Skip to main content
Log in

The Development and Validation of a Decision-Analytic Model Representing the Full Disease Course of Acute Myeloid Leukemia

  • Original Research Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Background

The treatment of acute myeloid leukemia (AML) is moving towards personalized medicine. However, due to the low incidence of AML, it is not always feasible to evaluate the cost-effectiveness of personalized medicine using clinical trials. Decision analytic models provide an alternative data source.

Objective

The aim of this study was to develop and validate a decision analytic model that represents the full disease course of AML.

Methods

We used a micro simulation with discrete event components to incorporate both patient and disease heterogeneity. Input parameters were calculated from patient-level data. Two hematologists critically evaluated the model to ensure face validity. Internal and external validity was tested by comparing complete remission (CR) rates and survival outcomes of the model with original data, other clinical trials and a population-based study.

Results

No significant differences in patient and treatment characteristics, CR rate, 5-year overall and disease-free survival were found between the simulated and original data. External validation showed no significant differences in survival between simulated data and other clinical trials. However, differences existed between the simulated data and a population-based study.

Conclusions

The model developed in this study is proved to be valid for analysis of an AML population participating in a clinical trial. The generalizability of the model to a broader patient population has not been proven yet. Further research is needed to identify differences between the clinical trial population and other AML patients and to incorporate these differences in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Lognormal distribution: log(survival time ) is normally distributed with mean = β 0 + β 1 X 1 + … + β n X n , and standard deviation = shape parameter

    Loglogistic distribution: survival time = scale × (p/(1 − p))(1/shape), where scale = exp(β 0 + β 1 X 1 + … + β n X n ).

References

  1. Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 2009;154(6):277–87.

    Article  PubMed  Google Scholar 

  2. Salvesen HB, Haldorsen IS, Trovik J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 2012;13(8):e353–61.

    Article  PubMed  Google Scholar 

  3. Romano E, Schwartz GK, Chapman PB, et al. Treatment implications of the emerging molecular classification system for melanoma. Lancet Oncol. 2011;12(9):913–22.

    Article  PubMed  Google Scholar 

  4. Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29(5):475–86.

    Article  PubMed  CAS  Google Scholar 

  5. Brenton JD, Carey LA, Ahmed AA, et al. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23(29):7350–60.

    Article  PubMed  CAS  Google Scholar 

  6. Rubin MA, Maher CA, Chinnaiyan AM. Common gene rearrangements in prostate cancer. J Clin Oncol. 2011;29(27):3659–68.

    Article  PubMed  CAS  Google Scholar 

  7. Albain KS, Paik S, van’t Veer L. Prediction of adjuvant chemotherapy benefit in endocrine responsive, early breast cancer using multigene assays. Breast. 2009;18(Suppl 3):S141–5.

    Article  PubMed  Google Scholar 

  8. Sant M, Allemani C, Tereanu C, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116(19):3724–34.

    Article  PubMed  CAS  Google Scholar 

  9. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.

    Article  PubMed  Google Scholar 

  10. Löwenberg B. Acute myeloid leukemia: the challenge of capturing disease variety. ASH Educ Program Book. 2008;2008(1):1–11.

    Google Scholar 

  11. Cornelissen JJ, Van Putten WLJ, Verdonck LF, et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood. 2007;109(9):3658–66.

    Article  PubMed  CAS  Google Scholar 

  12. Schlenk RF, Döhner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909–18.

    Article  PubMed  CAS  Google Scholar 

  13. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CAJ, et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113(13):3088–91.

    Article  PubMed  CAS  Google Scholar 

  14. Sanderson S, Zimmern R, Kroese M, et al. How can the evaluation of genetic tests be enhanced? Lessons learned from the ACCE framework and evaluating genetic tests in the United Kingdom. Genet Med. 2005;7(7):495–500.

    Article  PubMed  Google Scholar 

  15. Scott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987–95.

    Article  PubMed  Google Scholar 

  16. Frueh FW. Back to the future: why randomized controlled trials cannot be the answer to pharmacogenomics and personalized medicine. Pharmacogenomics. 2009;10(7):1077–81.

    Article  PubMed  Google Scholar 

  17. Veenstra DL, Roth JA, Garrison LP Jr, et al. A formal risk-benefit framework for genomic tests: facilitating the appropriate translation of genomics into clinical practice. Genet Med. 2010;12(11):686–93.

    Article  PubMed  Google Scholar 

  18. Al-Badriyeh D, Slavin M, Liew D, et al. Pharmacoeconomic evaluation of voriconazole versus posaconazole for antifungal prophylaxis in acute myeloid leukaemia. J Antimicrob Chemother. 2010;65(5):1052–61.

    Article  PubMed  CAS  Google Scholar 

  19. Kurosawa S, Yamaguchi T, Miyawaki S, et al. A Markov decision analysis of allogeneic hematopoietic cell transplantation versus chemotherapy in patients with acute myeloid leukemia in first remission. Blood. 2011;117(7):2113–20.

    Article  PubMed  CAS  Google Scholar 

  20. Greiner RA, Meier Y, Papadopoulos G, et al. Cost-effectiveness of posaconazole compared with standard azole therapy for prevention of invasive fungal infections in patients at high risk in Switzerland. Oncology. 2010;78(3–4):172–80.

    Article  PubMed  CAS  Google Scholar 

  21. Song KW, Lipton J. Is it appropriate to offer allogeneic hematopoietic stem cell transplantation to patients with primary refractory acute myeloid leukemia? Bone Marrow Transplant. 2005;36(3):183–91.

    Article  PubMed  CAS  Google Scholar 

  22. McCabe C, Dixon S. Testing the validity of cost-effectiveness models. Pharmacoeconomics. 2000;17(5):501–13.

    Article  PubMed  CAS  Google Scholar 

  23. Hammerschmidt T, Goertz A, Wagenpfeil S, et al. Validation of health economic models: the example of EVITA. Value Health. 2003;6(5):551–9.

    Article  PubMed  Google Scholar 

  24. Smith ML, Hills RK, Grimwade D. Independent prognostic variables in acute myeloid leukaemia. Blood Rev. 2011;25(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  25. Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–94.

    Article  PubMed  Google Scholar 

  26. Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood. 2006;107(9):3481–5.

    Article  PubMed  CAS  Google Scholar 

  27. Greenwood MJ, Seftel MD, Richardson C, et al. Leukocyte count as a predictor of death during remission induction in acute myeloid leukemia. Leuk Lymphoma. 2006;47(7):1245–52.

    Article  PubMed  CAS  Google Scholar 

  28. Larson RA. Is secondary leukemia an independent poor prognostic factor in acute myeloid leukemia? Best Pract Res Clin Haematol. 2007;20(1):29–37.

    Article  PubMed  Google Scholar 

  29. Lowenberg B, Griffin JD, Tallman MS. Acute myeloid leukemia and acute promyelocytic leukemia. Hematology. 2003;2003(1):82–101.

    Article  Google Scholar 

  30. Vellenga E, van Putten W, Ossenkoppele GJ, et al. Autologous peripheral blood stem cell transplantation for acute myeloid leukemia. Blood. 2011;118(23):6037–42.

    Article  PubMed  CAS  Google Scholar 

  31. Craddock C, Tauro S, Moss P, et al. Biology and management of relapsed acute myeloid leukaemia. Br J Haematol. 2005;129(1):18–34.

    Article  PubMed  CAS  Google Scholar 

  32. Breems DA, Van Putten WL, Huijgens PC, et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol. 2005;23(9):1969–78.

    Article  PubMed  Google Scholar 

  33. Heeg BM, Damen J, Buskens E, et al. Modelling approaches: the case of schizophrenia. Pharmacoeconomics. 2008;26(8):633–48.

    Article  PubMed  Google Scholar 

  34. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from cancer and leukemia group B (CALGB 8461). Blood. 2002;100(13):4325–36.

    Article  PubMed  CAS  Google Scholar 

  35. Kern W, Haferlach T, Schoch C, et al. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood. 2003;101(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  36. Statistics Netherlands. Statline. http://statline.cbs.nl/StatWeb/?LA=en (Accessed April 29 2011).

  37. Goldhaber-Fiebert JD, Stout NK, Goldie SJ. Empirically evaluating decision-analytic models. Value Health. 2010;13(5):667–74.

    Article  PubMed  Google Scholar 

  38. Integraal Kankercentra Nederland. Cijfers over kanker. http://www.cijfersoverkanker.nl/ (Accessed Aug 16 2012).

  39. Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77.

    Article  PubMed  CAS  Google Scholar 

  40. Lee J, Joo Y, Kim H, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011;118(14):3832–41.

    Article  PubMed  CAS  Google Scholar 

  41. Mandelli F, Vignetti M, Suciu S, et al. Daunorubicin versus mitoxantrone versus idarubicin as induction and consolidation chemotherapy for adults with acute myeloid leukemia: the EORTC and GIMEMA Groups Study AML-10. J Clin Oncol. 2009;27(32):5397–403.

    Article  PubMed  CAS  Google Scholar 

  42. Ohtake S, Miyawaki S, Fujita H, et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: the JALSG AML201 Study. Blood. 2011;117(8):2358–65.

    Article  PubMed  CAS  Google Scholar 

  43. Wheatley K, Goldstone AH, Littlewood T, et al. Randomized placebo-controlled trial of granulocyte colony stimulating factor (G-CSF) as supportive care after induction chemotherapy in adult patients with acute myeloid leukaemia: a study of the United Kingdom Medical Research Council Adult Leukaemia Working Party. Br J Haematol. 2009;146(1):54–63.

    Article  PubMed  CAS  Google Scholar 

  44. Kolitz JE, George SL, Marcucci G, et al. P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients younger than age 60 years with newly diagnosed acute myeloid leukemia: Cancer and Leukemia Group B study 19808. Blood. 2010;116(9):1413–21.

    Article  PubMed  CAS  Google Scholar 

  45. Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Med Decis Making. 2012;32(5):733–43.

    Article  PubMed  Google Scholar 

  46. Albain KS, Paik S, van’t Veer L. Prediction of adjuvant chemotherapy benefit in endocrine responsive, early breast cancer using multigene assays. Breast. 2009;18 Suppl 3:S141–5.

    Article  PubMed  Google Scholar 

  47. Choudhury AD, Eeles R, Freedland SJ, et al. The role of genetic markers in the management of prostate cancer. Eur Urol. 2012;62:577–87.

    Article  PubMed  CAS  Google Scholar 

  48. Voora D, Ginsburg GS. Clinical application of cardiovascular pharmacogenetics. J Am Coll Cardiol. 2012;60(1):9–20.

    Article  PubMed  Google Scholar 

  49. Karnon J. Alternative decision modelling techniques for the evaluation of health care technologies: Markov processes versus discrete event simulation. Health Econ. 2003;12(10):837–48.

    Article  PubMed  Google Scholar 

  50. Simpson KN, Strassburger A, Jones WJ, et al. Comparison of Markov model and discrete-event simulation techniques for HIV. Pharmacoeconomics. 2009;27(2):159–65.

    Article  PubMed  Google Scholar 

  51. Li Z, Herold T, He C, et al. Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. J Clin Oncol. 2013;31:1172–81.

    Article  PubMed  CAS  Google Scholar 

  52. Ludwig H, Durie BGM, McCarthy P, et al. IMWG consensus on maintenance therapy in multiple myeloma. Blood. 2012;119(13):3003–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Annemieke Leunis is the guarantor for the overall content in this article. She has performed the literature review, designed the study, performed the analyses, developed the model and wrote the article. Ken Redekop and Carin Uyl-de Groot gave advice in the design of the study, the analysis and the development of the model. Kees van Montfoort gave advice regarding the statistical methods used and provided the original patient-level data. Bob Löwenberg was the principal investigator in the studies of which patient-level data was collected. Furthermore, he gave clinical advice regarding the model. All authors reviewed draft versions of the paper and gave permission for the final version of the paper to be published. This work was supported by a grant from the Center for Translational Molecular Medicine (CTMM), project BioCHIP (grant 03O-102). CTMM did not have any influence on the design, analysis and reporting of the study. The authors want to thank Professor Pieter Sonneveld for his expert advice in the validation of the decision model and Wim van Putten from the Hovon Data Center for providing access to patient level data and his statistical advice during the development of the model. None of the authors have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemieke Leunis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leunis, A., Redekop, W.K., van Montfort, K.A.G.M. et al. The Development and Validation of a Decision-Analytic Model Representing the Full Disease Course of Acute Myeloid Leukemia. PharmacoEconomics 31, 605–621 (2013). https://doi.org/10.1007/s40273-013-0058-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40273-013-0058-1

Keywords

Navigation