Skip to main content
Log in

Medication and Fluid Management of Pediatric Sepsis and Septic Shock

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Sepsis is a life-threatening response to infection that contributes significantly to neonatal and pediatric morbidity and mortality worldwide. The key tenets of care include early recognition of potential sepsis, rapid intervention with appropriate fluids to restore adequate tissue perfusion, and empiric antibiotics to cover likely pathogens. Vasoactive/inotropic agents are recommended if tissue perfusion and hemodynamics are inadequate following initial fluid resuscitation. Several adjunctive therapies have been suggested with theoretical benefit, though definitive recommendations are not yet supported by research reports. This review focuses on the recommendations for medication and fluid management of pediatric sepsis and septic shock, highlighting issues related to antibiotic choices and antimicrobial stewardship, selection of intravenous fluids for resuscitation, and selection and use of vasoactive/inotropic medications. Controversy remains regarding resuscitation fluid volume and type, antibiotic choices depending upon infectious risks in the patient’s community, and adjunctive therapies such as vitamin C, corticosteroids, intravenous immunoglobulin, and methylene blue. We include best practice recommendations based on international guidelines, a review of primary literature, and a discussion of ongoing clinical trials and the nuances of therapeutic choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Sepsis. https://www.who.int/news-room/fact-sheets/detail/sepsis. Accessed 29 Sep 2021.

  2. Fleischmann-Struzek C, et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. 2018;6(3):223–30.

    Article  PubMed  Google Scholar 

  3. Weiss SL, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–57.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tan B, et al. Global case-fatality rates in pediatric severe sepsis and septic shock: a systematic review and meta-analysis. JAMA Pediatr. 2019;173(4):352–62.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kissoon N, et al. Sepsis in children: global implications of the world health assembly resolution on sepsis. Pediatr Crit Care Med. 2017;18(12):e625–7.

    Article  PubMed  Google Scholar 

  6. Weiss SL, et al. Executive summary: surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):186–95.

    Article  PubMed  Google Scholar 

  7. Weiss SL, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–106.

    Article  PubMed  Google Scholar 

  8. Larsen GY, et al. Development of a quality improvement learning collaborative to improve pediatric sepsis outcomes. Pediatrics. 2021. https://doi.org/10.1542/peds.2020-1434.

    Article  PubMed  Google Scholar 

  9. Brierley J, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37(2):666–88.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davis AL, et al. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit Care Med. 2017;45(6):1061–93.

    Article  PubMed  Google Scholar 

  11. Plunkett A, Tong J. Sepsis in children. BMJ. 2015;350:h3017.

    Article  PubMed  CAS  Google Scholar 

  12. Barlam TF, et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51-77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dryden MS. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother. 2011;66(Suppl 4):iv7–15.

    CAS  PubMed  Google Scholar 

  14. CDC, Core Elements of Hospital Antibiotic Stewardship Programs. 2019, US Department of Health and Human Services, CDC: Atlanta, GA.

  15. Biondi EA, et al. Blood culture time to positivity in febrile infants with bacteremia. JAMA Pediatr. 2014;168(9):844–9.

    Article  PubMed  Google Scholar 

  16. Dierig A, et al. Time-to-positivity of blood cultures in children with sepsis. Front Pediatr. 2018;6:222.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng MP, et al. Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis: a diagnostic study. Ann Intern Med. 2019;171(8):547–54.

    Article  PubMed  Google Scholar 

  18. Scheer CS, et al. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study. Clin Microbiol Infect. 2019;25(3):326–31.

    Article  CAS  PubMed  Google Scholar 

  19. Weiss SL, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42(11):2409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar A, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136(5):1237–48.

    Article  PubMed  Google Scholar 

  21. Charlton M, Thompson JP. Pharmacokinetics in sepsis. BJA Educ. 2019;19(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  22. Workman JK, et al. Treatment of pediatric septic shock with the surviving sepsis campaign guidelines and PICU patient outcomes. Pediatr Crit Care Med. 2016;17(10):e451–8.

    Article  PubMed  Google Scholar 

  23. Cruz AT, et al. Updates on pediatric sepsis. J Am Coll Emerg Physicians Open. 2020;1(5):981–93.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kalil AC, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–111.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tunkel AR, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.

    Article  PubMed  Google Scholar 

  26. Ames SG, et al. Infectious etiologies and patient outcomes in pediatric septic shock. J Pediatric Infect Dis Soc. 2017;6(1):80–6.

    PubMed  Google Scholar 

  27. Pantell RH, et al. Evaluation and management of well-appearing febrile infants 8 to 60 days old. Pediatrics. 2021. https://doi.org/10.1542/peds.2021-052228.

    Article  PubMed  Google Scholar 

  28. American Academy of Pediatrics. Committee on Infectious Diseases and D.W. Kimberlin, Red book : 2018-2021 report of the Committee on Infectious Diseases. Thirty first edition. ed. Policy of the American Academy of Pediatrics. 2018, Elk Grove Village, IL: American Academy of Pediatrics. 1 online resource (xlix, 1213 pages).

  29. Feudtner C, et al. Pediatric complex chronic conditions classification system version 2: updated for ICD-10 and complex medical technology dependence and transplantation. BMC Pediatr. 2014;14:199.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lehrnbecher T, et al. Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem-cell transplantation recipients: 2017 update. J Clin Oncol. 2017;35(18):2082–94.

    Article  CAS  PubMed  Google Scholar 

  31. Kutty PK, et al. Mycoplasma pneumoniae among children hospitalized with community-acquired pneumonia. Clin Infect Dis. 2019;68(1):5–12.

    CAS  PubMed  Google Scholar 

  32. Cobussen M, et al. Re: ’The renal safety of a single dose of gentamicin in patients with sepsis in the emergency department’—Author’s reply. Clin Microbiol Infect. 2021;27(2):301–2.

    Article  PubMed  Google Scholar 

  33. Picard W, et al. Propensity-based study of aminoglycoside nephrotoxicity in patients with severe sepsis or septic shock. Antimicrob Agents Chemother. 2014;58(12):7468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Babiker A, et al. Adjunctive clindamycin therapy in invasive beta-haemolytic streptococcal infections—Authors’ reply. Lancet Infect Dis. 2021;21(6):762–3.

    Article  PubMed  Google Scholar 

  35. Stevens DL, et al. The Eagle effect revisited: efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J Infect Dis. 1988;158(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  36. Carapetis JR, et al. Effectiveness of clindamycin and intravenous immunoglobulin, and risk of disease in contacts, in invasive group a streptococcal infections. Clin Infect Dis. 2014;59(3):358–65.

    Article  CAS  PubMed  Google Scholar 

  37. Lane RD, et al. Antibiotic timing in pediatric septic shock. Hosp Pediatr. 2020;10(4):311–7.

    Article  PubMed  Google Scholar 

  38. Creedon JK, et al. Timing of antibiotic administration in pediatric sepsis. Pediatr Emerg Care. 2020;36(10):464–7.

    PubMed  Google Scholar 

  39. Puskarich MA, et al. Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 2011;39(9):2066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rothrock SG, et al. Outcome of immediate versus early antibiotics in severe sepsis and septic shock: a systematic review and meta-analysis. Ann Emerg Med. 2020;76(4):427–41.

    Article  PubMed  Google Scholar 

  41. Scott HF, et al. Managing diagnostic uncertainty in pediatric sepsis quality improvement with a two-tiered approach. Pediatr Qual Saf. 2020;5(1):e244.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Strich JR, Heil EL, Masur H. Considerations for empiric antimicrobial therapy in sepsis and septic shock in an era of antimicrobial resistance. J Infect Dis. 2020;222(Suppl 2):S119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rybak MJ, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835–64.

    Article  PubMed  Google Scholar 

  44. Liang SY, Kumar A. Empiric antimicrobial therapy in severe sepsis and septic shock: optimizing pathogen clearance. Curr Infect Dis Rep. 2015;17(7):493.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ulldemolins M, et al. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit Care. 2014;18(3):227.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nusshag C, et al. Issues of acute kidney injury staging and management in sepsis and critical illness: a narrative review. Int J Mol Sci. 2017;18(7):1387.

    Article  PubMed Central  CAS  Google Scholar 

  47. Peerapornratana S, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–99.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lopez-Cortes LE, et al. Impact of an evidence-based bundle intervention in the quality-of-care management and outcome of Staphylococcus aureus bacteremia. Clin Infect Dis. 2013;57(9):1225–33.

    Article  CAS  PubMed  Google Scholar 

  49. Minejima E, et al. Defining the breakpoint duration of Staphylococcus aureus bacteremia predictive of poor outcomes. Clin Infect Dis. 2020;70(4):566–73.

    Article  PubMed  Google Scholar 

  50. Wilkins AL, et al. Toxic shock syndrome - the seven Rs of management and treatment. J Infect. 2017;74(Suppl 1):S147–52.

    Article  PubMed  Google Scholar 

  51. McMullan BJ, et al. Antibiotic duration and timing of the switch from intravenous to oral route for bacterial infections in children: systematic review and guidelines. Lancet Infect Dis. 2016;16(8):e139–52.

    Article  PubMed  Google Scholar 

  52. Inwald DP, et al. Restricted fluid bolus volume in early septic shock: results of the Fluids in Shock pilot trial. Arch Dis Child. 2019;104(5):426–31.

    Article  PubMed  Google Scholar 

  53. Santhanam I, et al. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care. 2008;24(10):647–55.

    Article  PubMed  Google Scholar 

  54. Sankar J, et al. Fluid Bolus Over 15–20 versus 5–10 minutes each in the first hour of resuscitation in children with septic shock: a randomized controlled trial. Pediatr Crit Care Med. 2017;18(10):e435–45.

    Article  PubMed  Google Scholar 

  55. Maitland K, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364(26):2483–95.

    Article  CAS  PubMed  Google Scholar 

  56. Houston KA, George EC, Maitland K. Implications for paediatric shock management in resource-limited settings: a perspective from the FEAST trial. Crit Care. 2018;22(1):119.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Myburgh JA. Fluid resuscitation in acute illness–time to reappraise the basics. N Engl J Med. 2011;364(26):2543–4.

    Article  CAS  PubMed  Google Scholar 

  58. Balamuth F, et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis. Pediatr Crit Care Med. 2016;17(9):817–22.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cruz AT, et al. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127(3):e758–66.

    Article  PubMed  Google Scholar 

  60. Han YY, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112(4):793–9.

    Article  PubMed  Google Scholar 

  61. Lane RD, et al. High reliability pediatric septic shock quality improvement initiative and decreasing mortality. Pediatrics. 2016. https://doi.org/10.1542/peds.2015-4153.

    Article  PubMed  Google Scholar 

  62. Larsen GY, Mecham N, Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage. Pediatrics. 2011;127(6):e1585–92.

    Article  PubMed  Google Scholar 

  63. Weiss SL, et al. Crystalloid fluid choice and clinical outcomes in pediatric sepsis: a matched retrospective cohort study. J Pediatr. 2017;182:304-310 e10.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Barhight MF, et al. Non-resuscitation fluid in excess of hydration requirements is associated with higher mortality in critically ill children. Pediatr Res. 2021;91:235–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Alobaidi R, et al. Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–68.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Al-Lawati ZH, et al. Profile of fluid exposure and recognition of fluid overload in critically ill children. Pediatr Crit Care Med. 2020;21(8):760–6.

    Article  PubMed  Google Scholar 

  67. Abulebda K, et al. Post-ICU admission fluid balance and pediatric septic shock outcomes: a risk-stratified analysis. Crit Care Med. 2014;42(2):397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Semler MW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zampieri FG et al. Effect of intravenous fluid treatment with a balanced solution vs 0.9% saline solution on mortality in critically ill patients: the BaSICS randomized clinical trial. JAMA, 2021.

  70. Balamuth F, et al. Pragmatic pediatric trial of balanced versus normal saline fluid in sepsis: the PRoMPT BOLUS randomized controlled trial pilot feasibility study. Acad Emerg Med. 2019;26(12):1346–56.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stenson EK, et al. Hyperchloremia is associated with complicated course and mortality in pediatric patients with septic shock. Pediatr Crit Care Med. 2018;19(2):155–60.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stenson EK, et al. Hyperchloremia is associated with acute kidney injury in pediatric patients with septic shock. Intensive Care Med. 2018;44(11):2004–5.

    Article  PubMed  Google Scholar 

  73. Emrath ET, et al. Resuscitation with balanced fluids is associated with improved survival in pediatric severe sepsis. Crit Care Med. 2017;45(7):1177–83.

    Article  PubMed  Google Scholar 

  74. Fernandez-Sarmiento J, et al. Association between unbalanced solutions and acute kidney injury during fluid resuscitation in children with sepsis. J Intensive Care Med. 2021. https://doi.org/10.1177/08850666211004453.

    Article  PubMed  Google Scholar 

  75. Trepatchayakorn S, Sakunpunphuk M, Samransamruajkit R. Balanced salt solution versus normal saline in resuscitation of pediatric sepsis: a randomized, controlled trial. Indian J Pediatr. 2021;88(9):921–4.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Walker SB, et al. Clinical signs to categorize shock and target vasoactive medications in warm versus cold pediatric septic shock. Pediatr Crit Care Med. 2020;21(12):1051–8.

    Article  PubMed  Google Scholar 

  77. Ventura AM, et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med. 2015;43(11):2292–302.

    Article  CAS  PubMed  Google Scholar 

  78. Ramaswamy KN, et al. Double-blind randomized clinical trial comparing dopamine and epinephrine in pediatric fluid-refractory hypotensive septic shock. Pediatr Crit Care Med. 2016;17(11):e502–12.

    Article  PubMed  Google Scholar 

  79. Lampin ME, et al. Noradrenaline use for septic shock in children: doses, routes of administration and complications. Acta Paediatr. 2012;101(9):e426–30.

    Article  CAS  PubMed  Google Scholar 

  80. Choong K, Kissoon N. Vasopressin in pediatric shock and cardiac arrest. Pediatr Crit Care Med. 2008;9(4):372–9.

    Article  PubMed  Google Scholar 

  81. Overgaard CB, Dzavik V. Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease. Circulation. 2008;118(10):1047–56.

    Article  PubMed  Google Scholar 

  82. Moller MH, et al. Scandinavian SSAI clinical practice guideline on choice of inotropic agent for patients with acute circulatory failure. Acta Anaesthesiol Scand. 2018;62(4):420–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Loubani OM, Green RS. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care. 2015;30(3):653 e9-653 e17.

    Article  CAS  Google Scholar 

  84. Charbel RC, et al. Safety of early norepinephrine infusion through peripheral vascular access during transport of critically ill children. J Am Coll Emerg Physicians Open. 2021;2(2):e12395.

    PubMed  PubMed Central  Google Scholar 

  85. Owen VS, et al. Adverse events associated with administration of vasopressor medications through a peripheral intravenous catheter: a systematic review and meta-analysis. Crit Care. 2021;25(1):146.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Patregnani JT, Sochet AA, Klugman D. Short-term peripheral vasoactive infusions in pediatrics: where is the harm? Pediatr Crit Care Med. 2017;18(8):e378–81.

    Article  PubMed  Google Scholar 

  87. Nichols DG, Shaffner DH. Rogers’ textbook of pediatric intensive care. 5th ed. Philadelphia: Wolters Kluwer; 2016. (1 volume (various pagings)).

    Google Scholar 

  88. Carr AC, et al. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19:418.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wilson JX. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. BioFactors. 2009;35(1):5–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marik PE, et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151(6):1229–38.

    Article  PubMed  Google Scholar 

  91. Sato R, et al. Effect of IV high-dose vitamin C on mortality in patients with sepsis: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2021. https://doi.org/10.1097/CCM.0000000000005263.

    Article  PubMed  Google Scholar 

  92. Moskowitz A, et al. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: the ACTS randomized clinical trial. JAMA. 2020;324(7):642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wald EL, et al. Hydrocortisone-ascorbic acid-thiamine use associated with lower mortality in pediatric septic shock. Am J Respir Crit Care Med. 2020;201(7):863–7.

    Article  PubMed  Google Scholar 

  94. Hosseinian L, et al. Methylene blue: magic bullet for vasoplegia? Anesth Analg. 2016;122(1):194–201.

    Article  CAS  PubMed  Google Scholar 

  95. Kwok ES, Howes D. Use of methylene blue in sepsis: a systematic review. J Intensive Care Med. 2006;21(6):359–63.

    Article  PubMed  Google Scholar 

  96. Otero Luna AV, et al. Methylene blue for refractory shock in children: a systematic review and survey practice analysis. Pediatr Crit Care Med. 2020;21(6):e378–86.

    Article  PubMed  Google Scholar 

  97. Bennett JE, Dolin R, Blaser MJ. Mandell, douglas, and bennett’s principles and practice of infectious diseases. 9th ed. Philadelphia: Elsevier; 2019.

    Google Scholar 

  98. Alejandria MM, et al. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013;9:CD001090.

    Google Scholar 

  99. Alsaleem M. Intravenous immune globulin uses in the fetus and neonate: a review. Antibodies (Basel). 2020;9(4):60.

    Article  CAS  Google Scholar 

  100. Laupland KB, Kirkpatrick AW, Delaney A. Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysis. Crit Care Med. 2007;35(12):2686–92.

    CAS  PubMed  Google Scholar 

  101. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev. 2004;1:CD001239.

    Google Scholar 

  102. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev. 2004;1:CD000361.

    Google Scholar 

  103. INIS Collaborative Group, Brocklehurst P, Farrell B, et al. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med. 2011;365(13):1201–11.

    Article  Google Scholar 

  104. Yang Y, et al. Evaluation of the effect of intravenous immunoglobulin dosing on mortality in patients with sepsis: a network meta-analysis. Clin Ther. 2019;41(9):1823-1838 e4.

    Article  CAS  PubMed  Google Scholar 

  105. Sriskandan S, et al. Human intravenous immunoglobulin for experimental streptococcal toxic shock: bacterial clearance and modulation of inflammation. J Antimicrob Chemother. 2006;58(1):117–24.

    Article  CAS  PubMed  Google Scholar 

  106. Parks T, Wilson C, Curtis N, Norrby-Teglund A, Sriskandan S. Polyspecific intravenous immunoglobulin in clindamycin-treated patients with streptococcal toxic shock syndrome: a systematic review and meta-analysis. Clin Infect Dis. 2018;67(9):1434–6. https://doi.org/10.1093/cid/ciy401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Adalat S, et al. Toxic shock syndrome surveillance in UK children. Arch Dis Child. 2014;99(12):1078–82.

    Article  PubMed  Google Scholar 

  108. Kliegman R, Behrman RE, Nelson WE. Nelson textbook of pediatrics. 20th ed. Philadelphia: Elsevier; 2016. (2 volumes (lxviii, 3473, 129 pages)).

    Google Scholar 

  109. Sasidharan P. Role of corticosteroids in neonatal blood pressure homeostasis. Clin Perinatol. 1998;25(3):723–40 (xi).

    Article  CAS  PubMed  Google Scholar 

  110. Cronin L, et al. Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med. 1995;23(8):1430–9.

    Article  CAS  PubMed  Google Scholar 

  111. den Brinker M, et al. Adrenal insufficiency in meningococcal sepsis: bioavailable cortisol levels and impact of interleukin-6 levels and intubation with etomidate on adrenal function and mortality. J Clin Endocrinol Metab. 2005;90(9):5110–7.

    Article  CAS  Google Scholar 

  112. Hohl CM, et al. The effect of a bolus dose of etomidate on cortisol levels, mortality, and health services utilization: a systematic review. Ann Emerg Med. 2010;56(2):105-13 e5.

    Article  PubMed  Google Scholar 

  113. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71. https://doi.org/10.1001/jama.288.7.862.

    Article  CAS  PubMed  Google Scholar 

  114. Sprung CL, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.

    Article  CAS  PubMed  Google Scholar 

  115. Volbeda M, et al. Glucocorticosteroids for sepsis: systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2015;41(7):1220–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. El-Nawawy A, et al. Evaluation of early corticosteroid therapy in management of pediatric septic shock in pediatric intensive care patients: a randomized clinical study. Pediatr Infect Dis J. 2017;36(2):155–9.

    Article  PubMed  Google Scholar 

  117. Nichols B, et al. Hydrocortisone therapy in catecholamine-resistant pediatric septic shock: a pragmatic analysis of clinician practice and association with outcomes. Pediatr Crit Care Med. 2017;18(9):e406–14.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Rochwerg B, et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46(9):1411–20.

    Article  CAS  PubMed  Google Scholar 

  119. Venkatesh B, et al. Adjunctive Glucocorticoid Therapy in Patients with Septic Shock. N Engl J Med. 2018;378(9):797–808.

    Article  CAS  PubMed  Google Scholar 

  120. Patti G, et al. Central adrenal insufficiency in children and adolescents. Best Pract Res Clin Endocrinol Metab. 2018;32(4):425–44.

    Article  CAS  PubMed  Google Scholar 

  121. Brouwer MC, et al. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2015;9:CD004405.

    Google Scholar 

  122. Stress Hydrocortisone In Pediatric Septic Shock (SHIPSS). https://clinicaltrials.gov/ct2/show/NCT03401398. Accessed 30 August 2021.

  123. Amigoni A, et al. Analgesia and sedation in pediatric patients with sepsis: a call for research efforts and consensus. Pediatr Crit Care Med. 2020;21(11):1028–9.

    Article  PubMed  Google Scholar 

  124. Flori HR, et al. The authors reply. Pediatr Crit Care Med. 2020;21(11):1029.

    Article  PubMed  Google Scholar 

  125. Hildreth AN, et al. Adrenal suppression following a single dose of etomidate for rapid sequence induction: a prospective randomized study. J Trauma. 2008;65(3):573–9.

    CAS  PubMed  Google Scholar 

  126. Grunwell JR, et al. Procedural sedation outside of the operating room using ketamine in 22,645 children: a report from the pediatric sedation research consortium. Pediatr Crit Care Med. 2016;17(12):1109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dewhirst E, et al. Cardiac arrest following ketamine administration for rapid sequence intubation. J Intensive Care Med. 2013;28(6):375–9.

    Article  PubMed  Google Scholar 

  128. Caldwell D, Wong J, Duffett M. Sedative medications for critically ill children during and after mechanical ventilation: a retrospective observational study. Can J Hosp Pharm. 2020;73(2):125–32.

    PubMed  PubMed Central  Google Scholar 

  129. Kudchadkar SR, Yaster M, Punjabi NM. Sedation, sleep promotion, and delirium screening practices in the care of mechanically ventilated children: a wake-up call for the pediatric critical care community. Crit Care Med. 2014;42(7):1592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Riker RR, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489–99.

    Article  CAS  PubMed  Google Scholar 

  131. Sperotto F, et al. Efficacy and safety of dexmedetomidine for prolonged sedation in the PICU: a prospective multicenter study (PROSDEX). Pediatr Crit Care Med. 2020;21(7):625–36.

    Article  PubMed  Google Scholar 

  132. Erickson SJ, et al. Dexmedetomidine sedation in mechanically ventilated critically ill children: a pilot randomized controlled trial. Pediatr Crit Care Med. 2020;21(9):e731–9.

    Article  PubMed  Google Scholar 

  133. Morelli A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitte Y. Larsen.

Ethics declarations

Funding

No sources of financial assistance were used to conduct the study described in the article and/or to assist with the preparation of the article. Dr. Workman’s institution is receiving ongoing career development salary and research support from the Intermountain Foundation through the University of Utah CTSI Partner Career Development Program and from the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1TR002538). The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health or the Intermountain Foundation.

Conflicts of interest

Lauren Burgunder, Caroline Heyrend, Jared Olson, Chanelle Stidham, Roni D. Lane, Jennifer K. Workman, and Gitte Y. Larsen have no conflicts of interest that are directly relevant to the content of this article.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Author contributions

Drs. Burgunder and Larsen conceptualized and designed the study, drafted the initial manuscript, and revised the manuscript. Pharmacists Heyrend, Olson, and Stidham drafted sections of the initial manuscript. All authors reviewed and recommended revisions to the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgunder, L., Heyrend, C., Olson, J. et al. Medication and Fluid Management of Pediatric Sepsis and Septic Shock. Pediatr Drugs 24, 193–205 (2022). https://doi.org/10.1007/s40272-022-00497-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-022-00497-z

Navigation