Skip to main content
Log in

Cost Effectiveness of Chemotherapeutic Agents and Targeted Biologics in Ovarian Cancer: A Systematic Review

  • Systematic Review
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Background

Adjuvant chemotherapy is a key component of advanced ovarian cancer treatment, when surgery alone is not sufficient. Recurrence is common in ovarian cancer patients and most women require prolonged second-line and higher-line chemotherapy. With newer targeted therapies, modest improvements in survival and quality of life may be attained at substantial cost, but the relative economic efficiency of these newer agents remains unknown.

Objective

We undertook this systematic review to comprehensively evaluate the cost-effectiveness of various chemotherapeutic and targeted therapy alternatives for ovarian cancer.

Methods

We searched Medline, PubMed, and Embase databases to identify economic evaluations published over the last 18 years (1996–2014). From the 2513 unique papers retrieved, 74 full texts were selected for full-text review based on a priori eligibility criteria. Two authors independently reviewed these articles to determine eligibility for final review. The quality of the included studies was assessed using the Quality of Health Economic Studies (QHES).

Results

A total of 28 studies were included for reporting. Administration of intravenous cisplatin–paclitaxel combination chemotherapy for first-line treatment was the most cost-effective alternative (2014 US dollars [USD] equivalent incremental cost-effectiveness ratio [ICER] ~US$17,000–US$27,000 per life year gained [LYG]), while the use of bevacizumab did not demonstrate similar value for money (2014 USD equivalent ICER was greater than US$200,000 per quality-adjusted life-year [QALY]). For second-line treatment, the use of platinum–paclitaxel combination or platinum monotherapy was cost-effective compared with platinum monotherapy or best supportive care, respectively, in women with recurrent platinum-sensitive disease. For patients with partial platinum sensitivity, pegylated liposomal doxorubicin (PLD) plus trabectedin may be cost-effective (2014 USD equivalent ICER was ~US$57,000–US$62,000 per QALY) compared with PLD alone. For recurrent platinum-resistant cases, there was limited evidence to conclude the most valuable treatment; though one study showed that best supportive care was most cost-effective, while second-line monotherapy with doxorubicin (2014 USD equivalent ICER was ~US$90,000 per LYG) may also be cost-effective compared with best supportive care.

Conclusions

Despite varying methodological approaches and multiple sources for cost and effectiveness inputs, this systematic review demonstrated that standard platinum–taxane combination chemotherapy for first-line treatment was most cost-effective. There was unanimous agreement that bevacizumab was not a cost-effective front-line therapy compared with platinum–taxane combination for the overall ovarian cancer population, though its use in the high-use population may yield better value. For second-line treatment, platinum-based chemotherapy remained cost-effective among patients with recurrent platinum-sensitive disease, while there was limited evidence to conclude the most valuable treatment alternative among patients with recurrent platinum-resistant disease. Future research incorporating real-world data is essential to corroborate findings from trial-based economic evaluations. In addition, for improving consistency in reporting and quality of studies, incorporating QALYs in this population is important, especially since chemotherapy is administered for lengthy periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts & Figures 2014. Atlanta: American Cancer Society; 2014 [Internet]. Available from: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2014/.

  2. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  CAS  PubMed  Google Scholar 

  3. American Cancer Society. Ovarian Cancer. Detailed Guide. [Internet]. Available from: http://www.cancer.org/cancer/ovariancancer/detailedguide/index.

  4. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics (2014). CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  5. Morgan RJ, Armstrong DK, Alvarez RD, Chen L, Copeland L, Crispens MA, et al. NCCN Clinical Practice Guidelines in Ovarian Cancer. v.3.2014.

  6. Ovarian Cancer National Alliance and SEER Cancer Statistics Review, 1975–2005, National Cancer Institute. Bethesda, Md. http://seer.cancer.gov/csr/1975_2005/.

  7. Szucs TD, Wyss P, Dedes KJ. Cost-effectiveness studies in ovarian cancer. Int J Gynecol Cancer. 2003;13(Suppl 2):212–9.

    Article  PubMed  Google Scholar 

  8. Johnston SR. Ovarian cancer: review of the National Institute for Clinical Excellence (NICE) guidance recommendations. Cancer Invest. 2004;22(5):730–42.

    Article  PubMed  Google Scholar 

  9. Sfakianos GP, Havrilesky LJ. A review of cost-effectiveness studies in ovarian cancer. Cancer Control. 2011;18(1):59–64.

    PubMed  Google Scholar 

  10. Havrilesky LJ, Fountain C. Can we maximize both value and quality in gynecologic cancer care? A work in progress. Am Soc Clin Oncol Educ Book. 2014;34:e268–75.

    Article  Google Scholar 

  11. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264,9, W64.

  12. VonVille HM. Excel Workbook for Tracking Systematic Review Searches & Strategies and Screening Titles & Abstracts. 2014.

  13. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276–82.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther. 2005;85(3):257–68.

    PubMed  Google Scholar 

  15. VonVille HM. Excel workbook to calculate Cohen’s kappa. 2014.

  16. Smieliauskas F, Chien CR, Shen C, Geynisman DM, Shih YC. Cost-effectiveness analyses of targeted oral anti-cancer drugs: a systematic review. Pharmacoeconomics. 2014;32(7):651–80.

    Article  PubMed  Google Scholar 

  17. International Monetary Fund. World Economic Outlook Database. [Internet]. Available from: http://www.imf.org/external/pubs/ft/weo/2009/02/weodata/index.aspx.

  18. Chiou CF, Hay JW, Wallace JF, Bloom BS, Neumann PJ, Sullivan SD, et al. Development and validation of a grading system for the quality of cost-effectiveness studies. Med Care. 2003;41(1):32–44.

    Article  PubMed  Google Scholar 

  19. Zhang W, Islam N, Ma C, Anis AH. Systematic review of cost-effectiveness analyses of treatments for psoriasis. Pharmacoeconomics. 2015;33(4):327–40.

    Article  PubMed  Google Scholar 

  20. Krysinski J, Placzek J, Fijalkowska K, Tujakowski J, Sadowska A, Windorbska W. Treatment of advanced ovarian cancer: cost-effectiveness analysis. Curr Gynecol Oncol. 2011;9(3):147–57.

    Google Scholar 

  21. Messori A, Trippoli S, Becagli P, Tendi E. Pharmacoeconomic profile of paclitaxel as a first-line treatment for patients with advanced ovarian carcinoma. A lifetime cost-effectiveness analysis. Cancer. 1996;78(11):2366–73.

    Article  CAS  PubMed  Google Scholar 

  22. Covens A, Boucher S, Roche K, Macdonald M, Pettitt D, Jolain B, et al. Is paclitaxel and cisplatin a cost-effective first-line therapy for advance ovarian carcinoma? Cancer. 1996;77(10):2086–91.

    Article  CAS  PubMed  Google Scholar 

  23. Elit LM, Gafni A, Levine MN. Economic and policy implications of adopting paclitaxel as first-line therapy for advanced ovarian cancer: an Ontario perspective. J Clin Oncol. 1997;15(2):632–9.

    CAS  PubMed  Google Scholar 

  24. McGuire W, Neugut AI, Arikian S, Doyle J, Dezii CM. Analysis of the cost-effectiveness of paclitaxel as alternative combination therapy for advanced ovarian cancer. J Clin Oncol. 1997;15(2):640–5.

    CAS  PubMed  Google Scholar 

  25. Ortega A, Dranitsaris G, Sturgeon J, Sutherland H, Oza A. Cost-utility analysis of paclitaxel in combination with cisplatin for patients with advanced ovarian cancer. Gynecol Oncol. 1997;66(3):454–63.

    Article  CAS  PubMed  Google Scholar 

  26. Berger K, Fischer T, Szucs TD. Cost-effectiveness analysis of paclitaxel and cisplatin versus cyclophosphamide and cisplatin as first-line therapy in advanced ovarian cancer. A European perspective. Eur J Cancer. 1998;34(12):1894–901.

    Article  CAS  PubMed  Google Scholar 

  27. Neymark N, Gorlia T, Adriaenssen I, Baron B, Piccart M. Cost effectiveness of paclitaxel/cisplatin compared with cyclophosphamide/cisplatin in the treatment of advanced ovarian cancer in Belgium. Pharmacoeconomics. 2002;20(7):485–97.

    Article  PubMed  Google Scholar 

  28. Limat S, Woronoff-Lemsi MC, Menat C, Madroszyk-Flandin A, Merrouche Y. From randomised clinical trials to clinical practice : a pragmatic cost-effectiveness analysis of Paclitaxel in first-line therapy for advanced ovarian cancer. Pharmacoeconomics. 2004;22(10):633–41.

    Article  CAS  PubMed  Google Scholar 

  29. Bristow RE, Santillan A, Salani R, Diaz-Montes TP, Giuntoli RL 2nd, Meisner BC, et al. Intraperitoneal cisplatin and paclitaxel versus intravenous carboplatin and paclitaxel chemotherapy for Stage III ovarian cancer: a cost-effectiveness analysis. Gynecol Oncol. 2007;106(3):476–81.

    Article  CAS  PubMed  Google Scholar 

  30. Havrilesky LJ, Secord AA, Darcy KM, Armstrong DK, Kulasingam S, Gynecologic Oncology G. Cost effectiveness of intraperitoneal compared with intravenous chemotherapy for women with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2008;26(25):4144–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cohn DE, Kim KH, Resnick KE, O’Malley DM, Straughn JM Jr. At what cost does a potential survival advantage of bevacizumab make sense for the primary treatment of ovarian cancer? A cost-effectiveness analysis. J Clin Oncol. 2011;29(10):1247–51.

    Article  PubMed  Google Scholar 

  32. Barnett JC, Alvarez Secord A, Cohn DE, Leath CA 3rd, Myers ER, Havrilesky LJ. Cost effectiveness of alternative strategies for incorporating bevacizumab into the primary treatment of ovarian cancer. Cancer. 2013;119(20):3653–61.

    PubMed  Google Scholar 

  33. Chan JK, Herzog TJ, Hu L, Monk BJ, Kiet T, Blansit K, et al. Bevacizumab in treatment of high-risk ovarian cancer–a cost-effectiveness analysis. Oncologist. 2014;19(5):523–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Mehta DA, Hay JW. Cost-effectiveness of adding bevacizumab to first line therapy for patients with advanced ovarian cancer. Gynecol Oncol. 2014;132(3):677–83.

    Article  PubMed  Google Scholar 

  35. Messori A, Trippoli S. Pharmacoeconomic profile of taxanes in advanced ovarian cancer. Anticancer Drugs. 1998;9(10):909–16.

    Article  CAS  PubMed  Google Scholar 

  36. Orr JW Jr, Orr P, Kern DH. Cost-effective treatment of women with advanced ovarian cancer by cytoreductive surgery and chemotherapy directed by an in vitro assay for drug resistance. Cancer J Sci Am. 1999;5(3):174–8.

    PubMed  Google Scholar 

  37. Dalton HJ, Yu X, Hu L, Kapp DS, Benjamin I, Monk BJ, et al. An economic analysis of dose dense weekly paclitaxel plus carboplatin versus every-3-week paclitaxel plus carboplatin in the treatment of advanced ovarian cancer. Gynecol Oncol. 2012;124(2):199–204.

    Article  PubMed  Google Scholar 

  38. Lairson DR, Parikh RC, Cormier JN, Du XL. Cost-utility analysis of platinum-based chemotherapy versus taxane and other regimens for ovarian cancer. Value Health. 2014;17(1):34–42.

    Article  PubMed  Google Scholar 

  39. Lesnock JL, Farris C, Krivak TC, Smith KJ, Markman M. Consolidation paclitaxel is more cost-effective than bevacizumab following upfront treatment of advanced epithelial ovarian cancer. Gynecol Oncol. 2011;122(3):473–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fisher M, Gore M. Cost-effectiveness of trabectedin plus pegylated liposomal doxorubicin for the treatment of women with relapsed platinum-sensitive ovarian cancer in the UK: analysis based on the final survival data of the OVA-301 trial. Value Health. 2013;16(4):507–16.

    Article  PubMed  Google Scholar 

  41. Lee HY, Yang BM, Hong JM, Lee TJ, Kim BG, Kim JW, et al. Cost-utility analysis for platinum-sensitive recurrent ovarian cancer therapy in South Korea: results of the polyethylene glycolated liposomal doxorubicin/carboplatin sequencing model. Clinicoecon Outcomes Res. 2013;5:297–307.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Havrilesky LJ, Pokrzywinski R, Revicki D, Higgins RV, Nycum LR, Kohler MF, et al. Cost-effectiveness of combination versus sequential docetaxel and carboplatin for the treatment of platinum-sensitive, recurrent ovarian cancer. Cancer. 2012;118(2):386–91.

    Article  PubMed  Google Scholar 

  43. Montalar J, Cajaraville G, Carreras M-, Rubio MJ, Andres BG-, Oyaguez I, et al. Trabectedin plus PLD versus PLD monotherapy in patients with platinum-sensitive relapsed ovarian cancer: a cost-effectiveness analysis in Spain. Eur J Hosp Pharm Sci Pract. 2012;19(4):364–9.

    Article  Google Scholar 

  44. Case AS, Rocconi RP, Partridge EE, Straughn JM Jr. A cost-effectiveness analysis of chemotherapy for patients with recurrent platinum-sensitive epithelial ovarian cancer. Gynecol Oncol. 2007;105(1):223–7.

    Article  CAS  PubMed  Google Scholar 

  45. Havrilesky LJ, Secord AA, Kulasingam S, Myers E. Management of platinum-sensitive recurrent ovarian cancer: a cost-effectiveness analysis. Gynecol Oncol. 2007;107(2):211–8.

    Article  PubMed  Google Scholar 

  46. Main C, Bojke L, Griffin S, Norman G, Barbieri M, Mather L, et al. Topotecan, pegylated liposomal doxorubicin hydrochloride and paclitaxel for second-line or subsequent treatment of advanced ovarian cancer: a systematic review and economic evaluation. Health Technol Assess. 2006;10(9):1–132.

    Article  CAS  Google Scholar 

  47. Rocconi RP, Case AS, Straughn JM Jr, Estes JM, Partridge EE. Role of chemotherapy for patients with recurrent platinum-resistant advanced epithelial ovarian cancer: a cost-effectiveness analysis. Cancer. 2006;107(3):536–43.

    Article  CAS  PubMed  Google Scholar 

  48. Fedders M, Hartmann M, Schneider A, Kath R, Camara O, Oelschlager H. Markov-modeling for the administration of platinum analogues and paclitaxel as first-line chemotherapy as well as topotecan and liposomal doxorubicin as second-line chemotherapy with epithelial ovarian carcinoma. J Cancer Res Clin Oncol. 2007;133(9):619–25.

    Article  CAS  PubMed  Google Scholar 

  49. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;334(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  50. Piccart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonsen E, et al. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst. 2000;92(9):699–708.

    Article  CAS  PubMed  Google Scholar 

  51. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003;21(17):3194–200.

    Article  CAS  PubMed  Google Scholar 

  52. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34–43.

    Article  CAS  PubMed  Google Scholar 

  53. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365(26):2473–83.

    Article  CAS  PubMed  Google Scholar 

  54. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–96.

    Article  CAS  PubMed  Google Scholar 

  55. Messori A, Trippoli S, Becagli P, Tendi E. Treatments for newly diagnosed advanced ovarian cancer: analysis of survival data and cost-effectiveness evaluation. Anticancer Drugs. 1998;9(6):491–502.

    CAS  PubMed  Google Scholar 

  56. Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vermorken JB, Muggia FM, et al. Trabectedin plus pegylated liposomal Doxorubicin in recurrent ovarian cancer. J Clin Oncol. 2010;28(19):3107–14.

    Article  CAS  PubMed  Google Scholar 

  57. Mullard A. Can next-generation antibodies offset biosimilar competition? Nat Rev Drug Discov. 2012;11(6):426–8.

    Article  CAS  PubMed  Google Scholar 

  58. Young M, Plosker GL. Paclitaxel: a pharmacoeconomic review of its use in the treatment of ovarian cancer. Pharmacoeconomics. 2001;19(12):1227–59.

    Article  CAS  PubMed  Google Scholar 

  59. Dedes KJ, Bramkamp M, Szucs TD. Paclitaxel: cost-effectiveness in ovarian cancer. Expert Rev Pharmacoecon Outcomes Res. 2005;5(3):235–43.

    Article  PubMed  Google Scholar 

  60. du Bois A, Luck HJ, Meier W, Adams HP, Mobus V, Costa S, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst. 2003;95(17):1320–9.

    Article  PubMed  Google Scholar 

  61. Neijt JP, Engelholm SA, Tuxen MK, Sorensen PG, Hansen M, Sessa C, et al. Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J Clin Oncol. 2000;18(17):3084–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the Agency for Healthcare Research and Quality (R01-HS018956). None of the authors have any potential conflict of interest to report.

Author contributions

Dr. Poonawalla, Mr. Parikh and Ms. VonVille determined the search strategies. Dr. Poonawalla and Mr. Parikh identified the articles for inclusion in the review and drafted the manuscript. Drs. Lairson and Du supervised the overall progress and provided a final review and revisions. Dr. Lairson will serve as the overall guarantor of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Lairson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonawalla, I.B., Parikh, R.C., Du, X.L. et al. Cost Effectiveness of Chemotherapeutic Agents and Targeted Biologics in Ovarian Cancer: A Systematic Review. PharmacoEconomics 33, 1155–1185 (2015). https://doi.org/10.1007/s40273-015-0304-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40273-015-0304-9

Keywords

Navigation