Skip to main content
Log in

Mechanistic Links Between Obesity and Airway Pathobiology Inform Therapies for Obesity-Related Asthma

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Obesity-related asthma is associated with a high disease burden and a poor response to existent asthma therapies, suggesting that it is a distinct asthma phenotype. The proposed mechanisms that contribute to obesity-related asthma include the effects of the mechanical load of obesity, adipokine perturbations, and immune dysregulation. Each of these influences airway smooth muscle function. Mechanical fat load alters airway smooth muscle stretch affecting airway wall geometry, airway smooth muscle contractility, and agonist delivery; weight loss strategies, including medically induced weight loss, counter these effects. Among the metabolic disturbances, insulin resistance and free fatty acid receptor activation influence distinct signaling pathways in the airway smooth muscle downstream of both the M2 muscarinic receptor and the β2 adrenergic receptor, such as phospholipase C and the extracellular signal-regulated kinase signaling cascade. Medications that decrease insulin resistance and dyslipidemia are associated with a lower asthma disease burden. Leptin resistance is best understood to modulate muscarinic receptors via the neural pathways but there are no specific therapies for leptin resistance. From the immune perspective, monocytes and T helper cells are involved in systemic pro-inflammatory profiles driven by obesity, notably associated with elevated levels of interleukin-6. Clinical trials on tocilizumab, an anti-interleukin antibody, are ongoing for obesity-related asthma. This armamentarium of therapies is distinct from standard asthma medications, and once investigated for its efficacy and safety among children, will serve as a novel therapeutic intervention for pediatric obesity-related asthma. Irrespective of the directionality of the association between asthma and obesity, airway-specific mechanistic studies are needed to identify additional novel therapeutic targets for obesity-related asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen YC, Dong GH, Lin KC, Lee YL. Gender difference of childhood overweight and obesity in predicting the risk of incident asthma: a systematic review and meta-analysis. Obes Rev. 2013;14(3):222–31.

    Article  CAS  PubMed  Google Scholar 

  2. Wang E, Wechsler ME, Tran TN, Heaney LG, Jones RC, Menzies-Gow AN, et al. Characterization of severe asthma worldwide: data From the International Severe Asthma Registry. Chest. 2020;157(4):790–804.

    Article  CAS  PubMed  Google Scholar 

  3. Lang JE, Bunnell HT, Hossain MJ, Wysocki T, Lima JJ, Finkel TH, et al. Being overweight or obese and the development of asthma. Pediatrics. 2018;142(6):e20182119.

    Article  PubMed  Google Scholar 

  4. Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018;141(4):1169–79.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahmadizar F, Vijverberg SJ, Arets HG, de Boer A, Lang JE, Kattan M, et al. Childhood obesity in relation to poor asthma control and exacerbation: a meta-analysis. Eur Respir J. 2016;48(4):1063–73.

    Article  PubMed  Google Scholar 

  6. Belamarich PF, Luder E, Kattan M, Mitchell H, Islam S, Lynn H, et al. Do obese inner-city children with asthma have more symptoms than nonobese children with asthma? Pediatrics. 2000;106(6):1436–41.

    Article  CAS  PubMed  Google Scholar 

  7. Borrell LN, Nguyen EA, Roth LA, Oh SS, Tcheurekdjian H, Sen S, et al. Childhood obesity and asthma control in the GALA II and SAGE II studies. Am J Respir Crit Care Med. 2013;187(7):697–702.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aragona E, El-Magbri E, Wang J, Scheckelhoff T, Scheckelhoff T, Hyacinthe A, et al. Impact of obesity on clinical outcomes in urban children hospitalized for status asthmaticus. Hosp Pediatr. 2016;6(4):211–8.

    Article  PubMed  Google Scholar 

  9. Okubo Y, Nochioka K, Hataya H, Sakakibara H, Terakawa T, Testa M. Burden of obesity on pediatric in patients with acute asthma exacerbation in the United States. J Allergy Clin Immunol Pract. 2016;4(6):1227–31.

    Article  PubMed  Google Scholar 

  10. McGarry ME, Castellanos E, Thakur N, Oh SS, Eng C, Davis A, et al. Obesity and bronchodilator response in black and Hispanic children and adolescents with asthma. Chest. 2015;147(6):1591–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Gent R, van der Ent CK, Rovers MM, Kimpen JL, van Essen-Zandvliet LE, de Meer G. Excessive body weight is associated with additional loss of quality of life in children with asthma. J Allergy Clin Immunol. 2007;119(3):591–6.

    Article  PubMed  Google Scholar 

  12. Strunk RC, Colvin R, Bacharier LB, Fuhlbrigge A, Forno E, Arbelaez AM, et al. Airway obstruction worsens in young adults with asthma who become obese. J Allergy Clin Immunol Pract. 2015;3(5):765–71 (e2).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Davies NM, Holmes MV, Davey SG. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;12(362): k601.

    Article  Google Scholar 

  14. Chen YC, Fan HY, Huang YT, Huang SY, Liou TH, Lee YL. Causal relationships between adiposity and childhood asthma: bi-directional Mendelian randomization analysis. Int J Obes (Lond). 2019;43(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  15. Au Yeung SL, Li AM, Schooling CM. A life course approach to elucidate the role of adiposity in asthma risk: evidence from a Mendelian randomisation study. J Epidemiol Community Health. 2021;75(3):277–81.

    PubMed  Google Scholar 

  16. Kim KW, Ober C. Lessons learned from GWAS of asthma. Allergy Asthma Immunol Res. 2019;11(2):170–87.

    Article  CAS  PubMed  Google Scholar 

  17. Chesi A, Grant SFA. The genetics of pediatric obesity. Trends Endocrinol Metab. 2015;26(12):711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warrington NM, Howe LD, Paternoster L, Kaakinen M, Herrala S, Huikari V, et al. A genome-wide association study of body mass index across early life and childhood. Int J Epidemiol. 2015;44(2):700–12.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol. 2020;145(2):537–49.

    Article  CAS  PubMed  Google Scholar 

  20. Salinas YD, Wang Z, DeWan AT. Discovery and mediation analysis of cross-phenotype associations between asthma and body mass index in 12q13.2. Am J Epidemiol. 2021;190(1):85–94.

    Article  PubMed  Google Scholar 

  21. Larsson SC, Burgess S. Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med. 2021;19(1):320.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rastogi D, Johnston AD, Nico J, Loh LN, Jorge Y, Suzuki M, et al. Functional genomics of the pediatric obese asthma phenotype reveal enrichment of Rho-GTPase pathways. Am J Respir Crit Care Med. 2020;202(2):259–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chapman DG, Irvin CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy. 2015;45(4):706–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bates JH. Physiological mechanisms of airway hyperresponsiveness in obese asthma. Am J Respir Cell Mol Biol. 2016;54(5):618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lauzon AM, Martin JG. Airway hyperresponsiveness; smooth muscle as the principal actor. F1000Res. 2016;5:F1000 (Faculty Rev-306).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rastogi D, Holguin F. Metabolic dysregulation, systemic inflammation, and pediatric obesity-related asthma. Ann Am Thorac Soc. 2017;14(Suppl._5):S363–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pare PD, McParland BE, Seow CY. Structural basis for exaggerated airway narrowing. Can J Physiol Pharmacol. 2007;85(7):653–8.

    CAS  PubMed  Google Scholar 

  28. Bates JH, Lauzon AM. Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction. J Appl Physiol (1985). 2007;102(5):1912–20.

    Article  PubMed  Google Scholar 

  29. Desai D, Newby C, Symon FA, Haldar P, Shah S, Gupta S, et al. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am J Respir Crit Care Med. 2013;188(6):657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rastogi D, Khan UI, Isasi CR, Coupey SM. Associations of obesity and asthma with functional exercise capacity in urban minority adolescents. Pediatr Pulmonol. 2012;47(11):1061–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rastogi D, Fraser S, Oh J, Huber AM, Schulman Y, Bhagtani RH, et al. Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma. Am J Respir Crit Care Med. 2015;191(2):149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Beuther DA. Obesity and asthma. Clin Chest Med. 2009;30(3):479–88 (viii).

    Article  PubMed  Google Scholar 

  33. Wagers S, Lundblad LK, Ekman M, Irvin CG, Bates JH. The allergic mouse model of asthma: normal smooth muscle in an abnormal lung? J Appl Physiol (1985). 2004;96(6):2019–27.

    Article  PubMed  Google Scholar 

  34. Rutting S, Mahadev S, Tonga KO, Bailey DL, Dame Carroll JR, Farrow CE, et al. Obesity alters the topographical distribution of ventilation and the regional response to bronchoconstriction. J Appl Physiol (1985). 2020;128(1):168–77.

    Article  CAS  PubMed  Google Scholar 

  35. Pakhale S, Baron J, Dent R, Vandemheen K, Aaron SD. Effects of weight loss on airway responsiveness in obese adults with asthma: does weight loss lead to reversibility of asthma? Chest. 2015;147(6):1582–90.

    Article  PubMed  Google Scholar 

  36. Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy. 2013;43(1):36–49.

    Article  CAS  PubMed  Google Scholar 

  37. Dixon AE, Pratley RE, Forgione PM, Kaminsky DA, Whittaker-Leclair LA, Griffes LA, et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J Allergy Clin Immunol. 2011;128(3):508–15 (e1-2).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zerah-Lancner F, Boyer L, Rezaiguia-Delclaux S, D’Ortho MP, Drouot X, Guilloteau-Schoennagel I, et al. Airway responsiveness measured by forced oscillation technique in severely obese patients, before and after bariatric surgery. J Asthma. 2011;48(8):818–23.

    Article  CAS  PubMed  Google Scholar 

  39. Boulet LP, Turcotte H, Martin J, Poirier P. Effect of bariatric surgery on airway response and lung function in obese subjects with asthma. Respir Med. 2012;106(5):651–60.

    Article  PubMed  Google Scholar 

  40. Chapman DG, Irvin CG, Kaminsky DA, Forgione PM, Bates JH, Dixon AE. Influence of distinct asthma phenotypes on lung function following weight loss in the obese. Respirology. 2014;19(8):1170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dias-Junior SA, Reis M, de Carvalho-Pinto RM, Stelmach R, Halpern A, Cukier A. Effects of weight loss on asthma control in obese patients with severe asthma. Eur Respir J. 2014;43(5):1368–77.

    Article  CAS  PubMed  Google Scholar 

  42. Cardet JC, Ash S, Kusa T, Camargo CA Jr, Israel E. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J. 2016;48(2):403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forno E. Asthma and diabetes: does treatment with metformin improve asthma? Respirology. 2016;21(7):1144–5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Forno E, Han YY, Muzumdar RH, Celedon JC. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J Allergy Clin Immunol. 2015;136(2):304-11.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim SH, Kim HS, Min HK, Lee SW. Association between insulin resistance and lung function trajectory over 4 years in South Korea: community-based prospective cohort. BMC Pulm Med. 2021;21(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karampatakis N, Karampatakis T, Galli-Tsinopoulou A, Kotanidou EP, Tsergouli K, Eboriadou-Petikopoulou M, et al. Impaired glucose metabolism and bronchial hyperresponsiveness in obese prepubertal asthmatic children. Pediatr Pulmonol. 2017;52(2):160–6.

    Article  PubMed  Google Scholar 

  47. McMahon GT, Arky RA. Inhaled insulin for diabetes mellitus. N Engl J Med. 2007;356(5):497–502.

    Article  CAS  PubMed  Google Scholar 

  48. Kleemann R, van Erk M, Verschuren L, van den Hoek AM, Koek M, Wielinga PY, et al. Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One. 2010;5(1): e8817.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Proskocil BJ, Calco GN, Nie Z. Insulin acutely increases agonist-induced airway smooth muscle contraction in humans and rats. Am J Physiol Lung Cell Mol Physiol. 2021;320(4):L545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nie Z, Jacoby DB, Fryer AD. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am J Respir Cell Mol Biol. 2014;51(2):251–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schaafsma D, McNeill KD, Stelmack GL, Gosens R, Baarsma HA, Dekkers BG, et al. Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. Am J Physiol Cell Physiol. 2007;293(1):C429–39.

    Article  CAS  PubMed  Google Scholar 

  52. Gosens R, Nelemans SA, Hiemstra M, Grootte Bromhaar MM, Meurs H, Zaagsma J. Insulin induces a hypercontractile airway smooth muscle phenotype. Eur J Pharmacol. 2003;481(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  53. Orfanos S, Jude J, Deeney BT, Cao G, Rastogi D, van Zee M, et al. Obesity increases airway smooth muscle responses to contractile agonists. Am J Physiol Lung Cell Mol Physiol. 2018;315(5):L673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu R, Gopireddy RR, Wu Y, Wu L, Tao X, Shao J, et al. Hyperinsulinemia promotes heterologous desensitization of beta2 adrenergic receptor in airway smooth muscle in obesity. FASEB J. 2020;34(3):3996–4008.

    Article  CAS  PubMed  Google Scholar 

  55. Singh S, Bodas M, Bhatraju NK, Pattnaik B, Gheware A, Parameswaran PK, et al. Hyperinsulinemia adversely affects lung structure and function. Am J Physiol Lung Cell Mol Physiol. 2016;310(9):L837–45.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu TD, Keet CA, Fawzy A, Segal JB, Brigham EP, McCormack MC. Association of metformin initiation and risk of asthma exacerbation: a claims-based cohort study. Ann Am Thorac Soc. 2019;16(12):1527–33.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Foer D, Beeler PE, Cui J, Karlson EW, Bates DW, Cahill KN. Asthma exacerbations in patients with type 2 diabetes and asthma on glucagon-like peptide-1 receptor agonists. Am J Respir Crit Care Med. 2021;203(7):831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dixon AE, Subramanian M, DeSarno M, Black K, Lane L, Holguin F. A pilot randomized controlled trial of pioglitazone for the treatment of poorly controlled asthma in obesity. Respir Res. 2015;26(16):143.

    Article  Google Scholar 

  59. Park CS, Bang BR, Kwon HS, Moon KA, Kim TB, Lee KY, et al. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase. Biochem Pharmacol. 2012;84(12):1660–70.

    Article  CAS  PubMed  Google Scholar 

  60. Ma W, Jin Q, Guo H, Han X, Xu L, Lu S, et al. Metformin ameliorates inflammation and airway remodeling of experimental allergic asthma in mice by restoring AMPKalpha activity. Front Pharmacol. 2022;13: 780148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andre DM, Calixto MC, Sollon C, Alexandre EC, Tavares EBG, Naime ACA, et al. High-fat diet-induced obesity impairs insulin signaling in lungs of allergen-challenged mice: improvement by resveratrol. Sci Rep. 2017;7(1):17296.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nguyen DV, Linderholm A, Haczku A, Kenyon N. Glucagon-like peptide 1: a potential anti-inflammatory pathway in obesity-related asthma. Pharmacol Ther. 2017;180:139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol. 2020;15(500): 110628.

    Article  Google Scholar 

  64. Rastogi D. Evidence builds for a role of metformin in asthma management. Ann Am Thorac Soc. 2019;16(12):1497–9.

    Article  PubMed  Google Scholar 

  65. Esquivel Zuniga R, DeBoer MD. Prediabetes in adolescents: prevalence, management and diabetes prevention strategies. Diabetes Metab Syndr Obes. 2021;14:4609–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bensignor MO, Wolf JM, Rudser KD, Kelly AS, Arslanian S. Glucagon-like peptide-1 receptor agonist prescribing patterns in adolescents with type 2 diabetes. Diabetes Obes Metab. 2022;24(7):1380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mizuta K, Matoba A, Shibata S, Masaki E, Emala CW Sr. Obesity-induced asthma: role of free fatty acid receptors. Jpn Dent Sci Rev. 2019;55(1):103–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and Ddsease. Physiol Rev. 2020;100(1):171–210.

    Article  CAS  PubMed  Google Scholar 

  69. Mizuta K, Zhang Y, Mizuta F, Hoshijima H, Shiga T, Masaki E, et al. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L970–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matoba A, Matsuyama N, Shibata S, Masaki E, Emala CW Sr, Mizuta K. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2018;314(3):L333–48.

    Article  PubMed  Google Scholar 

  71. Xu S, Schwab A, Karmacharya N, Cao G, Woo J, Kim N, et al. FFAR1 activation attenuates histamine-induced myosin light chain phosphorylation and cortical tension development in human airway smooth muscle cells. Respir Res. 2020;21(1):317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Imoto Y, Kato A, Takabayashi T, Sakashita M, Norton JE, Suh LA, et al. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41&43. Clin Exp Allergy. 2018;48(5):544–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rutting S, Xenaki D, Lau E, Horvat J, Wood LG, Hansbro PM, et al. Dietary omega-6, but not omega-3, polyunsaturated or saturated fatty acids increase inflammation in primary lung mesenchymal cells. Am J Physiol Lung Cell Mol Physiol. 2018;314(6):L922–35.

    Article  CAS  PubMed  Google Scholar 

  74. Aisenberg WH, Huang J, Zhu W, Rajkumar P, Cruz R, Santhanam L, et al. Defining an olfactory receptor function in airway smooth muscle cells. Sci Rep. 2016;1(6):38231.

    Article  Google Scholar 

  75. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  76. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mizuta K, Sasaki H, Zhang Y, Matoba A, Emala CW Sr. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sahebkar A, Simental-Mendia LE, Pedone C, Ferretti G, Nachtigal P, Bo S, et al. Statin therapy and plasma free fatty acids: a systematic review and meta-analysis of controlled clinical trials. Br J Clin Pharmacol. 2016;81(5):807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sunata K, Kabata H, Kuno T, Takagi H, So M, Masaki K, et al. The effect of statins for asthma. A systematic review and meta-analysis. J Asthma. 2022;59(4):801–10.

    Article  CAS  PubMed  Google Scholar 

  80. Tulbah AS. The potential of Atorvastatin for chronic lung diseases therapy. Saudi Pharm J. 2020;28(11):1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zeki AA, Kenyon NJ, Goldkorn T. Statin drugs, metabolic pathways, and asthma: a therapeutic opportunity needing further research. Drug Metab Lett. 2011;5(1):40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zeki AA, Franzi L, Last J, Kenyon NJ. Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. Am J Respir Crit Care Med. 2009;180(8):731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moschos SJ, Sullivan RJ, Hwu WJ, Ramanathan RK, Adjei AA, Fong PC, et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight. 2018;3(4): e92352.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sood A, Shore SA. Adiponectin, leptin, and resistin in asthma: basic mechanisms through population studies. J Allergy (Cairo). 2013;2013: 785835.

    PubMed  PubMed Central  Google Scholar 

  85. Zhang L, Yin Y, Zhang H, Zhong W, Zhang J. Association of asthma diagnosis with leptin and adiponectin: a systematic review and meta-analysis. J Investig Med. 2017;65(1):57–64.

    Article  PubMed  Google Scholar 

  86. Giesler A, Mukherjee M, Radford K, Janssen L, Nair P. Modulation of human airway smooth muscle biology by human adipocytes. Respir Res. 2018;19(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond). 2006;110(3):267–78.

    Article  CAS  PubMed  Google Scholar 

  88. Shin JH, Kim JH, Lee WY, Shim JY. The expression of adiponectin receptors and the effects of adiponectin and leptin on airway smooth muscle cells. Yonsei Med J. 2008;49(5):804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shore SA, Terry RD, Flynt L, Xu A, Hug C. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2006;118(2):389–95.

    Article  CAS  PubMed  Google Scholar 

  90. Medoff BD, Okamoto Y, Leyton P, Weng M, Sandall BP, Raher MJ, et al. Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am J Respir Cell Mol Biol. 2009;41(4):397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Phillips SA, Kung JT. Mechanisms of adiponectin regulation and use as a pharmacological target. Curr Opin Pharmacol. 2010;10(6):676–83.

    Article  CAS  PubMed  Google Scholar 

  92. Lee MJ, Jash S, Jones JEC, Puri V, Fried SK. Rosiglitazone remodels the lipid droplet and britens human visceral and subcutaneous adipocytes ex vivo. J Lipid Res. 2019;60(4):856–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bosse Y. Endocrine regulation of airway contractility is overlooked. J Endocrinol. 2014;222(2):R61-73.

    Article  CAS  PubMed  Google Scholar 

  95. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1(11):1155–61.

    Article  CAS  PubMed  Google Scholar 

  96. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021;12: 585887.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sarvas JL, Khaper N, Lees SJ. The IL-6 paradox: context dependent interplay of SOCS3 and AMPK. J Diabetes Metab. 2013;24(Suppl):13.

    Google Scholar 

  98. Nair P, Radford K, Fanat A, Janssen LJ, Peters-Golden M, Cox PG. The effects of leptin on airway smooth muscle responses. Am J Respir Cell Mol Biol. 2008;39(4):475–81.

    Article  CAS  PubMed  Google Scholar 

  99. Arteaga-Solis E, Zee T, Emala CW, Vinson C, Wess J, Karsenty G. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab. 2013;17(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  100. Shore SA, Schwartzman IN, Mellema MS, Flynt L, Imrich A, Johnston RA. Effect of leptin on allergic airway responses in mice. J Allergy Clin Immunol. 2005;115(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  101. Quarta C, Sanchez-Garrido MA, Tschop MH, Clemmensen C. Renaissance of leptin for obesity therapy. Diabetologia. 2016;59(5):920–7.

    Article  CAS  PubMed  Google Scholar 

  102. Cheng WC, Liao WC, Wu BR, Chen CY, Shen MF, Chen WC, et al. Clinical predictors of asthmatics in identifying subgroup requiring long-term tiotropium add-on therapy: a real-world study. J Thorac Dis. 2019;11(9):3785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Khurana S, Paggiaro P, Buhl R, Bernstein JA, Haddon J, Unseld A, et al. Tiotropium reduces airflow obstruction in asthma patients, independent of body mass index. J Allergy Clin Immunol Pract. 2019;7(7):2425–8 (e7).

    Article  PubMed  Google Scholar 

  104. Dalmas E, Clément K, Guerre-Millo M. Defining macrophage phenotype and function in adipose tissue. Trends Immunol. 2011;32(7):307–14.

    Article  CAS  PubMed  Google Scholar 

  105. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immmunol. 2005;115(5):911–9.

    Article  CAS  Google Scholar 

  106. Ferrante AW Jr. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med. 2007;262(4):408–14.

    Article  CAS  PubMed  Google Scholar 

  107. Ferrante AW Jr. The immune cells in adipose tissue. Diabetes Obes Metab. 2013;15(Suppl. 3):34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rastogi D, Fraser S, Oh J, Huber AM, Schulman Y, Bhagtani RH, et al. Inflammation, metabolic dysregulation and pulmonary function among obese asthmatic urban adolescents. Am J Resp Crit Care Med. 2015;191(2):149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Periyalil HA, Wood LG, Scott HA, Jensen ME, Gibson PG. Macrophage activation, age and sex effects of immunometabolism in obese asthma. Eur Respir J. 2015;45(2):388–95.

    Article  CAS  PubMed  Google Scholar 

  110. Fantuzzi L, Borghi P, Ciolli V, Pavlakis G, Belardelli F, Gessani S. Loss of CCR2 expression and functional response to monocyte chemotactic protein (MCP-1) during the differentiation of human monocytes: role of secreted MCP-1 in the regulation of the chemotactic response. Blood. 1999;94(3):875–83.

    Article  CAS  PubMed  Google Scholar 

  111. Tashiro H, Takahashi K, Sadamatsu H, Kato G, Kurata K, Kimura S, et al. Saturated fatty acid increases lung macrophages and augments house dust mite-induced airway inflammation in mice fed with high-fat diet. Inflammation. 2017;40(3):1072–86.

    Article  CAS  PubMed  Google Scholar 

  112. Diaz J, Warren L, Helfner L, Xue X, Chatterjee PK, Gupta M, et al. Obesity shifts house dust mite-induced airway cellular infiltration from eosinophils to macrophages: effects of glucocorticoid treatment. Immunol Res. 2015;63(1–3):197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim JY, Sohn JH, Lee JH, Park JW. Obesity increases airway hyperresponsiveness via the TNF-alpha pathway and treating obesity induces recovery. PLoS One. 2015;10(2): e0116540.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Periyalil HA, Wood LG, Wright TA, Karihaloo C, Starkey MR, Miu AS, et al. Obese asthmatics are characterized by altered adipose tissue macrophage activation. Clin Exp Allergy. 2018;48(6):641–9.

    Article  CAS  PubMed  Google Scholar 

  115. Sideleva O, Suratt BT, Black KE, Tharp WG, Pratley RE, Forgione P, et al. Obesity and asthma: an inflammatory disease of adipose tissue not the airway. Am J Resp Crit Care Med. 2012;186(7):598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. Obesity-related asthma in children is characterized by T-helper 1 rather than T-helper 2 immune response: a meta-analysis. Ann Allergy Asthma Immunol. 2020;125:425–32.

    Article  CAS  PubMed  Google Scholar 

  117. Rastogi D, Canfield S, Andrade A, Hall CB, Isasi CR, Rubinstein A, et al. Obesity-associated asthma in children: a distinct entity. Chest. 2012;141(4):895–905.

    Article  CAS  PubMed  Google Scholar 

  118. Croteau-Chonka DC, Chen Z, Barnes KC, Barraza-Villarreal A, Celedon JC, Gauderman WJ, et al. Gene coexpression networks in whole blood implicate multiple interrelated molecular pathways in obesity in people with asthma. Obesity (Silver Spring). 2018;26(12):1938–48.

    Article  CAS  PubMed  Google Scholar 

  119. Melendez J, Grogg M, Zheng Y. Signaling role of Cdc42 in regulating mammalian physiology. J Biol Chem. 2011;286(4):2375–81.

    Article  CAS  PubMed  Google Scholar 

  120. Rastogi D, Nico J, Johnson AD, Tobias TA, Jorge Y, Macian F, et al. CDC42-related genes are upregulated in T helper cells from obese asthmatic children. J Allergy Clin Immunol. 2018;141(2):539–48.

    Article  CAS  PubMed  Google Scholar 

  121. van Panhuys N. TCR signal strength alters T-DC activation and interaction times and directs the outcome of differentiation. Front Immunol. 2016;7:6.

    PubMed  PubMed Central  Google Scholar 

  122. Chemin K, Bohineust A, Dogniaux S, Tourret M, Guégan S, Miro F, et al. Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J Immunol. 2012;189(5):2159–68.

    Article  CAS  PubMed  Google Scholar 

  123. Xu Z, Forno E, Acosta-Perez E, Han YY, Rosser F, Manni ML, et al. Differential gene expression in nasal airway epithelium from overweight or obese youth with asthma. Pediatr Allergy Immunol. 2022;33(4): e13776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Uddin M, Nong G, Ward J, Seumois G, Prince LR, Wilson SJ, et al. Prosurvival activity for airway neutrophils in severe asthma. Thorax. 2010;65(8):684–9.

    Article  PubMed  Google Scholar 

  125. Telenga ED, Tideman SW, Kerstjens HA, Hacken NH, Timens W, Postma DS, et al. Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy. 2012;67(8):1060–8.

    Article  CAS  PubMed  Google Scholar 

  126. Scott HA, Gibson PG, Garg ML, Upham JW, Wood LG. Sex hormones and systemic inflammation are modulators of the obese-asthma phenotype. Allergy. 2016;71(7):1037–47.

    Article  CAS  PubMed  Google Scholar 

  127. Fu JJ, Baines KJ, Wood LG, Gibson PG. Systemic inflammation is associated with differential gene expression and airway neutrophilia in asthma. OMICS. 2013;17(4):187–99.

    Article  CAS  PubMed  Google Scholar 

  128. Rhee H, Love T, Harrington D. Blood neutrophil count is associated with body mass index in adolescents with asthma. JSM Allergy Asthma. 2018;3(1):1019.

    PubMed  PubMed Central  Google Scholar 

  129. Jensen ME, Gibson PG, Collins CE, Wood LG. Airway and systemic inflammation in obese children with asthma. Eur Respir J. 2013;42(4):1012–9.

    Article  CAS  PubMed  Google Scholar 

  130. Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  131. Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am J Respir Crit Care Med. 2019;199(9):1076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wood LG, Li Q, Scott HA, Rutting S, Berthon BS, Gibson PG, et al. Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J Allergy Clin Immunol. 2019;143(1):305–15.

    Article  CAS  PubMed  Google Scholar 

  133. Peters MC, McGrath KW, Hawkins GA, Hastie AT, Levy BD, Israel E, et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med. 2016;4(7):574–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Permaul P, Peters MC, Petty CR, Cardet JC, Ly NP, Ramratnam SK, et al. The association of plasma IL-6 with measures of asthma morbidity in a moderate-severe pediatric cohort aged 6–18 years. J Allergy Clin Immunol Pract. 2021;9(7):2916-9.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jackson DJ, Bacharier LB, Calatroni A, Gill MA, Hu J, Liu AH, et al. Serum IL-6: a biomarker in childhood asthma? J Allergy Clin Immunol. 2020;145(6):1701-4.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jevnikar Z, Ostling J, Ax E, Calven J, Thorn K, Israelsson E, et al. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. J Allergy Clin Immunol. 2019;143(2):577–90.

    Article  CAS  PubMed  Google Scholar 

  137. Raita Y, Zhu Z, Camargo CA Jr, Freishtat RJ, Ngo D, Liang L, et al. Relationship of soluble interleukin-6 receptors with asthma: a Mendelian randomization study. Front Med (Lausanne). 2021;8: 665057.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Elias JA, Wu Y, Zheng T, Panettieri R. Cytokine- and virus-stimulated airway smooth muscle cells produce IL-11 and other IL-6-type cytokines. Am J Physiol. 1997;273(3 Pt 1):L648–55.

    CAS  PubMed  Google Scholar 

  139. De S, Zelazny ET, Souhrada JF, Souhrada M. IL-1 beta and IL-6 induce hyperplasia and hypertrophy of cultured guinea pig airway smooth muscle cells. J Appl Physiol (1985). 1995;78(4):1555–63.

    Article  CAS  PubMed  Google Scholar 

  140. Robinson MB, Deshpande DA, Chou J, Cui W, Smith S, Langefeld C, et al. IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2015;309(2):L129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. White SR, Laxman B, Naureckas ET, Hogarth DK, Solway J, Sperling AI, et al. Evidence for an IL-6-high asthma phenotype in asthmatic patients of African ancestry. J Allergy Clin Immunol. 2019;144(1):304-6.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Esty B, Harb H, Bartnikas LM, Charbonnier LM, Massoud AH, Leon-Astudillo C, et al. Treatment of severe persistent asthma with IL-6 receptor blockade. J Allergy Clin Immunol Pract. 2019;7(5):1639–42 (e4).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bradding P, Roberts JA, Britten KM, Montefort S, Djukanovic R, Mueller R, et al. Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol. 1994;10(5):471–80.

    Article  CAS  PubMed  Google Scholar 

  144. Guedes AG, Deshpande DA, Dileepan M, Walseth TF, Panettieri RA Jr, Subramanian S, et al. CD38 and airway hyper-responsiveness: studies on human airway smooth muscle cells and mouse models. Can J Physiol Pharmacol. 2015;93(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  145. Jude JA, Solway J, Panettieri RA Jr, Walseth TF, Kannan MS. Differential induction of CD38 expression by TNF-{alpha} in asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2010;299(6):L879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dileepan M, Jude JA, Rao SP, Walseth TF, Panettieri RA, Subramanian S, et al. MicroRNA-708 regulates CD38 expression through signaling pathways JNK MAP kinase and PTEN/AKT in human airway smooth muscle cells. Respir Res. 2014;31(15):107.

    Article  Google Scholar 

  147. Dileepan M, Sarver AE, Rao SP, Panettieri RA Jr, Subramanian S, Kannan MS. MicroRNA mediated chemokine responses in human airway smooth muscle cells. PLoS One. 2016;11(3): e0150842.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zeng S, Cui J, Zhang Y, Zheng Z, Meng J, Du J. MicroRNA-15b-5p inhibits tumor necrosis factor alpha-induced proliferation, migration, and extracellular matrix production of airway smooth muscle cells via targeting yes-associated protein 1. Bioengineered. 2022;13(3):5396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu Y, Lu Y, Zou F, Fan X, Li X, Zhang H, et al. PTEN participates in airway remodeling of asthma by regulating CD38/Ca(2+)/CREB signaling. Aging (Albany NY). 2020;12(16):16326–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Taillé C, Poulet C, Marchand-Adam S, Borie R, Dombret MC, Crestani B, et al. Monoclonal anti-TNF-α antibodies for severe steroid-dependent asthma: a case series. Open Respir Med J. 2013;7:21–5.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009;179(7):549–58.

    Article  CAS  PubMed  Google Scholar 

  152. Huang SL, Shaio GM, Chou P. Association between body mass index and allergy in teenage girls in Taiwan. Clin Exp Allergy. 1999;29(3):323–9.

    Article  CAS  PubMed  Google Scholar 

  153. Guler N, Kirerleri E, Ones U, Tamay Z, Salmayenli N, Darendeliler F. Leptin: does it have any role in childhood asthma? J Allergy Clin Immunol. 2004;114(2):254–9.

    Article  CAS  PubMed  Google Scholar 

  154. Grotta MB, Squebola-Cola DM, Toro AA, Ribeiro MA, Mazon SB, Ribeiro JD, et al. Obesity increases eosinophil activity in asthmatic children and adolescents. BMC Pulm Med. 2013;18(13):39.

    Article  Google Scholar 

  155. Desai D, Newby C, Symon FA, Haldar P, Shah S, Gupta S, et al. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am J Resp Crit Care Med. 2013;188(6):657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Santamaria F, Montella S, De Stefano S, Sperlì F, Barbarano F, Valerio G. Relationship between exhaled nitric oxide and body mass index in children and adolescents. J Allergy Clin Immunol. 2005;116(5):1163–4 (author reply 4–5).

    Article  PubMed  Google Scholar 

  157. Han Y-Y, Forno E, Celedon JC. Adiposity, fractional exhaled nitric oxide, and asthma in US children. Am J Resp Crit Care Med. 2014;190(1):32–9.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Holguin F, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Erzurum SC, et al. Obesity and asthma: an association modified by age of asthma onset. J Allergy Clin Immunol. 2011;127(6):1486-93.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Dixon AE, Poynter ME. Mechanisms of asthma in obesity: pleiotropic aspects of obesity produce distinct asthma phenotypes. Am J Respir Cell Mol Biol. 2016;54(5):601–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Muc M, Mota-Pinto A, Padez C. Association between obesity and asthma: epidemiology, pathophysiology and clinical profile. Nutr Res Rev. 2016;29(2):194–201.

    Article  CAS  PubMed  Google Scholar 

  161. Chen Z, Salam MT, Alderete TL, Habre R, Bastain TM, Berhane K, et al. Effects of childhood asthma on the development of obesity among school-aged children. Am J Respir Crit Care Med. 2017;195(9):1181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Contreras ZA, Chen Z, Roumeliotaki T, Annesi-Maesano I, Baiz N, von Berg A, et al. Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. Eur Respir J. 2018;52(3):1–13. https://doi.org/10.1183/13993003.00504-2018.

  163. Moitra S, Carsin AE, Abramson MJ, Accordini S, Amaral AFS, Anto J, et al. Long-term effect of asthma on the development of obesity among adults: an international cohort study, ECRHS. Thorax. 2022. https://doi.org/10.1136/thoraxjnl-2021-217867.

  164. Jani M, Ogston S, Mukhopadhyay S. Annual increase in body mass index in children with asthma on higher doses of inhaled steroids. J Pediatr. 2005;147(4):549–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Rastogi.

Ethics declarations

Funding

This article was sponsored by the National Institutes of Health Grant #HL141849.

Conflict of interest

The authors have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data sharing is not applicable to this article as this is a review article and no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Authors’ contributions

SCG and DR conceptualized the manuscript and RAP critically edited the manuscript. All authors have read and approved the final version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero, S.C., Panettieri, R.A. & Rastogi, D. Mechanistic Links Between Obesity and Airway Pathobiology Inform Therapies for Obesity-Related Asthma. Pediatr Drugs 25, 283–299 (2023). https://doi.org/10.1007/s40272-022-00554-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-022-00554-7

Navigation