000;21:96–101.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Billat LV, Slawinksi J, Bocquet V, et al. Very short (15 s–15 s) interval-training around the critical velocity allows middle-aged runners to maintain VO2 max for 14 minutes. Int J Sports Med. 2001;22:201–8.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Faisal A, Beavers KR, Robertson AD, et al. Prior moderate and heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance athletes. J Appl Physiol. 2009;106:1553–63.

    PubMed  Article  Google Scholar 

  25. 25.

    Lepretre PM, Lopes P, Koralsztein JP, et al. Fatigue responses in exercise under control of VO2. Int J Sports Med. 2008;29:199–205.

    PubMed  Article  Google Scholar 

  26. 26.

    Mortensen SP, Damsgaard R, Dawson EA, et al. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J Physiol. 2008;586:2621–35.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Richard R, Lonsdorfer-Wolf E, Dufour S, et al. Cardiac output and oxygen release during very high-intensity exercise performed until exhaustion. Eur J Appl Physiol. 2004;93:9–18.

    PubMed  Article  Google Scholar 

  28. 28.

    Christmass MA, Dawson B, Arthur PG. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise. Eur J Appl Physiol Occup Physiol. 1999;80:436–47.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Christmass MA, Dawson B, Passeretto P, et al. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise. Eur J Appl Physiol. 1999;80:423–35.

    CAS  Article  Google Scholar 

  30. 30.

    Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol. 2007;293:H133–41.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    James DV, Barnes AJ, Lopes P, et al. Heart rate variability: response following a single bout of interval training. Int J Sports Med. 2002;23:247–51.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Mourot L, Bouhaddi M, Tordi N, et al. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol 2004; 92:508–17.

    PubMed  Article  Google Scholar 

  33. 33.

    Al Haddad H, Laursen PB, Ahmaidi S, et al. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform. 2009;4:435–47.

    Google Scholar 

  34. 34.

    Hoff J, Helgerud J. Endurance and strength training for soccer players: physiological considerations. Sports Med. 2004;3:165–80.

    Article  Google Scholar 

  35. 35.

    Buchheit M. The 30–15 Intermittent Fitness Test: a new intermittent running field test for intermittent sport players—part 1. Approches du Handball. 2005;87:27–34.

    Google Scholar 

  36. 36.

    Buchheit M, Al Haddad H, Chivot A, et al. Effect of in- versus out-of-water recovery on repeated swimming sprint performance. Eur J Appl Physiol 2010;108:321–7.

    Google Scholar 

  37. 37.

    Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42:587–605.

    PubMed  Article  Google Scholar 

  38. 38.

    Metcalfe RS, Babraj JA, Fawkner SG, et al. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112:2767–75.

    PubMed  Article  Google Scholar 

  39. 39.

    Hood MS, Little JP, Tarnopolsky MA, et al. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–56.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Trilk JL, Singhal A, Bigelman KA, et al. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol. 2011;111:1591–7.

    PubMed  Article  Google Scholar 

  41. 41.

    Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Assoc, Inc.; 1988. p. 599.

    Google Scholar 

  42. 42.

    Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.

    PubMed  Google Scholar 

  43. 43.

    Buchheit M, Laursen PB, Kuhnle J, et al. Game-based training in young elite handball players. Int J Sports Med. 2009;30:251–8.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Castagna C, Impellizzeri FM, Chaouachi A, et al. Physiological responses to ball-drills in regional level male basketball players. J Sports Sci. 2011;29:1329–36.

    PubMed  Article  Google Scholar 

  45. 45.

    Fernandez-Fernandez J, Sanz-Rivas D, Sanchez-Muñoz C, et al. Physiological responses to on-court vs running interval training in competitive tennis players. J Sports Sci Med. 2011;10:540–5.

    Google Scholar 

  46. 46.

    Impellizzeri FM, Marcora SM, Castagna C, et al. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med. 2006;27:483–92.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Sheppard JM, Borgeaud R. Skill based conditioning: a perspective from elite volleyball. NSCA hot topic series. 2009; December [online]. Available from URL: http://www.nsca-lift.org. [Accessed 12 Dec 2011].

  48. 48.

    Gabbett TJ. Skill-based conditioning games as an alternative to traditional conditioning for rugby league players. J Strength Cond Res. 2006;20:309–15.

    PubMed  Article  Google Scholar 

  49. 49.

    Hill-Haas SV, Dawson B, Impellizzeri FM, et al. Physiology of small-sided games training in football: a systematic review. Sports Med. 2011;41:199–220.

    PubMed  Article  Google Scholar 

  50. 50.

    Buchheit M, Lepretre PM, Behaegel AL, et al. Cardiorespiratory responses during running and sport-specific exercises in handball players. J Sci Med Sport. 2009;12:399–405.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Castagna C, Belardinelli R, Impellizzeri FM, et al. Cardiovascular responses during recreational 5-a-side indoor-soccer. J Sci Med Sport 2007;10:89–95.

    Google Scholar 

  52. 52.

    Owen AL, Wong del P, Paul D, Dellal A. Effects of a periodized small-sided game training intervention on physical performance in elite professional soccer. J Strength Cond Res. 2012;26:2748–54.

    Google Scholar 

  53. 53.

    Hill-Haas SV, Coutts AJ, Rowsell GJ, et al. Generic versus small-sided game training in soccer. Int J Sports Med. 2009;30:636–42.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Dellal A, Lago-Penas C, Wong del P, et al. Effect of the number of ball contacts within bouts of 4 vs. 4 small-sided soccer games. Int J Sports Physiol Perform 2011;6:322–33.

    Google Scholar 

  55. 55.

    Rampinini E, Impellizzeri F, Castagna C, et al. Factors influencing physiological responses to small-sided soccer games. J Sports Sci. 2007;6:659–66.

    Article  Google Scholar 

  56. 56.

    Hill-Haas S, Coutts A, Rowsell G, et al. Variability of acute physiological responses and performance profiles of youth soccer players in small-sided games. J Sci Med Sport. 2008;11:487–90.

    PubMed  Article  Google Scholar 

  57. 57.

    Hill-Haas S, Rowsell G, Coutts A, et al. The reproducibility of physiological responses and performance profiles of youth soccer players in small-sided games. Int J Sports Physiol Perform. 2008;3:393–6.

    PubMed  Google Scholar 

  58. 58.

    Daussin FN, Ponsot E, Dufour SP, et al. Improvement of Da-vO2 by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol. 2007;101:377–83.

    PubMed  Article  Google Scholar 

  59. 59.

    Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39:665–71.

    PubMed  Article  Google Scholar 

  60. 60.

    Hoff J, Wisloff U, Engen LC, et al. Soccer specific aerobic endurance training. Br J Sports Med. 2002;36:218–21.

    PubMed  Article  Google Scholar 

  61. 61.

    Whipp BJ, Higgenbotham MB, Cobb FC. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J Appl Physiol. 1996;81:2674–9.

    PubMed  CAS  Google Scholar 

  62. 62.

    Saltin B, Blomqvist G, Mitchell JH, et al. Response to exercise after bed rest and after training. Circulation 1968;38:VII1–78.

    Google Scholar 

  63. 63.

    Mendez-Villanueva A, Buchheit M, Simpson BM, et al. Match play intensity distribution in youth soccer. Int J Sport Med 2013;34:101–10.

    Google Scholar 

  64. 64.

    Mendez-Villanueva A, Buchheit M, Simpson B, et al. Does on-field sprinting performance in young soccer players depend on how fast they can run or how fast they do run? J Strength Cond Res. 2011;25:2634–8.

    PubMed  Article  Google Scholar 

  65. 65.

    Di Salvo V, Baron R, Gonzalez-Haro C, et al. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J Sports Sci. 2010;28:1489–94.

    PubMed  Article  Google Scholar 

  66. 66.

    Casamichana D, Castellano J, Castagna C. Comparing the physical demands of friendly matches and small-sided games in semiprofessional soccer players. J Strength Cond Res. 2012;26:837–43.

    PubMed  Google Scholar 

  67. 67.

    Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33:517–38.

    PubMed  Article  Google Scholar 

  68. 68.

    Midgley AW, McNaughton LR, Carroll S. Reproducibility of time at or near VO2max during intermittent treadmill running. Int J Sports Med. 2007;28:40–7.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37:1601–7.

    PubMed  Article  Google Scholar 

  70. 70.

    Cerretelli P, Di Prampero PE. Kinetics of respiratory gas exchange and cardiac output at the onset of exercise. Scand J Respir Dis 1971;Suppl.:35a–g.

  71. 71.

    Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sports. 2004;14:318–25.

    PubMed  Article  Google Scholar 

  72. 72.

    Dishman RK, Patton RW, Smith J, et al. Using perceived exertion to prescribe and monitor exercise training heart rate. Int J Sports Med. 1987;8:208–13.

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106:2060–2.

    PubMed  Article  Google Scholar 

  74. 74.

    Marcora SM. Role of feedback from Group III and IV muscle afferents in perception of effort, muscle pain, and discomfort. J Appl Physiol 2011;110:1499 (author reply 500).

    Google Scholar 

  75. 75.

    Coutts AJ, Rampinini E, Marcora SM, et al. Heart rate and blood lactate correlates of perceived exertion during small-sided soccer games. J Sci Med Sport. 2009;12:79–84.

    PubMed  Article  Google Scholar 

  76. 76.

    Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106:857–64.

    PubMed  Article  Google Scholar 

  77. 77.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52:416–20.

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Garcin M, Fleury A, Mille-Hamard L, et al. Sex-related differences in ratings of perceived exertion and estimated time limit. Int J Sports Med. 2005;26:675–81.

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Garcin M, Danel M, Billat V. Perceptual responses in free vs. constant pace exercise. Int J Sports Med. 2008;29:453–9.

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Celine CG, Monnier-Benoit P, Groslambert A, et al. The perceived exertion to regulate a training program in young women. J Strength Cond Res. 2011;25:220–4.

    PubMed  Article  Google Scholar 

  81. 81.

    Groslambert A, Mahon AD. Perceived exertion: influence of age and cognitive development. Sports Med. 2006;36:911–28.

    PubMed  Article  Google Scholar 

  82. 82.

    Garcin M, Coquart JB, Robin S, et al. Prediction of time to exhaustion in competitive cyclists from a perceptually based scale. J Strength Cond Res. 2011;25:1393–9.

    PubMed  Article  Google Scholar 

  83. 83.

    Garcin M, Mille-Hamard L, Billat V. Influence of aerobic fitness level on measured and estimated perceived exertion during exhausting runs. Int J Sports Med. 2004;25:270–7.

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Cabanac ME. Exertion and pleasure from an evolutionary perspective. In: Acevedo EO, Ekkekakis P, editors. Psychobiology of physical activity. Champaign: Human Kinetics; 2006. p. 79–89.

    Google Scholar 

  85. 85.

    Volkov NI, Shirkovets EA, Borilkevich VE. Assessment of aerobic and anaerobic capacity of athletes in treadmill running tests. Eur J Appl Physiol Occup Physiol. 1975;34:121–30.

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980;12:357–60.

    PubMed  CAS  Google Scholar 

  87. 87.

    Leger LA, Boucher R. An indirect continuous running multistage field test: the Universite de Montreal track test. Can J Appl Sport Sci. 1980;5:77–84.

    PubMed  CAS  Google Scholar 

  88. 88.

    Daniels J, Scardina N, Hayes J, et al. Elite and subelite female middle- and long-distance runners. In: Landers DM, editor. Sport and elite performers: the 1984 Olympic scientific congress proceedings, vol. 3. Champaign: Human Kinetics; 1984. p. 57–72.

    Google Scholar 

  89. 89.

    Billat LV, Koralsztein JP. Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med. 1996;22:90–108.

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Hill DW, Rowell AL. Running velocity at VO2max. Med Sci Sports Exerc. 1996;28:114–9.

    PubMed  CAS  Google Scholar 

  91. 91.

    di Prampero PE, Atchou G, Bruckner JC, et al. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–66.

    PubMed  Article  Google Scholar 

  92. 92.

    Lacour JR, Padilla-Magunacelaya S, Barthelemy JC, et al. The energetics of middle-distance running. Eur J Appl Physiol Occup Physiol. 1990;60:38–43.

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Billat V, Renoux JC, Pinoteau J, et al. Reproducibility of running time to exhaustion at VO2max in subelite runners. Med Sci Sports Exerc. 1994;26:254–7.

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Buchheit M. The 30–15 Intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res. 2008;22:365–74.

    PubMed  Article  Google Scholar 

  95. 95.

    Dupont G, Akakpo K, Berthoin S. The effect of in-season, high-intensity interval training in soccer players. J Strength Cond Res. 2004;18:584–9.

    PubMed  Google Scholar 

  96. 96.

    Cazorla G, Benezzedine-Boussaidi L. Carré, F. Aptitude aérobie sur le terrain. Pourquoi et comment l’évaluer? Médecins du Sport 2005;73:13–23.

  97. 97.

    Mendez-Villanueva A, Buchheit M, Kuitunen S, et al. Is the relationship between sprinting and maximal aerobic speeds in young soccer players affected by maturation? Ped Exerc Sci. 2010;4:497–510.

    Google Scholar 

  98. 98.

    Buchheit M, Mendez-Villanueva A, Simpson BM, et al. Match running performance and fitness in youth soccer. Int J Sports Med. 2010;31:818–25.

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc. 1988;20:319–30.

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Rampinini E, Bishop D, Marcora SM, et al. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007;28:228–35.

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Berthon P, Fellmann N, Bedu M, et al. A 5-min running field test as a measurement of maximal aerobic velocity. Eur J Appl Physiol Occup Physiol. 1997;3:233–8.

    Article  Google Scholar 

  102. 102.

    Hill DW, Rowell AL. Significance of time to exhaustion during exercise at the velocity associated with VO2max. Eur J Appl Physiol Occup Physiol. 1996;72:383–6.

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Midgley AW, McNaughton LR, Carroll S. Time at VO2max during intermittent treadmill running: test protocol dependent or methodological artefact? Int J Sports Med. 2007;28:934–9.

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Harling SA, Tong RJ, Mickleborough TD. The oxygen uptake response running to exhaustion at peak treadmill speed. Med Sci Sports Exerc. 2003;35:663–8.

    PubMed  Article  Google Scholar 

  105. 105.

    Pugh LG. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol. 1971;213:255–76.

    PubMed  CAS  Google Scholar 

  106. 106.

    Saunders PU, Cox AJ, Hopkins WG, et al. Physiological measures tracking seasonal changes in peak running speed. Int J Sports Physiol Perform. 2010;5:230–8.

    PubMed  Google Scholar 

  107. 107.

    Dabonneville M, Berthon P, Vaslin P, et al. The 5 min running field test: test and retest reliability on trained men and women. Eur J Appl Physiol. 2003;88:353–60.

    PubMed  Article  Google Scholar 

  108. 108.

    Berthon P, Fellmann N. General review of maximal aerobic velocity measurement at laboratory. Proposition of a new simplified protocol for maximal aerobic velocity assessment. J Sports Med Phys Fitness. 2002;42:257–66.

    PubMed  CAS  Google Scholar 

  109. 109.

    Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance. Sports Med. 2002;32:675–700.

    PubMed  Article  Google Scholar 

  110. 110.

    Blondel N, Berthoin S, Billat V, et al. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med. 2001;22:27–33.

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Bundle MW, Hoyt RW, Weyand PG. High-speed running performance: a new approach to assessment and prediction. J Appl Physiol. 2003;95:1955–62.

    PubMed  Google Scholar 

  112. 112.

    Weyand PG, Bundle MW. Energetics of high-speed running: integrating classical theory and contemporary observations. Am J Physiol Regul Integr Comp Physiol. 2005;288:R956–65.

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Weyand PG, Lin JE, Bundle MW. Sprint performance-duration relationships are set by the fractional duration of external force application. Am J Physiol Regul Integr Comp Physiol. 2006;290:R758–65.

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sport Med. 2012;33:230–9.

    CAS  Article  Google Scholar 

  115. 115.

    Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol. 2008;103:411–9.

    PubMed  Article  Google Scholar 

  116. 116.

    Buchheit M. The 30–15 intermittent fitness test: 10 year review. Myorobie J 2010; 1 [online]. Available from URL: http://www.martin-buchheit.net. [Accessed 17 Feb 2013].

  117. 117.

    Dupont G, Blondel N, Lensel G, et al. Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol. 2002;27:103–15.

    PubMed  Article  Google Scholar 

  118. 118.

    Buchheit M. 30–15 Intermittent fitness test and repeated sprint ability. Sci Sports. 2008;23:26–8.

    Article  Google Scholar 

  119. 119.

    Buchheit M, Al Haddad H, Leprêtre PM, et al. Cardiorespiratory and cardiac autonomic responses to 30–15 intermittent fitness test. J Strength Cond Res. 2009;23:93–100.

    PubMed  Article  Google Scholar 

  120. 120.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38:37–51.

    PubMed  Article  Google Scholar 

  121. 121.

    Dupont G, Defontaine M, Bosquet L, et al. Yo-Yo intermittent recovery test versus the Universite de Montreal Track Test: relation with a high-intensity intermittent exercise. J Sci Med Sport. 2010;13:146–50.

    PubMed  Article  Google Scholar 

  122. 122.

    Buchheit M. The 30–15 intermittent fitness test: reliability and implication for interval training of intermittent sport players [abstract no. 1231]. 10th European Congress of Sport Science. 2005 Jul 13–16; Belgrade.

  123. 123.

    Buchheit M, Laursen PB, Millet GP, et al. Predicting intermittent running performance: critical velocity versus endurance index. Int J Sports Med. 2007;29:307–15.

    PubMed  Article  Google Scholar 

  124. 124.

    Dellal A, Varliette C, Owen A, et al. Small-sided games vs. interval training in amateur soccer players: effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. J Strength Cond Res. 2012;26:2712–20.

    Google Scholar 

  125. 125.

    Mosey T. High intensity interval training in youth soccer players: using fitness testing results practically. J Aust Strength Cond. 2009;17:49–51.

    Google Scholar 

  126. 126.

    Rakobowchuk M, Tanguay S, Burgomaster KA, et al. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295:R236–42.

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max’ during a continuous and an intermittent run. J Sports Med Phys Fitness. 2000;40:96–102.

    PubMed  CAS  Google Scholar 

  128. 128.

    Millet GP, Candau R, Fattori P, et al. VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol. 2003;28:410–23.

    PubMed  Article  Google Scholar 

  129. 129.

    Dupont G, Blondel N, Berthoin S. Time spent at VO2max: a methodological issue. Int J Sports Med. 2003;24:291–7.

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Billat VL, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol Occup Physiol. 1999;80:159–61.

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Hill DW, Williams CS, Burt SE. Responses to exercise at 92% and 100% of the velocity associated with VO2max. Int J Sports Med. 1997;18:325–9.

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Billat V, Binsse V, Petit B, et al. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch Physiol Biochem. 1998;106:38–45.

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Gerbino A, Ward SA, Whipp BJ. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol. 1996;80:99–107.

    PubMed  CAS  Google Scholar 

  134. 134.

    Dorado C, Sanchis-Moysi J, Calbet JA. Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can J Appl Physiol. 2004;29:227–44.

    PubMed  Article  Google Scholar 

  135. 135.

    Hill DW, Rowell AL. Responses to exercise at the velocity associated with VO2max. Med Sci Sports Exerc. 1997;29:113–6.

    PubMed  CAS  Google Scholar 

  136. 136.

    Hill DW, Stevens EC. VO2 response profiles in severe intensity exercise. J Sports Med Phys Fitness. 2005;45:239–47.

    PubMed  CAS  Google Scholar 

  137. 137.

    Laursen PB, Shing CM, Jenkins DG. Temporal aspects of the VO2 response at the power output associated with VO2peak in well trained cyclists: implications for interval training prescription. Res Q Exerc Sport. 2004;75:423–8.

    PubMed  Article  Google Scholar 

  138. 138.

    Billat LV, Renoux J, Pinoteau J, et al. Validation d’une épreuve maximale de temps limiteà VMA (vitesse maximale aérobie) et à VO2max. Sci Sports. 1994;9:3–12.

    Article  Google Scholar 

  139. 139.

    Hughson RL, O’Leary DD, Betik AC, et al. Kinetics of oxygen uptake at the onset of exercise near or above peak oxygen uptake. J Appl Physiol. 2000;88:1812–9.

    PubMed  CAS  Google Scholar 

  140. 140.

    Hill DW, Halcomb JN, Stevens EC. Oxygen uptake kinetics during severe intensity running and cycling. Eur J Appl Physiol. 2003;89:612–8.

    PubMed  Article  Google Scholar 

  141. 141.

    Norris SR, Petersen SR. Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci. 1998;16:733–8.

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Buchheit M, Abbiss C, Peiffer JJ, et al. Performance and physiological responses during a sprint interval training session: relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. Eur J Appl Physiol. 2012;112(2):767–79.

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Powers SK, Dodd S, Beadle RE. Oxygen uptake kinetics in trained athletes differing in VO2max. Eur J Appl Physiol Occup Physiol. 1985;54:306–8.

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    Buchheit M, Laursen PB, Ahmaidi S. Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate-intensity field running in men. J Appl Physiol. 2009;107:460–70.

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Barstow TJ, Jones AM, Nguyen PH, et al. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol. 1996;81:1642–50.

    PubMed  CAS  Google Scholar 

  146. 146.

    Pringle JS, Doust JH, Carter H, et al. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol. 2003;89:289–300.

    PubMed  Article  Google Scholar 

  147. 147.

    Kilding AE, Winter EM, Fysh M. A comparison of pulmonary oxygen uptake kinetics in middle- and long-distance runners. Int J Sports Med. 2006;27:419–26.

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Billat V, Petit B, Koralsztein J. Calibration de la durée des répétition d’une séance d’interval training à la vitesse associée à VO2max en référence au temps limite continu: effet sur les réponses physiologiques et la distance parcourue. Sci Mot. 1996;28:13–20.

    Google Scholar 

  149. 149.

    Smith TP, McNaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Med Sci Sports Exerc. 1999;31:892–6.

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. Eur J Appl Physiol. 2003;89:337–43.

    PubMed  Article  Google Scholar 

  151. 151.

    Buchheit M. High-intensity interval training: how to best shape the puzzle piece. International congress of the Australian Strength and conditioning Association, November 9–11th 2012, Brisbane, QS, Australia.

  152. 152.

    Muller EA. The physiological basis of rest pauses in heavy work. Q J Exp Physiol Cogn Med Sci. 1953;38:205–15.

    PubMed  CAS  Google Scholar 

  153. 153.

    Belcastro AN, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J Appl Physiol. 1975;39:932–6.

    PubMed  CAS  Google Scholar 

  154. 154.

    Ahmaidi S, Granier P, Taoutaou Z, et al. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise. Med Sci Sports Exerc. 1996;28:450–6.

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38:1165–74.

    PubMed  CAS  Article  Google Scholar 

  156. 156.

    Gorostiaga EM, Asiain X, Izquierdo M, et al. Vertical jump performance and blood ammonia and lactate levels during typical training sessions in elite 400-m runners. J Strength Cond Res. 2010;24:1138–49.

    PubMed  Article  Google Scholar 

  157. 157.

    Weltman A, Stamford BA, Fulco C. Recovery from maximal effort exercise: lactate disappearance and subsequent performance. J Appl Physiol. 1979;47:677–82.

    PubMed  CAS  Google Scholar 

  158. 158.

    Buchheit M, Cormie P, Abbiss CR, et al. Muscle deoxygenation during repeated sprint running: effect of active vs. passive recovery. Int J Sports Med. 2009;30:418–25.

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Dupont G, Moalla W, Matran R, et al. Effect of short recovery intensities on the performance during two Wingate tests. Med Sci Sports Exerc. 2007;39:1170–6.

    PubMed  Article  Google Scholar 

  160. 160.

    Spencer M, Bishop D, Dawson B, et al. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exerc. 2006;38:1492–9.

    PubMed  Article  Google Scholar 

  161. 161.

    Bogdanis GC, Nevill ME, Lakomy HK, et al. Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol Occup Physiol. 1996;74:461–9.

    PubMed  CAS  Article  Google Scholar 

  162. 162.

    Connolly DAJ, Brennan KM, Lauzon CD. Effects of active versus passive recovery on power output during repeated bouts of short term, high intensity exercise. J Sports Sci Med 2003:47–51.

  163. 163.

    Spencer M, Dawson B, Goodman C, et al. Performance and metabolism in repeated sprint exercise: effect of recovery intensity. Eur J Appl Physiol. 2008;103:545–52.

    PubMed  CAS  Article  Google Scholar 

  164. 164.

    Thevenet D, Leclair E, Tardieu-Berger M, et al. Influence of recovery intensity on time spent at maximal oxygen uptake during an intermittent session in young, endurance-trained athletes. J Sports Sci. 2008;26:1313–21.

    PubMed  Article  Google Scholar 

  165. 165.

    Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc. 1989;21:563–8.

    PubMed  CAS  Google Scholar 

  166. 166.

    Simoneau JA, Lortie G, Boulay MR, et al. Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance. Eur J Appl Physiol Occup Physiol. 1987;56:516–21.

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Wu HC, Hsu WH, Chen T. Complete recovery time after exhaustion in high-intensity work. Ergonomics. 2005;48:668–79.

    PubMed  Article  Google Scholar 

  168. 168.

    Rowell LB, O’Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol. 1990;69:407–18.

    PubMed  CAS  Google Scholar 

  169. 169.

    Billat V. L’entraînement en pleine nature: conseils de préparation aux sports outdoor. Paris: De Boeck; 2005.

    Google Scholar 

  170. 170.

    Paavolainen L, Nummela A, Rusko H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand J Med Sci Sports. 2000;10:286–91.

    PubMed  CAS  Article  Google Scholar 

  171. 171.

    Staab JS, Agnew JW, Siconolfi SF. Metabolic and performance responses to uphill and downhill running in distance runners. Med Sci Sports Exerc. 1992;24:124–7.

    PubMed  CAS  Google Scholar 

  172. 172.

    Pringle JS, Carter H, Doust JH, et al. Oxygen uptake kinetics during horizontal and uphill treadmill running in humans. Eur J Appl Physiol. 2002;88:163–9.

    PubMed  CAS  Article  Google Scholar 

  173. 173.

    Slawinski J, Dorel S, Hug F, et al. Elite long sprint running: a comparison between incline and level training sessions. Med Sci Sports Exerc. 2008;40:1155–62.

    PubMed  Article  Google Scholar 

  174. 174.

    Gajer B, Hanon C, Lehenaff D, et al. Analyse comparée de différentes séances de développement de VO2max. In: Expertise et sport de haut niveau: actes des Entretiens de l’INSEP Novembre 2002. Paris: Insep, 2003.

  175. 175.

    Minetti AE, Moia C, Roi GS, et al. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–46.

    PubMed  Google Scholar 

  176. 176.

    Seiler S, Jøranson K, Olesen BV, et al. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports. 2013;23(1):74–83.

    PubMed  CAS  Article  Google Scholar 

  177. 177.

    Millet GP, Libicz S, Borrani F, et al. Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol. 2003;90:50–7.

    PubMed  CAS  Article  Google Scholar 

  178. 178.

    Tardieu-Berger M, Thevenet D, Zouhal H, et al. Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. Eur J Appl Physiol. 2004;93:145–52.

    PubMed  Article  Google Scholar 

  179. 179.

    Thevenet D, Tardieu M, Zouhal H, et al. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol. 2007;102:19–26.

    PubMed  Article  Google Scholar 

  180. 180.

    Buchheit M, Millet GP, Parisy A, et al. Supramaximal training and post-exercise parasympathetic reactivation in adolescents. Med Sci Sports Exerc. 2008;40:362–71.

    PubMed  Article  Google Scholar 

  181. 181.

    Bisciotti GN. L’incidenza fisiologica dei parametri di durata, intensità e recupero nell’ambito dell’allenamento intermittente. Sienza di Sport 2004: 90-6 [online]. Available from URL: http://www.scienzaesport.com/SdS/050322074/074.htm. [Accessed 17 Feb 2013].

  182. 182.

    Dellal A, Keller D, Carling C, et al. Physiologic effects of directional changes in intermittent exercise in soccer players. J Strength Cond Res. 2010;24:3219–26.

    PubMed  Article  Google Scholar 

  183. 183.

    Belfry GR, Paterson DH, Murias JM, et al. The effects of short recovery duration on VO(2) and muscle deoxygenation during intermittent exercise. Eur J Appl Physiol. 2012;112(5):1907–15.

    PubMed  CAS  Article  Google Scholar 

  184. 184.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–41.

    PubMed  CAS  Article  Google Scholar 

  185. 185.

    Rozenek R, Funato K, Kubo J, et al. Physiological responses to interval training sessions at velocities associated with VO2max. J Strength Cond Res. 2007;21:188–92.

    PubMed  Google Scholar 

  186. 186.

    Wakefield BR, Glaister M. Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. J Strength Cond Res. 2009;23:2548–54.

    PubMed  Article  Google Scholar 

  187. 187.

    Dupont G, Moalla W, Guinhouya C, et al. Passive versus active recovery during high-intensity intermittent exercises. Med Sci Sports Exerc. 2004;36:302–8.

    PubMed  Article  Google Scholar 

  188. 188.

    Thevenet D, Tardieu-Berger M, Berthoin S, et al. Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. Eur J Appl Physiol. 2007;99:133–42.

    PubMed  Article  Google Scholar 

  189. 189.

    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol. 2003;89:548–54.

    PubMed  Article  Google Scholar 

  190. 190.

    Dupont G, Berthoin S. Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol. 2004;29(Suppl):S3–16.

    PubMed  Article  Google Scholar 

  191. 191.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41:673–94.

    PubMed  Article  Google Scholar 

  192. 192.

    Dupont G, Millet GP, Guinhouya C, et al. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol. 2005;95:27–34.

    PubMed  CAS  Article  Google Scholar 

  193. 193.

    Buchheit M. Performance and physiological responses to repeated-sprint and jump sequences. Eur J Appl Physiol. 2010;101:1007–18.

    Article  Google Scholar 

  194. 194.

    Buchheit M, Bishop D, Haydar B, et al. Physiological responses to shuttle repeated-sprint running. Int J Sport Med. 2010;31:402–9.

    CAS  Article  Google Scholar 

  195. 195.

    Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol. 1992;65:144–9.

    PubMed  CAS  Article  Google Scholar 

  196. 196.

    Bravo DF, Impellizzeri FM, Rampinini E, et al. Sprint vs. interval training in football. Int J Sports Med. 2008;29:668–74.

    Article  Google Scholar 

  197. 197.

    Buchheit M, Mendez-Villanueva A, Delhomel G, et al. Improving repeated sprint ability in young elite soccer players: repeated sprints vs. explosive strength training. J Strength Cond Res. 2010;24:2715–22.

    PubMed  Article  Google Scholar 

  198. 198.

    Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc. 1997;29:390–5.

    PubMed  CAS  Article  Google Scholar 

  199. 199.

    Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80:876–84.

    PubMed  CAS  Google Scholar 

  200. 200.

    Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277:E890–900.

    PubMed  CAS  Google Scholar 

  201. 201.

    Lepretre PM, Koralsztein JP, Billat VL. Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc. 2004;36:1357–63.

    PubMed  Article  Google Scholar 

  202. 202.

    McCole SD, Davis AM, Fueger PT. Is there a disassociation of maximal oxygen consumption and maximal cardiac output? Med Sci Sports Exerc. 2001;33:1265–9.

    PubMed  CAS  Article  Google Scholar 

  203. 203.

    Gt Cooper. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med. 1997;48:13–23.

    Article  Google Scholar 

  204. 204.

    Gonzalez-Alonso J, Calbet JA. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107:824–30.

    PubMed  Article  Google Scholar 

  205. 205.

    Gonzalez-Alonso J. Point: stroke volume does/does not decline during exercise at maximal effort in healthy individuals. J Appl Physiol 2008;104:275–6; discussion 9–80.

  206. 206.

    Warburton DE, Gledhill N. Counterpoint: Stroke volume does not decline during exercise at maximal effort in healthy individuals. J Appl Physiol 2008;104:276–8; discussion 8–9.

  207. 207.

    Coyle EF, Trinity JD. The stroke volume response during or throughout 4-8 min of constant-power exercise that elicits VO2max. J Appl Physiol 2008;104:282–3; author reply 4–5.

    Google Scholar 

  208. 208.

    Lepretre PM, Foster C, Koralsztein JP, et al. Heart rate deflection point as a strategy to defend stroke volume during incremental exercise. J Appl Physiol. 2005;98:1660–5.

    PubMed  Article  Google Scholar 

  209. 209.

    Cumming GR. Stroke volume during recovery from supine bicycle exercise. J Appl Physiol. 1972;32:575–8.

    PubMed  CAS  Google Scholar 

  210. 210.

    Astrand PO, Rodhal K, editors. Textbook of work physiology: physiological bases of exercise. Series in Health Education, Physical Education, and Recreation. Lower Mitcham (SA). Human Kinetics. New York: MacGraw-Hill, 2003. p. 649.

  211. 211.

    Fox EL, Mathews DK. Interval training: conditioning for sports and general fitness. Orlando (FL): Saunders College Publishing; 1974.

  212. 212.

    Takahashi T, Okada A, Saitoh T, et al. Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. Eur J Appl Physiol. 2000;81:233–9.

    PubMed  CAS  Article  Google Scholar 

  213. 213.

    Charloux A, Lonsdorfer-Wolf E, Richard R, et al. A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol. 2000;82:313–20.

    PubMed  CAS  Article  Google Scholar 

  214. 214.

    Richard R, Lonsdorfer-Wolf E, Charloux A, et al. Non-invasive cardiac output evaluation during a maximal progressive exercise test, using a new impedance cardiograph device. Eur J Appl Physiol. 2001;85:202–7.

    PubMed  CAS  Article  Google Scholar 

  215. 215.

    Fontana P, Betschon K, Boutellier U, et al. Cardiac output but not stroke volume is similar in a Wingate and VO2peak test in young men. Eur J Appl Physiol. 2011;111:155–8.

    PubMed  Article  Google Scholar 

  216. 216.

    Helgerud J, Engen LC, Wisloff U, et al. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33:1925–31.

    PubMed  CAS  Article  Google Scholar 

  217. 217.

    Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42:327–33.

    PubMed  CAS  Article  Google Scholar 

  218. 218.

    Castagna C, Impellizzeri FM, Chaouachi A, et al. Effect of training intensity distribution on aerobic fitness variables in elite soccer players: a case study. J Strength Cond Res. 2011;25:66–71.

    PubMed  Article  Google Scholar 

  219. 219.

    Mooney M, O’Brien B, Cormack S, et al. The relationship between physical capacity and match performance in elite Australian football: a mediation approach. J Sci Med Sport. 2011;14:447–52.

    PubMed  Article  Google Scholar 

  220. 220.

    Buchheit M, Simpson BM, Mendez-Villaneuva A. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. Int J Sport Med. 2012;34:40–8.

    Article  Google Scholar 

  221. 221.

    Buchheit M, Rabbani A. 30–15 Intermittent Fitness Test vs. Yo-Yo Intermittent Recovery Test Level 1: relationship and sensitivity to training. Int J Sports Physiol Perform; In press.

  222. 222.

    Armstrong N, Barker AR. Oxygen uptake kinetics in children and adolescents: a review. Pediatr Exerc Sci. 2009;21:130–47.

    Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Buchheit.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchheit, M., Laursen, P.B. High-Intensity Interval Training, Solutions to the Programming Puzzle. Sports Med 43, 313–338 (2013). https://doi.org/10.1007/s40279-013-0029-x

Download citation

Keywords

  • Passive Recovery
  • Maximal Lactate Steady State
  • Exercise Onset
  • Uphill Running
  • Acute Physiological Response