Skip to main content
Log in

Neurodoping: Brain Stimulation as a Performance-Enhancing Measure

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Doping may be defined, broadly, as the use of unauthorised means to increase performance in sport. Doping is most commonly associated with the use of drugs. In this paper, I discuss the use of emerging techniques for the modulation of brain activity in healthy people using electric or magnetic fields, and suggest how they might be used to enhance physical and mental performance in sports. I will suggest that neurodoping may have different uses in different sports, and I argue that each sport must determine whether neurodoping should be considered as cheating, or should be considered a legitimate aid to training or performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson S, Lockwood R, Thickbroom G, Mastaglia F. The muscle silent period following transcranial magnetic cortical stimulation. J Neurol Sci. 1993;114:216–22.

    Article  PubMed  CAS  Google Scholar 

  2. Huang Y, Edwards M, Rounis E, Bhatia K, Rothwell J. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.

    Article  PubMed  CAS  Google Scholar 

  3. Teneback C, Nahas Z, Speer A, Molloy M, Stallings L, Spicer K, et al. Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS. J Neuropsychiatry Clin Neurosci. 1999;11:426–35.

    PubMed  CAS  Google Scholar 

  4. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.

    Article  PubMed  Google Scholar 

  5. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18(23):1839–43.

    Article  PubMed  CAS  Google Scholar 

  6. Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol. 2010;121:1551–4.

    Article  PubMed  Google Scholar 

  7. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117(7):1623–9.

    Article  PubMed  Google Scholar 

  8. Wagner T, Zahn M, Grodzinsky A, Pascual-Leone A. Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng. 2004;51:1586–98.

    Article  PubMed  Google Scholar 

  9. Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci. 2007;26(1):242–9.

    Article  PubMed  CAS  Google Scholar 

  10. Pascual-Leone A, Valls-Sole J, Wassermann E, Brasil-Neto J, Cohen L, Hallett M. Effects of focal transcranial magnetic stimulation on simple reaction time to acoustic, visual and somatosensory stimuli. Brain. 1992;115:1045–59.

    Article  PubMed  Google Scholar 

  11. Axford P, Lakany H, Conway B. The effects of transcranial stimulation on enhanced physiological tremor: a pilot study. In: 6th UKRI PG Conference in biomedical engineering and medical physics 2011. Glasgow, UK; 2011.

  12. Nitsche M, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.

    Article  PubMed  CAS  Google Scholar 

  13. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA. 2009;106(5):1590–5.

    Article  PubMed  CAS  Google Scholar 

  14. Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103.

    Article  PubMed  Google Scholar 

  15. Stagg C, Wylezinska M, Matthews P, Johansen-Berg H, Jezzard P, Rothwell J, et al. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol. 2009;101:2872–7.

    Article  PubMed  CAS  Google Scholar 

  16. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kineses ZT, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6.

    Article  PubMed  CAS  Google Scholar 

  17. Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71.

    Article  PubMed  CAS  Google Scholar 

  18. Tharayil BS, Gangadhar BN, Thirthalli J, Anand L. Seizure with single-pulse transcranial magnetic stimulation in a 35-year-old otherwise-healthy patient with bipolar disorder. J ECT. 2005;21:188–9.

    Article  PubMed  Google Scholar 

  19. Savulescu J, Foddy B, Clayton M. Why we should allow performance enhancing drugs in sport. Brit J Sports Med. 2004;38:666–70.

    Article  CAS  Google Scholar 

  20. Cohen Kadosh R, Levy N, O’Shea J, Shea N, Savulescu J. The neuroethics of non-invasive brain stimulation. Curr Biol. 2012;22:R108–R11.

    Google Scholar 

  21. Cohen Kadosh R. Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Transl Neurosci. 2013;4:1–14.

    Google Scholar 

  22. Tang W-T, Zhang W-Y, Huang C-C, Young M-S, Hwang I-S. Postural tremor and control of the upper limb in air pistol shooters. J Sports Sci. 2006;24:1579–87.

    Google Scholar 

  23. Magnus J, Klaassen F. On the advantage of serving first in a tennis set: four years at Wimbledon. Statistician. 1999;48:247–56.

    Google Scholar 

  24. Schermer M. On the argument that enhancement is “cheating”. J Med Ethics. 2008;34:85–8.

    Article  PubMed  CAS  Google Scholar 

  25. Stokes M, Barker A, Dervinis M, Verbruggen F, Maizey L, Adams R, et al. Biophysical determinants of transcranial magnetic stimulation: effects of excitability and depth of targeted area. J Neurophysiol. 2013;109:437–44.

    Article  PubMed  Google Scholar 

  26. Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009;219(1):14–9.

    Article  PubMed  Google Scholar 

  27. Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction. 2009;104:653–60.

    Article  PubMed  Google Scholar 

  28. Csikszentmihalyi M. Flow: the psychology of optimal experience. New York: Harper & Row; 1990.

    Google Scholar 

  29. Snyder A, Bahramali H, Hawker T, Mitchell D. Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception. 2006;35:837–45.

    Article  PubMed  Google Scholar 

  30. Chi RP, Snyder AW. Facilitate insight by non-invasive brain stimulation. PLoS ONE. 2011;6(2).

  31. Jackson S, Csikszentmihalyi M. Flow in sports: the keys to optimal experiences and performances. Champaign, IL: Human Kinetics; 1999.

    Google Scholar 

  32. Jackson S. Factors influencing the occurrence of flow state in elite athletes. J Appl Sport Psychol. 1995;7:138–66.

    Article  Google Scholar 

  33. Fuerra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci. 2011;31(34):12165–70.

    Article  Google Scholar 

  34. Davis N, Tomlinson S, Morgan H. The role of beta-frequency neural oscillations in motor control. J Neurosci. 2012;32:403–4.

    Article  PubMed  CAS  Google Scholar 

  35. Pogosyan A, Gaynor L, Eusebio A, Brown P. Boosting cortical activity at beta-band fequencies slows movement in humans. Curr Biol. 2009;19:1637–41.

    Article  PubMed  CAS  Google Scholar 

  36. Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–55.

    Article  PubMed  CAS  Google Scholar 

  37. Oliviero A, Mordillo-Mateos L, Arias P, Panyavin I, Foffani G, Aguilar J. Transcranial static magnetic field stimulation of the human motor cortex. J Physiol. 2011;589(20):4949–58.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FETOpen grant number: 222079 (HIVE). I am grateful to Dr Martyn Bracewell and Mr Simon Tomlinson and two anonymous reviewers for helpful comments. I declare no conflicts of interest in preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick J. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, N.J. Neurodoping: Brain Stimulation as a Performance-Enhancing Measure. Sports Med 43, 649–653 (2013). https://doi.org/10.1007/s40279-013-0027-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0027-z

Keywords

Navigation