Key Properties of Expert Movement Systems in Sport

An Ecological Dynamics Perspective

Abstract

This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include ‘multi- and meta-stability’, ‘adaptive variability’, ‘redundancy’, ‘degeneracy’ and the ‘attunement to affordances’. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived ‘gap’ separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual’s behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Johnson-Laird PN. Mental models: towards a cognitive science of language, inference and consciousness. Cambridge (UK): Cambridge University Press; 1983.

    Google Scholar 

  2. 2.

    Schmidt RA. A schema theory of discrete motor skill learning. Psychol Rev. 1975;82:225–60.

    Article  Google Scholar 

  3. 3.

    Schmidt R, Lee T. Motor control and learning: a behavioral emphasis. 5th ed. Champaign (IL): Human Kinetics; 2011.

    Google Scholar 

  4. 4.

    Summers JJ, Anson JG. Current status of the motor program: revisited. Hum Mov Sci. 2009;28(5):566–77.

    PubMed  Article  Google Scholar 

  5. 5.

    Chase WG, Simon HA. Perception in chess. Cogn Psychol. 1973;4:55–81.

    Article  Google Scholar 

  6. 6.

    Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100:363–406.

    Article  Google Scholar 

  7. 7.

    Ericsson KA, Lehmann AC. Expert and exceptional performance: evidence of maximal adaptation to task constraints. Annu Rev Psychol. 1996;47:273–305.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Ericsson KA. Protocol analysis and expert thought: concurrent verbalizations of thinking during experts’ performance on representative task. In: Ericsson KA, Charness N, Feltovich P, et al., editors. Cambridge handbook of expertise and expert performance. Cambridge (UK): Cambridge University Press; 2006. p. 223–42.

  9. 9.

    Ericsson KA. Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med. 2008;15:988–94.

    PubMed  Article  Google Scholar 

  10. 10.

    Anderson JR. Acquisition of cognitive skill. Psychol Rev. 1982;89:369–406.

    Article  Google Scholar 

  11. 11.

    Abernethy B, Maxwell JP, Masters RSW, et al. Attentional processes in skill learning and expert performance. In: Tenenbaum G, Eklund RC, editors. Handbook of sport psychology. 3rd ed. Hoboken (NJ): John Wiley & Sons, Inc.; 2007. p. 245–63.

    Google Scholar 

  12. 12.

    Abernethy B, Poolton JM, Masters RSW, et al. Implications of an expertise model for surgical skills training. ANZ J Surg. 2008;78:1092–5.

    PubMed  Article  Google Scholar 

  13. 13.

    Ericsson KA, Simon HA. Verbal reports as data. Psychol Rev. 1980;87:215–51.

    Article  Google Scholar 

  14. 14.

    Gladwell M. Outliers. London: Penguin Books; 2008.

    Google Scholar 

  15. 15.

    Coyle D. The talent code. New York (NY): Bantam Dell, Random House Books; 2009.

  16. 16.

    Syed M. Bounce. New York (NY): Harper Collins Publishers; 2010.

    Google Scholar 

  17. 17.

    Beek PJ, Jacobs D, Daffershofer A, et al. Expert performance in sport: views from the joint perspectives of ecological psychology and dynamical systems theory. In: Starkes JL, Ericsson KA, editors. Expert performance in sports. Champaign (IL): Human Kinetics; 2003. p. 321–42.

    Google Scholar 

  18. 18.

    Davids K, Glazier P, Araújo D, et al. Movement systems as dynamical systems, the functional role of variability and its implications for sports medicine. Sports Med. 2003;33:245–60.

    PubMed  Article  Google Scholar 

  19. 19.

    Davids K, Bennett S, Newell K. Movement system variability. Champaign (IL): Human Kinetics; 2006.

    Google Scholar 

  20. 20.

    Tucker R, Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br J Sports Med. 2012;46(8):555–61.

    PubMed  Article  Google Scholar 

  21. 21.

    Araújo D, Davids K, Hristovski R. The ecological dynamics of decision making in sport. Psychol Sport Exerc. 2006;7:653–76.

    Article  Google Scholar 

  22. 22.

    Davids K, Handford C, Williams M. The natural physical alternative to cognitive theories of motor behavior: an invitation for interdisciplinary research in sports science? J Sports Sci. 1994;12:495–528.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Davids K, Button C, Bennett S. Dynamics of skill acquisition: a constraints-led approach. Champaign (IL): Human Kinetics; 2008.

    Google Scholar 

  24. 24.

    Warren WH. The dynamics of perception and action. Psychol Rev. 2006;113(2):358–89.

    PubMed  Article  Google Scholar 

  25. 25.

    Chow JY, Davids K, Button C, et al. Dynamics of multi-articular coordination in neurobiological systems. Nonlinear Dyn Psychol Life Sci. 2009;13(1):27–55.

    Google Scholar 

  26. 26.

    Davids K, Glazier P. Deconstructing neurobiological coordination: the role of the biomechanics-motor control nexus. Exerc Sport Sci Rev. 2010;38(2):86–90.

    PubMed  Article  Google Scholar 

  27. 27.

    Glazier P, Davids K. Constraints on the complete optimization of human motion. Sports Med. 2009;39:15–28.

    PubMed  Article  Google Scholar 

  28. 28.

    Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Cambridge: MIT Press; 1995.

    Google Scholar 

  29. 29.

    Phillips E, Davids K, Renshaw I, et al. Expert performance in sport and the dynamics of talent development. Sports Med. 2010;40(4):271–83.

    PubMed  Article  Google Scholar 

  30. 30.

    Vilar L, Araujo D, Davids K, et al. The role of ecological dynamics in analysing performance in team sports. Sports Med. 2012;41(1):1–10.

    Article  Google Scholar 

  31. 31.

    Gibson JJ. The senses considered as perceptual systems. Boston (MA): Houghton Mifflin; 1966.

    Google Scholar 

  32. 32.

    Araújo D, Davids K. What exactly is acquired during skill acquisition? J Conscious Stud. 2011;18(3):7–23.

    Google Scholar 

  33. 33.

    Davids K, Araújo A. Perception of affordances in multi-scale dynamics as an alternative explanation for equivalence of analogical and inferential reasoning in animals and humans. Theory Psychol. 2010;20(1):125–34.

    Article  Google Scholar 

  34. 34.

    Fajen BR. Perceiving possibilities for action: on the necessity of calibration and perceptual learning for the visual guidance of action. Perception. 2005;34(6):717–40.

    PubMed  Article  Google Scholar 

  35. 35.

    Fajen BR, Diaz G, Cramer C. Reconsidering the role of movement in perceiving action-scaled affordances. Hum Mov Sci. 2011;30(3):504–33.

    PubMed  Article  Google Scholar 

  36. 36.

    Ramenzoni VC, Riley MA, Shockley K, et al. An information-based approach to action understanding. Cognition. 2008;106(2):1059–70.

    PubMed  Article  Google Scholar 

  37. 37.

    Weast JA, Shockley K, Riley MA. The influence of athletic experience and kinematic information on skill-relevant affordance perception. Q J Exp Psychol. 2011;64(4):689–706.

    Article  Google Scholar 

  38. 38.

    Davids K, Araújo D, Button C, et al. Degenerate brains, indeterminate behavior, and representative tasks: implications for experimental design in sport psychology research. In: Tenenbaum G, Eklund RC, editors. Handbook of sport psychology. 3rd ed. Hoboken (NJ): John Wiley & Sons, Inc.; 2007. p. 224–44.

    Google Scholar 

  39. 39.

    Davids K, Araújo A. The concept of ‘Organismic Asymmetry’ in sport science. J Sci Med Sport. 2010;13:633–40.

    PubMed  Article  Google Scholar 

  40. 40.

    Pinder RA, Davids K, Renshaw I, et al. Representative learning design and functionality of research and practice in sport. J Sport Exerc Psychol. 2011;33(1):146–55.

    PubMed  Google Scholar 

  41. 41.

    Davids K, Baker J. Genes, environment and sport performance: why the nature-nurture dualism is no longer relevant. Sports Med. 2007;37(11):961–80.

    PubMed  Article  Google Scholar 

  42. 42.

    Gibson JJ. The ecological approach to visual perception. Boston (MA): Houghton Mifflin; 1979.

    Google Scholar 

  43. 43.

    Lee DN. A theory of visual control of braking based on information about time-to-collision. Perception. 1976;5:437–59.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Kelso JAS, Schöner G. Self-organization of coordinative movement patterns. Hum Mov Sci. 1988;7:27–46.

    Article  Google Scholar 

  45. 45.

    Kugler PN, Kelso JAS, Turvey MT. On the concept of coordinative structures as dissipative structures. In: Stelmach GE, Requin J, editors. Tutorials in motor behavior. Amsterdam: Springer-Verlag; 1980. p. 3–47.

    Chapter  Google Scholar 

  46. 46.

    Kugler PN, Turvey MT. Information, natural law, and the self-assembly of rhythmic movement. Hillsdale (NJ): Erlbaum; 1987.

    Google Scholar 

  47. 47.

    Nicolis G, Prigogine I. Exploring complexity: an introduction. New York (NY): Freeman; 1989.

    Google Scholar 

  48. 48.

    Haken H. Advanced synergetics. Heidelberg: Springer-Verlag; 1983.

    Google Scholar 

  49. 49.

    Haken H. Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition. Berlin: Springer-Verlag; 1996.

    Book  Google Scholar 

  50. 50.

    Jantzen KJ, Oullier O, Kelso JAS. Neuroimaging coordination dynamics in the sport sciences. Methods. 2008;45(4):325–35.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Fajen B, Warren W. Behavioral dynamics of steering, obstacle avoidance, and route selection. J Exp Psychol Hum Percept Perf. 2003;29:343–62.

    Article  Google Scholar 

  52. 52.

    Warren WH, Fajen B. Behavioral dynamics of human locomotion. Ecol Psychol. 2004;16:61–6.

    Article  Google Scholar 

  53. 53.

    Turvey MT, Shaw RE. Toward an ecological physics and a physical psychology. In: Solso RL, Massaro DW, editors. The science of the mind: 2001 and beyond. New York (NY): Oxford University Press; 1995. p. 144–69.

    Google Scholar 

  54. 54.

    Brisson TA, Alain C. Should common optimal movement patterns be identified as the criterion to be achieved? J Mot Behav. 1996;28:211–23.

    PubMed  Article  Google Scholar 

  55. 55.

    Hristovski R, Davids K, Araújo D. Information for regulating action in sport: metastability and emergence of tactical solutions under ecological constraints. In: Araujo D, Ripoll H, Raab M, editors. Perspectives on cognition and action in sport. Hauppauge (NY): Nova Science Publishers; 2009. p. 43–57.

    Google Scholar 

  56. 56.

    Davids K, Araujo D, Shuttleworth R, et al. Acquiring skill in sport: a constraints-led perspective. Int J Comput Sci Sport. 2004;2:31–9.

    Google Scholar 

  57. 57.

    Newell KM. Constraints on the development of coordination. In: Wade MG, Whiting HTA, editors. Motor development in children: aspect of coordination and control. Dordrecht: Nijhoff; 1986. p. 341–60.

    Chapter  Google Scholar 

  58. 58.

    Turvey MT. Impredicativity, dynamics and the perception-action divide. In: Jirsa VK, Kelso JAS, editors. Coordination dynamics: issues and trends. Berlin: Springer Verlag; 2004. p. 1–20.

    Chapter  Google Scholar 

  59. 59.

    Turvey MT. Action and perception at the level of synergies. Hum Mov Sci. 2007;26:657–97.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Turvey MT, Shaw RE. Ecological foundations of cognition: I. Symmetry and specificity of animal–environment systems. J Conscious Stud. 1999;6(11–12):95–110.

    Google Scholar 

  61. 61.

    Gagné F. Motivation within the DMGT 2.0 framework. High Abil Stud. 2010;21(2):81–99.

    Article  Google Scholar 

  62. 62.

    Renshaw I, Davids K, Savelsbergh GJP. Motor learning in practice: a constraints-led approach. New York (NY): Routledge; 2010.

    Google Scholar 

  63. 63.

    Kelso JAS. An essay on understanding the mind. Ecol Psychol. 2008;20(2):180–208.

    PubMed  Article  Google Scholar 

  64. 64.

    Kelso JAS. Multi-stability and meta-stability: understanding dynamic coordination in the brain. Philos Trans R Soc Lond B Biol Sci. 2012;367:906–18.

    PubMed  Article  Google Scholar 

  65. 65.

    Kelso JAS, Jeka JJ. Symmetry breaking dynamics of human multi-limb coordination. J Exp Psychol Hum Percept Perf. 1992;18:645–68.

    CAS  Article  Google Scholar 

  66. 66.

    Nourrit D, Delignières D, Caillou N, et al. On discontinuities in motor learning: a longitudinal study of complex skill acquisition on a ski-simulator. J Mot Behav. 2003;35(2):151–70.

    PubMed  Article  Google Scholar 

  67. 67.

    Teulier C, Delignières D. The nature of the transition between novice and skilled coordination during learning to swing. Hum Mov Sci. 2007;26:376–92.

    PubMed  Article  Google Scholar 

  68. 68.

    Chow JY, Davids K, Hristovski R, et al. Nonlinear pedagogy: learning design for self-organizing neurobiological systems. New Ideas Psychol. 2011;29:189–200.

    Article  Google Scholar 

  69. 69.

    van Emmerik REA, Rosenstein MT, McDermott WJ, et al. A nonlinear dynamics approach to human movement. J Appl Biomech. 2004;20:396–420.

    Google Scholar 

  70. 70.

    Zanone PG, Kelso JAS. Evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perf. 1992;18:403–21.

    CAS  Article  Google Scholar 

  71. 71.

    Kelso JAS. Phase transitions and critical behavior in human bimanual coordination. Am J Physiol Regul Integr Comp Physiol. 1984;15:R1000–4.

    Google Scholar 

  72. 72.

    Hristovski R, Davids K, Araújo D, et al. Constraints-induced emergence of functional novelty in complex neurobiological systems: a basis for creativity in sport. Nonlinear Dyn Psychol Life Sci. 2011;15(2):175–206.

    Google Scholar 

  73. 73.

    Boschker MSJ, Bakker FC, Michaels CF. Memory for the functional characteristics of climbing walls: perceiving affordances. J Mot Behav. 2002;34:25–36.

    PubMed  Article  Google Scholar 

  74. 74.

    Seifert L, Wattebled L, L’Hermette M, et al. Inter-limb coordination variability in ice climbers of different skill level. Educ Phys Train Sport. 2011;1(80):63–8.

    Google Scholar 

  75. 75.

    Bourdin C, Teasdale N, Nougier V, et al. Postural constraints modify the organization of grasping movements. Hum Mov Sci. 1999;18:87–102.

    Article  Google Scholar 

  76. 76.

    Hristovski R, Davids K, Araújo D. Affordance-controlled bifurcations of action patterns in martial arts. Nonlinear Dyn Psychol Life Sci. 2006;10(4):409–44.

    Google Scholar 

  77. 77.

    Hristovski R, Davids K, Araújo D, et al. How boxers decide to punch a target: emergent behaviour in non linear dynamic movement systems. J Sports Sci Med. 2006;5:60–73.

    Google Scholar 

  78. 78.

    Pinder RA, Davids K, Renshaw I. Metastability and emergent performance of dynamic interceptive actions. J Sci Med Sport. 2012;15(5):437–43.

    PubMed  Article  Google Scholar 

  79. 79.

    Newell KM, Corcos DM. Issues in variability and motor control. In: Newell KM, Corcos DM, editors. Variability and motor control. Champaign (IL): Human Kinetics; 1993. p. 1–12.

    Google Scholar 

  80. 80.

    Newell KM, Slifkin AB. The nature of movement variability. In: Piek JP, editor. Motor behaviour and human skill: a multidisciplinarity perspective. Champaign (IL): Human Kinetics; 1998. p. 143–60.

    Google Scholar 

  81. 81.

    Newell KM, Deutsch KM, Sosnoff JJ, et al. Variability in motor output as noise: a default and erroneous proposition? In: Davids K, Bennett S, Newell KM, editors. Movement system variability. Champaign (IL): Human Kinetics; 2006. p. 3–24.

    Google Scholar 

  82. 82.

    Li L, Haddad JM, Hamill J. Stability and variability may respond differently to changes in walking speed. Hum Mov Sci. 2005;24:257–67.

    PubMed  Article  Google Scholar 

  83. 83.

    van Emmerik REA, van Wegen EEH. On variability and stability in human movement. J Appl Biomech. 2000;16:394–406.

    Google Scholar 

  84. 84.

    Edelman GM, Gally JA. Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA. 2001;98(24):13763–8.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Hoyt DF, Taylor CR. Gait and the energetics of locomotion in horses. Nature. 1981;292:239–40.

    Article  Google Scholar 

  86. 86.

    Sparrow WA. Energetics of human activity. Champaign (IL): Human Kinetics; 2000.

    Google Scholar 

  87. 87.

    Sparrow WA, Newell KM. Metabolic energy expenditure and the regulation of movement economy. Psych Bull Rev. 1998;5:173–96.

    Article  Google Scholar 

  88. 88.

    Davids K, Bennett S, Handford C, et al. Acquiring coordination in self-paced extrinsic timing tasks: a constraints led perspective. Int J Sport Psychol. 1999;30:437–61.

    Google Scholar 

  89. 89.

    Chollet D, Chalies S, Chatard JC. A new index of coordination for the crawl: description and usefulness. Int J Sports Med. 2000;21:54–9.

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Seifert L, Chollet D. Inter-limb coordination and constraints in swimming: a review. In: Beaulieu NP, editor. Physical activity and children: new research. Hauppauge (NY): Nova Science Publishers; 2008. p. 65–93.

    Google Scholar 

  91. 91.

    Seifert L, Chollet D, Bardy B. Effect of swimming velocity on arm coordination in front crawl: a dynamical analysis. J Sports Sci. 2004;22(7):651–60.

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Seifert L, Button C, Brazier T. Interacting constraints and coordination in swimming. In: Renshaw I, Davids K, Savelsbergh GJP, editors. Motor learning in practice: a constraints-led approach. London: Routledge; 2010, p. 83–98.

  93. 93.

    Leblanc H, Seifert L, Baudry L, et al. Arm-leg coordination in flat breaststroke: a comparative study between elite and non-elite swimmers. Int J Sports Med. 2005;26(9):787–97.

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Seifert L, Leblanc H, Chollet D, et al. Inter-limb coordination in swimming: effect of speed and skill level. Hum Mov Sci. 2010;29:103–13.

    PubMed  Article  Google Scholar 

  95. 95.

    Seifert L, Leblanc H, Herault R, et al. Inter-subject variability in the upper-lower limb breaststroke coordination. Hum Mov Sci. 2011;30(3):550–65.

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Chow JY, Davids K, Button C, et al. Variation in coordination of a discrete multiarticular action as a function of skill level. J Mot Behav. 2007;39(6):463–79.

    PubMed  Article  Google Scholar 

  97. 97.

    Seifert L, Barbosa T, Kjendlie PL. Biophysics approach in swimming: gender effect. In: Davies SA, editor. Gender gap: causes, experiences and effects. Hauppauge (NY): Nova Science Publishers; 2011. p. 59–80.

    Google Scholar 

  98. 98.

    Bernstein NA. The co-ordination and regulation of movement. Elmsford (NY): Pergamon Press; 1967.

    Google Scholar 

  99. 99.

    Vereijken B, van Emmerik REA, Whiting HTA, et al. Freezing degrees of freedom in skill acquisition. J Mot Behav. 1992;24:133–42.

    Article  Google Scholar 

  100. 100.

    Temprado J, Della Grasta M, Farrell M, et al. A novice-expert comparison of (intra-limb) coordination subserving the volleyball serve. Hum Mov Sci. 1997;16:653–76.

    Article  Google Scholar 

  101. 101.

    Swinnen SP, Jardin K, Meulenbroek R, et al. Egocentric and allocentric constraints in the expression of patterns of inter-limb coordination. J Cogn Neurosci. 1997;9:348–77.

    Article  Google Scholar 

  102. 102.

    Mason PH. Degeneracy at multiple levels of complexity. Biol Theory. 2010;5(3):277–88.

    Article  Google Scholar 

  103. 103.

    Whitacre JM. Degeneracy: a link between evolvability, robustness and complexity in biological systems. Theor Biol Med Model. 2010;7(6):1–17.

    Google Scholar 

  104. 104.

    Whitacre JM, Bender A. Degeneracy: a design principle for achieving robustness and evolvability. J Theor Biol. 2010;263(1):143–53.

    PubMed  Article  Google Scholar 

  105. 105.

    Button C, Mac Leod M, Sanders R, et al. Examining movement variability in the basketball free-throw action at different skill levels. Res Q Exerc Sport. 2003;74:257–69.

    PubMed  Article  Google Scholar 

  106. 106.

    Rein R, Davids K, Button C. Adaptive and phase transition behavior in performance of discrete multi-articular actions by degenerate neurobiological systems. Exp Brain Res. 2010;201(2):307–22.

    PubMed  Article  Google Scholar 

  107. 107.

    Fradet L, Botcazou M, Durocher C, et al. Do handball throws always exhibit a proximal-to-distal segmental sequence? J Sports Sci. 2004;22:439–47.

    PubMed  Article  Google Scholar 

  108. 108.

    Schorer J, Baker J, Fath F, et al. Identification of interindividual and intraindividual movement patterns in handball players of varying expertise levels. J Mot Behav. 2007;39(5):409–21.

    PubMed  Article  Google Scholar 

  109. 109.

    Wagner H, Pfusterschmied J, Klous M, et al. Movement variability and skill level of various throwing techniques. Hum Mov Sci. 2012;31(1):78–90.

    PubMed  Article  Google Scholar 

  110. 110.

    Bretigny P, Leroy D, Button C, et al. Coordination profiles of the expert field hockey drive according to field roles. Sport Biomech. 2011;10(4):339–50.

    CAS  Article  Google Scholar 

  111. 111.

    Burgess-Limerick R, Abernethy B, Neal RJ. Experience and backswing movement time variability: a short note concerning a serenditipous observation. Hum Mov Sci. 1991;10:621–7.

    Article  Google Scholar 

  112. 112.

    Franks IM, Weicker D, Robertson DGE. The kinematics, movement phasing and timing of a skilled action in response to varying conditions of uncertainty. Hum Mov Sci. 1985;4(2):91–105.

    Article  Google Scholar 

  113. 113.

    Bootsma RJ, van Wieringen PCW. Timing an attacking forehand drive in table tennis. J Exp Psychol Hum Percept Perf. 1990;16(l):21–9.

    Google Scholar 

  114. 114.

    Jaitner T, Mendoza L, Schöllhorn W. Analysis of the long jump technique in the transitions from approach to takeoff based on time-continuous kinematic data. Eur J Sports Sci. 2001;1(5):1–11.

    Article  Google Scholar 

  115. 115.

    Wilson C, Simpson SE, van Emmerik REA, et al. Coordination variability and skill development in expert triple jumpers. Sport Biomech. 2008;7(1):2–9.

    Article  Google Scholar 

  116. 116.

    Seifert L, Chehensse A, Tourny-Chollet C, et al. Breathing patterns effect on arm coordination symmetry in front crawl. J Strength Cond Res. 2008;22(5):1670–6.

    PubMed  Article  Google Scholar 

  117. 117.

    Brunswik E. Perception and the representative design of psychological experiments. Berkeley (CA): University of California Press; 1956.

    Google Scholar 

  118. 118.

    Dhami MK, Hertwig R, Hoffrage U. The role of representative design in an ecological approach to cognition. Psychol Bull. 2004;130(6):959–88.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest for this project that are directly relevant to the content of this review. The authors received funding from the CPER/GRR1880 Logistic Transport and Information Treatment 2007-2013. All authors have substantially contributed to the submitted study and all have read and approved the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ludovic Seifert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seifert, L., Button, C. & Davids, K. Key Properties of Expert Movement Systems in Sport. Sports Med 43, 167–178 (2013). https://doi.org/10.1007/s40279-012-0011-z

Download citation

Keywords

  • Coordination Pattern
  • Sport Performance
  • Deliberate Practice
  • Task Constraint
  • Expert Performance