Skip to main content
Log in

Cost-Effectiveness and Economic Impact of Bladder Cancer Management: An Updated Review of the Literature

  • Review Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Bladder cancer remains one of the costliest malignancies to manage. We provide a narrative review of literature assessing the economic burden and cost-effectiveness of bladder cancer treatment and surveillance. This is an update to a previous review and focuses on data published within the past 10 years. We queried PubMed and MEDLINE for all bladder cancer cost-related literature between 2013 and 2023. After initial screening, 117 abstracts were identified, 50 of which were selected for inclusion in our review. Management of disease recurrence and treatment complications contributes significantly to the high cost of care. High-value interventions are therefore treatments that improve recurrence-free and overall survival at minimal additional toxicity. De-escalation of surveillance and diagnostic interventions may help to reduce costs in this space without compromising oncologic control. The persistently rising cost of novel cancer drugs undermines their value when only modest gains in efficacy are observed. Multiple cost-effectiveness analyses have been published and are useful for contextualizing the cost, efficacy, and impact on quality of life that interventions have in this population. Further cost-effectiveness work is needed to better characterize the impact that treatment costs have on patients’ financial well-being and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  2. Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics. 2003;21(18):1315–30. https://doi.org/10.1007/bf03262330.

    Article  PubMed  Google Scholar 

  3. Flaig TW, Spiess PE, Agarwal N, et al. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(3):329–54. https://doi.org/10.6004/jnccn.2020.0011.

    Article  PubMed  Google Scholar 

  4. Chang SS, Boorjian SA, Chou R, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J Urol. 2016;196(4):1021–9. https://doi.org/10.1016/j.juro.2016.06.049.

    Article  PubMed  Google Scholar 

  5. Sharma V, Fero KE, Lec PM, et al. The natural history of multiple recurrences in intermediate-risk non-muscle invasive bladder cancer: lessons from a prospective cohort. J Urol. 2021;206:E1140–E1140.

    Article  Google Scholar 

  6. Moschini M, Sharma V, Dell’oglio P, et al. Comparing long-term outcomes of primary and progressive carcinoma invading bladder muscle after radical cystectomy. BJU Int. 2016;117(4):604–10. https://doi.org/10.1111/bju.13146.

    Article  PubMed  Google Scholar 

  7. Williams SB, Shan Y, Ray-Zack MD, et al. Comparison of costs of radical cystectomy vs trimodal therapy for patients with localized muscle-invasive bladder cancer. JAMA Surg. 2019;154(8): e191629. https://doi.org/10.1001/jamasurg.2019.1629.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yeung C, Dinh T, Lee J. The health economics of bladder cancer: an updated review of the published literature. Pharmacoeconomics. 2014;32(11):1093–104. https://doi.org/10.1007/s40273-014-0194-2.

    Article  PubMed  Google Scholar 

  9. Mariotto AB, Enewold L, Zhao J, Zeruto CA, Yabroff KR. Medical care costs associated with cancer survivorship in the United States. Cancer Epidemiol Biomarkers Prev. 2020;29(7):1304–12. https://doi.org/10.1158/1055-9965.EPI-19-1534.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leal J, Luengo-Fernandez R, Sullivan R, Witjes JA. Economic burden of bladder cancer across the European union. Eur Urol. 2016;69(3):438–47. https://doi.org/10.1016/j.eururo.2015.10.024.

    Article  PubMed  Google Scholar 

  11. Michaeli JC, Boch T, Albers S, Michaeli T, Michaeli DT. Socio-economic burden of disease: Survivorship costs for bladder cancer. J Cancer Policy. 2022;32: 100326. https://doi.org/10.1016/j.jcpo.2022.100326.

    Article  PubMed  Google Scholar 

  12. Jung YL, Tompa E, Longo C, et al. The economic burden of bladder cancer due to occupational exposure. J Occup Environ Med. 2018;60(3):217–25. https://doi.org/10.1097/jom.0000000000001242.

    Article  PubMed  Google Scholar 

  13. Svatek RS, Hollenbeck BK, Holmag S, et al. The economics of bladder cancer: costs and considerations of caring for this disease. Eur Urol. 2014;66(2):253–62. https://doi.org/10.1016/j.eururo.2014.01.006.

    Article  PubMed  Google Scholar 

  14. Sievert KD, Amend B, Nagele U, et al. Economic aspects of bladder cancer: what are the benefits and costs? World J Urol. 2009;27(3):295–300. https://doi.org/10.1007/s00345-009-0395-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burger M, Grossman HB, Droller M, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64(5):846–54. https://doi.org/10.1016/j.eururo.2013.03.059.

    Article  PubMed  Google Scholar 

  16. Grossman HB, Stenzl A, Fradet Y, et al. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urology. 2012;188(1):58–62. https://doi.org/10.1016/j.juro.2012.03.007.

    Article  Google Scholar 

  17. Todenhöfer T, Maas M, Ketz M, et al. Retrospective German claims data study on initial treatment of bladder carcinoma (BCa) by transurethral bladder resection (TURB): a comparative analysis of costs using standard white light- (WL-) vs blue light- (BL-) TURB. World J Urol. 2021;39(8):2953–60. https://doi.org/10.1007/s00345-020-03587-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mossanen M, Wang Y, Szymaniak J, et al. Evaluating the cost of surveillance for non-muscle-invasive bladder cancer: an analysis based on risk categories. World J Urol. 2019;37(10):2059–65. https://doi.org/10.1007/s00345-018-2550-x.

    Article  PubMed  Google Scholar 

  19. Bree KK, Shan Y, Hensley PJ, et al. Management, surveillance patterns, and costs associated with low-grade papillary stage ta non-muscle-invasive bladder cancer among older adults, 2004–2013. JAMA Netw Open. 2022;5(3): e223050. https://doi.org/10.1001/jamanetworkopen.2022.3050.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Williams SB, Howard LE, Foster ML, et al. Estimated costs and long-term outcomes of patients with high-risk non-muscle-invasive bladder cancer treated with bacillus calmette-guérin in the veterans affairs health system. JAMA Netw Open. 2021;4(3): e213800. https://doi.org/10.1001/jamanetworkopen.2021.3800.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang M, Georgieva MV, Bocharova I, et al. The impact of progression on healthcare resource utilization and costs among patients with high-grade non-muscle invasive bladder cancer after bacillus calmette-guérin therapy: a retrospective SEER-medicare analysis. Adv Ther. 2021;38(3):1584–600. https://doi.org/10.1007/s12325-020-01616-3.

    Article  PubMed  Google Scholar 

  22. Jian X, Shen M, Liao G. Definitive BCG immunotherapy versus radical cystectomy in intermediate or high-risk nonmuscle invasive bladder cancer patients: A retrospective study. Medicine. 2019;98(36): e16873. https://doi.org/10.1097/md.0000000000016873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stimson CJ, Chang SS, Barocas DA, et al. Early and late perioperative outcomes following radical cystectomy: 90-day readmissions, morbidity and mortality in a contemporary series. J Urol. 2010;184(4):1296–300. https://doi.org/10.1016/j.juro.2010.06.007.

    Article  CAS  PubMed  Google Scholar 

  24. Shabsigh A, Korets R, Vora KC, et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur Urol. 2009;55(1):164–74. https://doi.org/10.1016/j.eururo.2008.07.031.

    Article  PubMed  Google Scholar 

  25. Leow JJ, Cole AP, Seisen T, et al. Variations in the costs of radical cystectomy for bladder cancer in the USA. Eur Urol. 2018;73(3):374–82. https://doi.org/10.1016/j.eururo.2017.07.016.

    Article  PubMed  Google Scholar 

  26. Kukreja JB, Seif MA, Mery MW, et al. Utilizing time-driven activity-based costing to determine open radical cystectomy and ileal conduit surgical episode cost drivers. Urol Oncol. 2021;39(4):237.e1-237.e5. https://doi.org/10.1016/j.urolonc.2020.11.030.

    Article  PubMed  Google Scholar 

  27. Malangone-Monaco E, Wilson K, Diakun D, Tayama D, Satram S, Ogale S. Cost of cystectomy-related complications in patients with bladder cancer in the United States. Curr Med Res Opin. 2020;36(7):1177–85. https://doi.org/10.1080/03007995.2020.1758927.

    Article  PubMed  Google Scholar 

  28. Mossanen M, Krasnow RE, Lipsitz SR, et al. Associations of specific postoperative complications with costs after radical cystectomy. BJU Int. 2018;121(3):428–36. https://doi.org/10.1111/bju.14064.

    Article  PubMed  Google Scholar 

  29. Santos F, Dragomir A, Zakaria AS, Kassouf W, Aprikian A. Predictors of costs associated with radical cystectomy for bladder cancer: A population-based retrospective cohort study in the province of Quebec Canada. J Surg Oncol. 2016;113(2):223–8. https://doi.org/10.1002/jso.24132.

    Article  PubMed  Google Scholar 

  30. Leow JJ, Reese S, Trinh QD, et al. Impact of surgeon volume on the morbidity and costs of radical cystectomy in the USA: a contemporary population-based analysis. BJU Int. 2015;115(5):713–21. https://doi.org/10.1111/bju.12749.

    Article  PubMed  Google Scholar 

  31. Chipollini J, Tang DH, Hussein K, et al. Does implementing an enhanced recovery after surgery protocol increase hospital charges? Comparisons from a radical cystectomy program at a specialty cancer center. Urology. 2017;105:108–12. https://doi.org/10.1016/j.urology.2017.03.023.

    Article  PubMed  Google Scholar 

  32. Huang JT, Cole AP, Mossanen M, et al. Alvimopan is associated with a reduction in length of stay and hospital costs for patients undergoing radical cystectomy. Urology. 2020;140:115–21. https://doi.org/10.1016/j.urology.2020.01.049.

    Article  PubMed  Google Scholar 

  33. Joice GA, Chappidi MR, Patel HD, et al. Hospitalisation and readmission costs after radical cystectomy in a nationally representative sample: does urinary reconstruction matter? BJU Int. 2018;122(6):1016–24. https://doi.org/10.1111/bju.14448.

    Article  PubMed  Google Scholar 

  34. Huynh MJ, Wang Y, Chang SL, et al. The cost of obesity in radical cystectomy. Urol Oncol. 2020;38(12):932.e9-932.e14. https://doi.org/10.1016/j.urolonc.2020.05.014.

    Article  PubMed  Google Scholar 

  35. Montazeri K, Dranitsaris G, Thomas JD, et al. An economic analysis comparing health care resource use and cost of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin versus gemcitabine and cisplatin as neoadjuvant therapy for muscle invasive bladder cancer. Urol Oncol. 2021;39(12):834.e1-834.e7. https://doi.org/10.1016/j.urolonc.2021.04.032.

    Article  CAS  PubMed  Google Scholar 

  36. Parekh DJ, Reis IM, Castle EP, et al. Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): an open-label, randomised, phase 3, non-inferiority trial. Lancet. 2018;391(10139):2525–36. https://doi.org/10.1016/S0140-6736(18)30996-6.

    Article  PubMed  Google Scholar 

  37. Catto JWF, Khetrapal P, Ricciardi F, et al. Effect of robot-assisted radical cystectomy with intracorporeal urinary diversion vs open radical cystectomy on 90-day morbidity and mortality among patients with bladder cancer a randomized clinical trial. Jama-J Am Med Assoc. 2022;327(21):2092–103. https://doi.org/10.1001/jama.2022.7393.

    Article  Google Scholar 

  38. Hu JC, Chughtai B, O’Malley P, et al. Perioperative outcomes, health care costs, and survival after robotic-assisted versus open radical cystectomy: a national comparative effectiveness study. Eur Urol. 2016;70(1):195–202. https://doi.org/10.1016/j.eururo.2016.03.028.

    Article  PubMed  Google Scholar 

  39. Leow JJ, Reese SW, Jiang W, et al. Propensity-matched comparison of morbidity and costs of open and robot-assisted radical cystectomies: a contemporary population-based analysis in the United States. Eur Urol. 2014;66(3):569–76. https://doi.org/10.1016/j.eururo.2014.01.029.

    Article  PubMed  Google Scholar 

  40. Golla V, Shan Y, Farran EJ, et al. Long term cost comparisons of radical cystectomy versus trimodal therapy for muscle-invasive bladder cancer. Urol Oncol. 2022;40(6):273.e1-273.e9. https://doi.org/10.1016/j.urolonc.2022.01.007.

    Article  PubMed  Google Scholar 

  41. Bagheri I, Shan Y, Klaassen Z, et al. Comparing costs of radical versus partial cystectomy for patients diagnosed with localized muscle-invasive bladder cancer: understanding the value of surgical care. Urology. 2021;147:127–34. https://doi.org/10.1016/j.urology.2020.08.058.

    Article  PubMed  Google Scholar 

  42. Aly A, Johnson C, Yang S, Botteman MF, Rao S, Hussain A. Overall survival, costs, and healthcare resource use by line of therapy in Medicare patients with newly diagnosed metastatic urothelial carcinoma. J Med Econ. 2019;22(7):662–70. https://doi.org/10.1080/13696998.2019.1591424.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morgans AK, Hepp Z, Shah SN, et al. Real-world burden of illness and unmet need in locally advanced or metastatic urothelial carcinoma following discontinuation of PD-1/L1 inhibitor therapy: a Medicare claims database analysis. Urol Oncol. 2021;39(10):733.e1-733. https://doi.org/10.1016/j.urolonc.2021.05.001.

    Article  CAS  PubMed  Google Scholar 

  44. Grivas P, DerSarkissian M, Shenolikar R, Laliberté F, Doleh Y, Duh MS. Healthcare resource utilization and costs of adverse events among patients with metastatic urothelial cancer in USA. Future Oncol. 2019;15(33):3809–18. https://doi.org/10.2217/fon-2019-0434.

    Article  CAS  PubMed  Google Scholar 

  45. Donat SM, North A, Dalbagni G, Herr HW. Efficacy of office fulguration for recurrent low grade papillary bladder tumors less than 0.5 cm. J Urol. 2004;171(2):636–9. https://doi.org/10.1097/01.ju.0000103100.22951.5e.

    Article  PubMed  Google Scholar 

  46. Al-Hussein Awamlh B, Lee R, Chughtai B, Donat SM, Sandhu JS, Herr HW. A cost-effectiveness analysis of management of low-risk non-muscle-invasive bladder cancer using office-based fulguration. Urology. 2015;85(2):381–6. https://doi.org/10.1016/j.urology.2014.09.041.

    Article  Google Scholar 

  47. Babjuk M, Burger M, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur Urol. 2022;81(1):75–94. https://doi.org/10.1016/j.eururo.2021.08.010.

    Article  PubMed  Google Scholar 

  48. Sharma V, Wymer KM, Borah BJ, et al. Cost-effectiveness of maintenance bacillus calmette-guérin for intermediate and high risk nonmuscle invasive bladder cancer. J Urol. 2020;204(3):442–9. https://doi.org/10.1097/ju.0000000000001023.

    Article  PubMed  Google Scholar 

  49. Gan C, Amery S, Chatterton K, Khan MS, Thomas K, O’Brien T. Sequential bacillus calmette-guerin/electromotive drug administration of mitomycin C as the standard intravesical regimen in high risk nonmuscle invasive bladder cancer: 2-Year Outcomes. J Urol. 2016;195(6):1697–703. https://doi.org/10.1016/j.juro.2016.01.103.

    Article  PubMed  Google Scholar 

  50. Bachir BG, Dragomir A, Aprikian AG, et al. Contemporary cost-effectiveness analysis comparing sequential bacillus Calmette-Guerin and electromotive mitomycin versus bacillus Calmette-Guerin alone for patients with high-risk non-muscle-invasive bladder cancer. Cancer. 2014;120(16):2424–31. https://doi.org/10.1002/cncr.28731.

    Article  PubMed  Google Scholar 

  51. Di Stasi SM, Giannantoni A, Giurioli A, et al. Sequential BCG and electromotive mitomycin versus BCG alone for high-risk superficial bladder cancer: a randomised controlled trial. Lancet Oncol. 2006;7(1):43–51. https://doi.org/10.1016/S1470-2045(05)70472-1.

    Article  CAS  PubMed  Google Scholar 

  52. Lamm DL, Blumenstein BA, Crissman JD, et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent Ta, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group study. J Urol. 2000;163(4):1124–9. https://doi.org/10.1016/S0022-5347(05)67707-5.

    Article  CAS  PubMed  Google Scholar 

  53. Huncharek M, McGarry R, Kupelnick B. Impact of intravesical chemotherapy on recurrence rate of recurrent superficial transitional cell carcinoma of the bladder: results of a meta-analysis. Anticancer Res Jan-Feb. 2001;21(1B):765–9.

    CAS  Google Scholar 

  54. Steinberg G, Bahnson R, Brosman S, Middleton R, Wajsman Z, Wehle M. Efficacy and safety of valrubicin for the treatment of Bacillus Calmette-Guerin refractory carcinoma in situ of the bladder. The Valrubicin Study Group. J Urol. 2000;163(3):761–7.

    Article  CAS  PubMed  Google Scholar 

  55. Kurth K, Tunn U, Ay R, et al. Adjuvant chemotherapy for superficial transitional cell bladder carcinoma: long-term results of a European organization for research and treatment of cancer randomized trial comparing doxorubicin, ethoglucid and transurethral resection alone. J Urol. 1997;158(2):378–84. https://doi.org/10.1016/S0022-5347(01)64484-7.

    Article  CAS  PubMed  Google Scholar 

  56. Balar AV, Kamat AM, Kulkarni GS, et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study (vol 22, pg 919, 2021). Lancet Oncol. 2021;22(8):E347–E347.

    Google Scholar 

  57. Wymer KM, Sharma V, Saigal CS, et al. Cost-effectiveness analysis of pembrolizumab for bacillus calmette-guérin-unresponsive carcinoma in situ of the bladder. J Urol. 2021;205(5):1326–35. https://doi.org/10.1097/ju.0000000000001515.

    Article  PubMed  Google Scholar 

  58. Boorjian SA, Alemozaffar M, Konety BR, et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 2021;22(1):107–17. https://doi.org/10.1016/S1470-2045(20)30540-4.

    Article  CAS  PubMed  Google Scholar 

  59. Joshi M, Atlas SJ, Beinfeld M, et al. Cost-effectiveness of nadofaragene firadenovec and pembrolizumab in bacillus calmette-guerin immunotherapy unresponsive non-muscle invasive bladder cancer. Value Health. 2022. https://doi.org/10.1016/j.jval.2022.12.005.

    Article  PubMed  Google Scholar 

  60. Yin M, Joshi M, Meijer RP, et al. Neoadjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and two-step meta-analysis. Oncologist. 2016;21(6):708–15. https://doi.org/10.1634/theoncologist.2015-0440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Advanced Bladder Cancer Meta-analysis C. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur Urol. 2005;48(2):202–205. doi:https://doi.org/10.1016/j.eururo.2005.04.006

  62. Stevenson SM, Danzig MR, Ghandour RA, et al. Cost-effectiveness of neoadjuvant chemotherapy before radical cystectomy for muscle-invasive bladder cancer. Urol Oncol. 2014;32(8):1172–7. https://doi.org/10.1016/j.urolonc.2014.05.001.

    Article  PubMed  Google Scholar 

  63. Joyce DD, Wymer KM, Sharma V, et al. Comparative cost-effectiveness of neoadjuvant chemotherapy regimens for muscle-invasive bladder cancer: results according to VESPER data. Cancer. 2022;128(24):4194–202. https://doi.org/10.1002/cncr.34502.

    Article  CAS  PubMed  Google Scholar 

  64. Grossman HB, Bellmunt J, Black PC. Can biomarkers guide the use of neoadjuvant chemotherapy in T2 bladder cancer? Eur Urol Oncol. 2019;2(5):597–602. https://doi.org/10.1016/j.euo.2019.06.002.

    Article  PubMed  Google Scholar 

  65. Lotan Y, Woldu SL, Sanli O, Black P, Milowsky MI. Modelling cost-effectiveness of a biomarker-based approach to neoadjuvant chemotherapy for muscle-invasive bladder cancer. BJU Int. 2018;122(3):434–40. https://doi.org/10.1111/bju.14220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khaki AR, Shan Y, Nelson RE, et al. Cost-effectiveness analysis of neoadjuvant immune checkpoint inhibition vs. cisplatin-based chemotherapy in muscle invasive bladder cancer. Urol Oncol. 2021;39(10):732. https://doi.org/10.1016/j.urolonc.2021.03.004.

    Article  CAS  PubMed Central  Google Scholar 

  67. Michels CTJ, Wijburg CJ, Hannink G, Witjes JA, Rovers MM, Grutters JPC. Robot-assisted versus open radical cystectomy in bladder cancer: an economic evaluation alongside a multicentre comparative effectiveness study. Eur Urol Focus. 2022;8(3):739–47. https://doi.org/10.1016/j.euf.2021.06.004.

    Article  PubMed  Google Scholar 

  68. Machleid F, Ho-Wrigley J, Chowdhury A, Paliah A, Poon HL, Pizzo E. Cost-utility analysis of robotic-assisted radical cystectomy for bladder cancer compared to open radical cystectomy in the United Kingdom. PLoS ONE. 2022;17(9): e0270368. https://doi.org/10.1371/journal.pone.0270368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Michels CTJ, Wijburg CJ, Leijte E, Witjes JA, Rovers MM, Grutters JPC. A cost-effectiveness modeling study of robot-assisted (RARC) versus open radical cystectomy (ORC) for bladder cancer to inform future research. Eur Urol Focus. 2019;5(6):1058–65. https://doi.org/10.1016/j.euf.2018.04.014.

    Article  PubMed  Google Scholar 

  70. Kukreja JB, Metcalfe MJ, Qiao W, Kamat AM, Dinney CPN, Navai N. Cost-effectiveness of robot-assisted radical cystectomy using a propensity-matched cohort. Eur Urol Focus. 2020;6(1):88–94. https://doi.org/10.1016/j.euf.2018.07.001.

    Article  PubMed  Google Scholar 

  71. Xie Q, Zheng H, Chen Y, Peng X. Cost-effectiveness of avelumab maintenance therapy plus best supportive care vs. best supportive care alone for advanced or metastatic urothelial carcinoma. Front Public Health. 2022;10: 837854. https://doi.org/10.3389/fpubh.2022.837854.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Peng Y, She Z, Peng L, et al. Cost-effectiveness of avelumab maintenance therapy for advanced or metastatic urothelial carcinoma in the United States. Adv Ther. 2021;38(12):5710–20. https://doi.org/10.1007/s12325-021-01950-0.

    Article  CAS  PubMed  Google Scholar 

  73. Hale O, Patterson K, Lai Y, et al. Cost-effectiveness of pembrolizumab versus carboplatin-based chemotherapy as first-line treatment of PD-L1-positive locally advanced or metastatic urothelial carcinoma ineligible for cisplatin-based therapy in the United States. Clin Genitourin Cancer. 2021;19(1):e17–30. https://doi.org/10.1016/j.clgc.2020.07.006.

    Article  PubMed  Google Scholar 

  74. Srivastava T, Prabhu VS, Li H, et al. Cost-effectiveness of pembrolizumab as second-line therapy for the treatment of locally advanced or metastatic urothelial carcinoma in Sweden. Eur Urol Oncol. 2020;3(5):663–70. https://doi.org/10.1016/j.euo.2018.09.012.

    Article  PubMed  Google Scholar 

  75. Sarfaty M, Hall PS, Chan KKW, et al. Cost-effectiveness of pembrolizumab in second-line advanced bladder cancer. Eur Urol. 2018;74(1):57–62. https://doi.org/10.1016/j.eururo.2018.03.006.

    Article  PubMed  Google Scholar 

  76. Criss SD, Weaver DT, Sheehan DF, Lee RJ, Pandharipande PV, Kong CY. Effect of PD-L1 testing on the cost-effectiveness and budget impact of pembrolizumab for advanced urothelial carcinoma of the bladder in the United States. Urol Oncol. 2019;37(3):180.e11-180.e18. https://doi.org/10.1016/j.urolonc.2018.11.016.

    Article  CAS  PubMed  Google Scholar 

  77. Parmar A, Richardson M, Coyte PC, Cheng S, Sander B, Chan KKW. A cost-utility analysis of atezolizumab in the second-line treatment of patients with metastatic bladder cancer. Curr Oncol. 2020;27(4):e386–94. https://doi.org/10.3747/co.27.5459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Green DA, Rink M, Cha EK, et al. Cost-effective treatment of low-risk carcinoma not invading bladder muscle. BJU Int. 2013;111(3):E78-84. https://doi.org/10.1111/j.1464-410X.2012.11454.x.

    Article  PubMed  Google Scholar 

  79. Gordon N, Stemmer SM, Greenberg D, Goldstein DA. Trajectories of injectable cancer drug costs after launch in the United States. J Clin Oncol. 2018;36(4):319–25. https://doi.org/10.1200/JCO.2016.72.2124.

    Article  CAS  PubMed  Google Scholar 

  80. Shih YCT, Xu Y, Liu L, Smieliauskas F. Rising prices of targeted oral anticancer medications and associated financial burden on medicare beneficiaries. J Clin Oncol. 2017;35(22):2482. https://doi.org/10.1200/Jco.2017.72.3742.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Conti RM, Fein AJ, Bhatta SS. National trends in spending on and use of oral oncologics, first quarter 2006 through third quarter 2011. Health Affair. 2014;33(10):1721–7. https://doi.org/10.1377/hlthaff.2014.0001.

    Article  Google Scholar 

  82. Allareddy V, Kennedy J, West MM, Konety BR. Quality of life in long-term survivors of bladder cancer. Cancer. 2006;106(11):2355–62. https://doi.org/10.1002/cncr.21896.

    Article  PubMed  Google Scholar 

  83. Mossanen M, Gore JL. The burden of bladder cancer care: direct and indirect costs. Curr Opin Urol. 2014;24(5):487–91. https://doi.org/10.1097/mou.0000000000000078.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Williams.

Ethics declarations

Funding

None.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

Code availability

Not applicable.

Author contributions

All authors contributed to the study conception and design, data collection: D.D. Joyce, V. Sharma, analysis and interpretation of results: D.D. Joyce, V. Sharma; draft manuscript preparation: D.D. Joyce, V. Sharma, S.B. Williams. All authors reviewed the results and approved the final version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyce, D.D., Sharma, V. & Williams, S.B. Cost-Effectiveness and Economic Impact of Bladder Cancer Management: An Updated Review of the Literature. PharmacoEconomics 41, 751–769 (2023). https://doi.org/10.1007/s40273-023-01273-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40273-023-01273-8

Navigation