Skip to main content
Log in

Recent Advances in the Pharmacological Management of Behavioral Disturbances Associated with Autism Spectrum Disorder in Children and Adolescents

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric condition affecting an estimated one in 36 children. Youth with ASD may have severe behavioral disturbances including irritability, aggression, and hyperactivity. Currently, there are only two medications (risperidone and aripiprazole) approved by the US Food and Drug Administration (FDA) for the treatment of irritability associated with ASD. Pharmacologic treatments are commonly used to target ASD-associated symptoms including irritability, mood lability, anxiety, and hyperactivity. However, evidence for the efficacy of many commonly used treatments is limited by the lack of large placebo-controlled trials of these medications in this population. Research into the pathophysiology of ASD has led to new targets for pharmacologic therapy including the neuroimmune system, the endocannabinoid system, and the glutamatergic neurotransmitter system. The goal of this review is to provide an overview of the current evidence base for commonly used treatments, as well as emerging treatment options for common behavioral disturbances seen in youth with ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat Rep. 2015;13(87):1–20.

    Google Scholar 

  2. Jobski K, Hofer J, Hoffmann F, Bachmann C. Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review. Acta Psychiatr Scand. 2017;135(1):8–28.

    CAS  PubMed  Google Scholar 

  3. Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry. 2008;47(8):921–9.

    PubMed  Google Scholar 

  4. Howes OD, Rogdaki M, Findon JL, Wichers RH, Charman T, King BH, et al. Autism spectrum disorder: consensus guidelines on assessment, treatment and research from the British Association for Psychopharmacology. J Psychopharmacol. 2018;32(1):3–29.

    PubMed  Google Scholar 

  5. Logan SL, Nicholas JS, Carpenter LA, King LB, Garrett-Mayer E, Charles JM. High prescription drug use and associated costs among Medicaid-eligible children with autism spectrum disorders identified by a population-based surveillance network. Ann Epidemiol. 2012;22(1):1–8.

    PubMed  PubMed Central  Google Scholar 

  6. Logan SL, Carpenter L, Leslie RS, Garrett-Mayer E, Hunt KJ, Charles J, et al. Aberrant behaviors and co-occurring conditions as predictors of psychotropic polypharmacy among children with autism spectrum disorders. J Child Adolesc Psychopharmacol. 2015;25(4):323–36.

    PubMed  PubMed Central  Google Scholar 

  7. McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med. 2002;347(5):314–21.

    CAS  PubMed  Google Scholar 

  8. Sharma A, Shaw SR. Efficacy of risperidone in managing maladaptive behaviors for children with autistic spectrum disorder: a meta-analysis. J Pediatric Health Care: Off Publ Natl Assoc Pediatric Nurse Associat Pract. 2012;26(4):291–9.

    Google Scholar 

  9. Troost PW, Lahuis BE, Steenhuis MP, Ketelaars CE, Buitelaar JK, van Engeland H, et al. Long-term effects of risperidone in children with autism spectrum disorders: a placebo discontinuation study. J Am Acad Child Adolesc Psychiatry. 2005;44(11):1137–44.

    PubMed  Google Scholar 

  10. Ngamsamut N, Hongkaew Y, Vanwong N, Srisawasdi P, Puangpetch A, Chamkrachangpada B, et al. 9-Hydroxyrisperidone-induced hyperprolactinaemia in Thai children and adolescents with autism spectrum disorder. Basic Clin Pharmacol Toxicol. 2016;119(3):267–72.

    CAS  PubMed  Google Scholar 

  11. Roke Y, Buitelaar JK, Boot AM, Tenback D, van Harten PN. Risk of hyperprolactinemia and sexual side effects in males 10–20 years old diagnosed with autism spectrum disorders or disruptive behavior disorder and treated with risperidone. J Child Adolescent Psychopharmacol. 2012;22(6):432–9.

    CAS  Google Scholar 

  12. Ching H, Pringsheim T. Aripiprazole for autism spectrum disorders (ASD). Cochrane Database Syst Rev. 2012;16(5):CD009043.

    Google Scholar 

  13. Varni JW, Handen BL, Corey-Lisle PK, Guo Z, Manos G, Ammerman DK, et al. Effect of aripiprazole 2 to 15 mg/d on health-related quality of life in the treatment of irritability associated with autistic disorder in children: a post hoc analysis of two controlled trials. Clin Ther. 2012;34(4):980–92.

    CAS  PubMed  Google Scholar 

  14. Marcus RN, Owen R, Manos G, Mankoski R, Kamen L, McQuade RD, et al. Safety and tolerability of aripiprazole for irritability in pediatric patients with autistic disorder: a 52-week, open-label, multicenter study. J Clin Psychiatry. 2011;72(9):1270–6.

    CAS  PubMed  Google Scholar 

  15. Sochocky N, Milin R. Second generation antipsychotics in Asperger's disorder and high functioning autism: a systematic review of the literature and effectiveness of meta-analysis. Curr Clin Pharmacol. 2013;8(4):370–9.

    CAS  PubMed  Google Scholar 

  16. Hollander E, Wasserman S, Swanson EN, Chaplin W, Schapiro ML, Zagursky K, et al. A double-blind placebo-controlled pilot study of olanzapine in childhood/adolescent pervasive developmental disorder. J Child Adolescent Psychopharmacol. 2006;16(5):541–8.

    Google Scholar 

  17. Dominick K, Wink LK, McDougle CJ, Erickson CA. A Retrospective naturalistic study of ziprasidone for irritability in youth with autism spectrum disorder. J Child Adolescent Psychopharmacol. 2015;25(5):397–401.

    CAS  Google Scholar 

  18. Yoon Y, Wink LK, Pedapati EV, Horn PS, Erickson CA. Weight gain effects of second-generation antipsychotic treatment in autism spectrum disorder. J Child Adolescent Psychopharmacol. 2016;26(9):822–7.

    CAS  Google Scholar 

  19. Stigler KA, Mullett JE, Erickson CA, Posey DJ, McDougle CJ. Paliperidone for irritability in adolescents and young adults with autistic disorder. Psychopharmacology. 2012;223(2):237–45.

    CAS  PubMed  Google Scholar 

  20. Loebel A, Brams M, Goldman RS, Silva R, Hernandez D, Deng L, et al. Lurasidone for the treatment of irritability associated with autistic disorder. J Autism Dev Disord. 2016;46(4):1153–63.

    PubMed  Google Scholar 

  21. McClellan L, Dominick KC, Pedapati EV, Wink LK, Erickson CA. Lurasidone for the treatment of irritability and anger in autism spectrum disorders. Expert Opin Investig Drugs. 2017;26(8):985–9.

    CAS  PubMed  Google Scholar 

  22. Gencer O, Emiroglu FN, Miral S, Baykara B, Baykara A, Dirik E. Comparison of long-term efficacy and safety of risperidone and haloperidol in children and adolescents with autistic disorder. An open label maintenance study. Eur Child Adolescent psychiatry. 2008;17(4):217–25.

  23. Miral S ea. Risperidone versus haloperidol in children and adolescents with AD: a randomized, controlled, double-blind trial. - PubMed - NCBI. 2008.

  24. Faretra G, Dooher L, Dowling J. Comparison of haloperidol and fluphenazine in disturbed children. Am J Psychiatry. 1970;126(11):1670–3.

    CAS  PubMed  Google Scholar 

  25. Hsia Y, Wong AY, Murphy DG, Simonoff E, Buitelaar JK, Wong IC. Psychopharmacological prescriptions for people with autism spectrum disorder (ASD): a multinational study. Psychopharmacology. 2014;231(6):999–1009.

    CAS  PubMed  Google Scholar 

  26. Perry R, Campbell M, Adams P, Lynch N, Spencer EK, Curren EL, et al. Long-term efficacy of haloperidol in autistic children: continuous versus discontinuous drug administration. J Am Acad Child Adolesc Psychiatry. 1989;28(1):87–92.

    CAS  PubMed  Google Scholar 

  27. Remington G, Sloman L, Konstantareas M, Parker K, Gow R. Clomipramine versus haloperidol in the treatment of autistic disorder: a double-blind, placebo-controlled, crossover study. J Clin Psychopharmacol. 2001;21(4):440–4.

    CAS  PubMed  Google Scholar 

  28. Beherec L, Lambrey S, Quilici G, Rosier A, Falissard B, Guillin O. Retrospective review of clozapine in the treatment of patients with autism spectrum disorder and severe disruptive behaviors. J Clin Psychopharmacol. 2011;31(3):341–4.

    CAS  PubMed  Google Scholar 

  29. Wink LK, Badran I, Pedapati EV, Sorensen R, Benton SC, Johnson MC, et al. Clozapine for drug-refractory irritability in individuals with developmental disability. J Child Adolescent Psychopharmacol. 2016;26(9):843–6.

    CAS  Google Scholar 

  30. Kumar B, Prakash A, Sewal RK, Medhi B, Modi M. Drug therapy in autism: a present and future perspective. Pharmacol Rep PR. 2012;64(6):1291–304.

    CAS  PubMed  Google Scholar 

  31. Fortea A, Ilzarbe D, Espinosa L, Solerdelcoll M, de Castro C, Oriolo G, et al. Long-acting injectable atypical antipsychotic use in adolescents: an observational study. J Child Adolescent Psychopharmacol. 2018 Jan 30.

  32. Kowalski JL, Wink LK, Blankenship K, Habenicht CD, Erickson CA, Stigler KA, et al. Paliperidone palmitate in a child with autistic disorder. J Child Adolescent Psychopharmacol. 2011;21(5):491–3.

    CAS  Google Scholar 

  33. Ceylan MF, Erdogan B, Tural Hesapcioglu S, Cop E. Effectiveness, adverse effects and drug compliance of long-acting injectable risperidone in children and adolescents. Clin Drug Investig. 2017;37(10):947–56.

    CAS  PubMed  Google Scholar 

  34. Lytle S, McVoy M, Sajatovic M. Long-acting injectable antipsychotics in children and adolescents. J Child Adolescent Psychopharmacol. 2017;27(1):2–9.

    CAS  Google Scholar 

  35. Wink LK, Early M, Schaefer T, Pottenger A, Horn P, McDougle CJ, et al. Body mass index change in autism spectrum disorders: comparison of treatment with risperidone and aripiprazole. J Child Adolescent Psychopharmacol. 2014;24(2):78–82.

    CAS  Google Scholar 

  36. Scahill L, Jeon S, Boorin SJ, McDougle CJ, Aman MG, Dziura J, et al. Weight gain and metabolic consequences of risperidone in young children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2016;55(5):415–23.

    PubMed  PubMed Central  Google Scholar 

  37. Anagnostou E, Aman MG, Handen BL, Sanders KB, Shui A, Hollway JA, et al. Metformin for treatment of overweight induced by atypical antipsychotic medication in young people with autism spectrum disorder: a RANDOMIZED CLINICAL TRIAL. JAMA Psychiatry. 2016;73(9):928–37.

    PubMed  Google Scholar 

  38. Handen BL, Anagnostou E, Aman MG, Sanders KB, Chan J, Hollway JA, et al. A randomized, placebo-controlled trial of metformin for the treatment of overweight induced by antipsychotic medication in young people with autism spectrum disorder: open-label extension. J Am Acad Child Adolesc Psychiatry. 2017;56(10):849–56.e6.

    PubMed  Google Scholar 

  39. Wink LK, Adams R, Pedapati EV, Dominick KC, Fox E, Buck C, et al. Brief report: metformin for antipsychotic-induced weight gain in youth with autism spectrum disorder. J Autism Dev Disord. 2017;47(7):2290–4.

    PubMed  Google Scholar 

  40. Reeves GM, Keeton C, Correll CU, Johnson JL, Hamer RM, Sikich L, et al. Improving metabolic parameters of antipsychotic child treatment (IMPACT) study: rationale, design, and methods. Child Adolescent Psychiatry Mental Health. 2013;7(1):31.

    PubMed  Google Scholar 

  41. Canitano R. Clinical experience with topiramate to counteract neuroleptic induced weight gain in 10 individuals with autistic spectrum disorders. Brain Develop. 2005;27(3):228–32.

    Google Scholar 

  42. Rezaei V, Mohammadi MR, Ghanizadeh A, Sahraian A, Tabrizi M, Rezazadeh SA, et al. Double-blind, placebo-controlled trial of risperidone plus topiramate in children with autistic disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1269–72.

    CAS  PubMed  Google Scholar 

  43. Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes care. 2004;27(2):596–601.

  44. Vasa RA, Carroll LM, Nozzolillo AA, Mahajan R, Mazurek MO, Bennett AE, et al. A systematic review of treatments for anxiety in youth with autism spectrum disorders. J Autism Dev Disord. 2014;44(12):3215–29.

    PubMed  Google Scholar 

  45. Hollander E, Soorya L, Chaplin W, Anagnostou E, Taylor BP, Ferretti CJ, et al. A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. Am J Psychiatry. 2012;169(3):292–9.

    PubMed  Google Scholar 

  46. Hollander E, Phillips A, Chaplin W, Zagursky K, Novotny S, Wasserman S, et al. A placebo controlled crossover trial of liquid fluoxetine on repetitive behaviors in childhood and adolescent autism. Neuropsychopharmacology. 2005;30(3):582–9.

    CAS  PubMed  Google Scholar 

  47. Autism Speaks announces results reported for the Study of Fluoxetine in Autism (SOFIA) | Press Release | Autism Speaks. 2012 2012–07–25T00:00:00Z; Available from: https://www.autismspeaks.org/about-us/press-releases/autism-speaks-announces-results-reported-study-fluoxetine-autism-sofia

  48. King BH, Hollander E, Sikich L, McCracken JT, Scahill L, Bregman JD, et al. Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: citalopram ineffective in children with autism. Arch Gen Psychiatry. 2009;66(6):583–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McDougle CJ, Naylor ST, Cohen DJ, Volkmar FR, Heninger GR, Price LH. A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder. Arch Gen Psychiatry. 1996;53(11):1001–8.

    CAS  PubMed  Google Scholar 

  50. Martin A, Koenig K, Anderson GM, Scahill L. Low-dose fluvoxamine treatment of children and adolescents with pervasive developmental disorders: a prospective, open-label study. J Autism Dev Disord. 2003;33(1):77–85.

    PubMed  Google Scholar 

  51. Posey DJ, Guenin KD, Kohn AE, Swiezy NB, McDougle CJ. A naturalistic open-label study of mirtazapine in autistic and other pervasive developmental disorders. J Child Adolescent Psychopharmacol. 2001;11(3):267–77.

    CAS  Google Scholar 

  52. Yasuhara A. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain Develop. 2010;32(10):791–8.

    Google Scholar 

  53. Hollander E, Dolgoff-Kaspar R, Cartwright C, Rawitt R, Novotny S. An open trial of divalproex sodium in autism spectrum disorders. J Clin Psychiatry. 2001;62(7):530–4.

    CAS  PubMed  Google Scholar 

  54. Hollander E, Chaplin W, Soorya L, Wasserman S, Novotny S, Rusoff J, et al. Divalproex sodium vs placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology. 2010;35(4):990–8.

    CAS  PubMed  Google Scholar 

  55. Hellings JA, Weckbaugh M, Nickel EJ, Cain SE, Zarcone JR, Reese RM, et al. A double-blind, placebo-controlled study of valproate for aggression in youth with pervasive developmental disorders. J Child Adolescent Psychopharmacol. 2005;15(4):682–92.

    Google Scholar 

  56. Douglas JF, Sanders KB, Benneyworth MH, Smith JL, Dejean VM, McGrew SG, et al. Brief report: retrospective case series of oxcarbazepine for irritability/agitation symptoms in autism spectrum disorder. J Autism Dev Disord. 2013;43(5):1243–7.

    PubMed  Google Scholar 

  57. Kapetanovic S. Oxcarbazepine in youths with autistic disorder and significant disruptive behaviors. The American journal of psychiatry. United States2007. p. 832–3.

  58. McGrane IR, Loveland JG, Zaluski HJ, Foster KD. Serum quetiapine concentration changes with concomitant oxcarbazepine therapy in a boy with autism spectrum disorder. J Child Adolescent Psychopharmacol. 2015;25(9):729–30.

    Google Scholar 

  59. Belsito KM, Law PA, Kirk KS, Landa RJ, Zimmerman AW. Lamotrigine therapy for autistic disorder: a randomized, double-blind, placebo-controlled trial. J Autism Dev Disord. 2001;31(2):175–81.

    CAS  PubMed  Google Scholar 

  60. Wasserman S, Iyengar R, Chaplin WF, Watner D, Waldoks SE, Anagnostou E, et al. Levetiracetam versus placebo in childhood and adolescent autism: a double-blind placebo-controlled study. Int Clin Psychopharmacol. 2006;21(6):363–7.

    PubMed  Google Scholar 

  61. Halma E, de Louw AJ, Klinkenberg S, Aldenkamp AP, DM IJ, Majoie M. Behavioral side-effects of levetiracetam in children with epilepsy: a systematic review. Seizure. 2014;23(9):685–91.

  62. Siegel M, Beresford CA, Bunker M, Verdi M, Vishnevetsky D, Karlsson C, et al. Preliminary investigation of lithium for mood disorder symptoms in children and adolescents with autism spectrum disorder. J Child Adolescent Psychopharmacol. 2014;24(7):399–402.

    CAS  Google Scholar 

  63. Randomized, controlled, crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Arch Gen Psychiatry. 2005;62(11):1266–74.

  64. Handen BL, Johnson CR, Lubetsky M. Efficacy of methylphenidate among children with autism and symptoms of attention-deficit hyperactivity disorder. J Autism Dev Disord. 2000;30(3):245–55.

    CAS  PubMed  Google Scholar 

  65. Posey DJ, Aman MG, McCracken JT, Scahill L, Tierney E, Arnold LE, et al. Positive effects of methylphenidate on inattention and hyperactivity in pervasive developmental disorders: an analysis of secondary measures. Biol Psychiatry. 2007;61(4):538–44.

    CAS  PubMed  Google Scholar 

  66. Reichow B, Volkmar FR, Bloch MH. Systematic review and meta-analysis of pharmacological treatment of the symptoms of attention-deficit/hyperactivity disorder in children with pervasive developmental disorders. J Autism Dev Disord. 2013;43(10):2435–41.

    PubMed  PubMed Central  Google Scholar 

  67. Ji N, Findling RL. An update on pharmacotherapy for autism spectrum disorder in children and adolescents. Current Opin Psychiatry. 2015;28(2):91–101.

    Google Scholar 

  68. Schachter HM, Pham B, King J, Langford S, Moher D. How efficacious and safe is short-acting methylphenidate for the treatment of attention-deficit disorder in children and adolescents? A meta-analysis Cmaj. 2001;165(11):1475–88.

    CAS  PubMed  Google Scholar 

  69. Arnold LE, Aman MG, Cook AM, Witwer AN, Hall KL, Thompson S, et al. Atomoxetine for hyperactivity in autism spectrum disorders: placebo-controlled crossover pilot trial. J Am Acad Child Adolesc Psychiatry. 2006;45(10):1196–205.

    PubMed  Google Scholar 

  70. Harfterkamp M, van de Loo-Neus G, Minderaa RB, van der Gaag RJ, Escobar R, Schacht A, et al. A randomized double-blind study of atomoxetine versus placebo for attention-deficit/hyperactivity disorder symptoms in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2012;51(7):733–41.

    PubMed  Google Scholar 

  71. Fankhauser MP, Karumanchi VC, German ML, Yates A, Karumanchi SD. A double-blind, placebo-controlled study of the efficacy of transdermal clonidine in autism. J Clin Psychiatry. 1992;53(3):77–82.

    CAS  PubMed  Google Scholar 

  72. Jaselskis CA, Cook EH Jr, Fletcher KE, Leventhal BL. Clonidine treatment of hyperactive and impulsive children with autistic disorder. J Clin Psychopharmacol. 1992;12(5):322–7.

    CAS  PubMed  Google Scholar 

  73. Scahill L, Aman MG, McDougle CJ, McCracken JT, Tierney E, Dziura J, et al. A prospective open trial of guanfacine in children with pervasive developmental disorders. J Child Adolescent Psychopharmacol. 2006;16(5):589–98.

    Google Scholar 

  74. Politte LC, Scahill L, Figueroa J, McCracken JT, King B, McDougle CJ. A randomized, placebo-controlled trial of extended-release guanfacine in children with autism spectrum disorder and ADHD symptoms: an analysis of secondary outcome measures. Neuropsychopharmacology. 2018 Feb 27.

  75. Scahill L, McCracken JT, King BH, Rockhill C, Shah B, Politte L, et al. Extended-release guanfacine for hyperactivity in children with autism spectrum disorder. Am J Psychiatry. 2015;172(12):1197–206.

    PubMed  Google Scholar 

  76. Blackmer AB, Feinstein JA. Management of sleep disorders in children with neurodevelopmental disorders: a review. Pharmacotherapy. 2016;36(1):84–988.

    CAS  PubMed  Google Scholar 

  77. Tordjman S, Anderson GM, Pichard N, Charbuy H, Touitou Y. Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biol Psychiatry. 2005;57(2):134–8.

    CAS  PubMed  Google Scholar 

  78. Rossignol DA, Frye RE. Melatonin in autism spectrum disorders: a systematic review and meta-analysis. Dev Med Child Neurol. 2011;53(9):783–92.

    PubMed  Google Scholar 

  79. Braam W, Ehrhart F, Maas A, Smits MG, Curfs L. Low maternal melatonin level increases autism spectrum disorder risk in children. Research in developmental disabilities. 2018 Feb 28.

  80. Souders MC, Zavodny S, Eriksen W, Sinko R, Connell J, Kerns C, et al. Sleep in children with autism spectrum disorder. Curr Psychiatry Rep. 2017;19(6):34.

    PubMed  PubMed Central  Google Scholar 

  81. Gringras P, Nir T, Breddy J, Frydman-Marom A, Findling RL. Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2017;56(11):948–57.e4.

    PubMed  Google Scholar 

  82. De Leersnyder H, Zisapel N, Laudon M. Prolonged-release melatonin for children with neurodevelopmental disorders. Pediatr Neurol. 2011;45(1):23–6.

    PubMed  Google Scholar 

  83. Cuomo BM, Vaz S, Lee EAL, Thompson C, Rogerson JM, Falkmer T. Effectiveness of sleep-based interventions for children with autism spectrum disorder: a meta-synthesis. Pharmacotherapy. 2017;37(5):555–78.

    PubMed  Google Scholar 

  84. Ming X, Gordon E, Kang N, Wagner GC. Use of clonidine in children with autism spectrum disorders. Brain Develop. 2008;30(7):454–60.

    Google Scholar 

  85. Owens JA, Rosen CL, Mindell JA, Kirchner HL. Use of pharmacotherapy for insomnia in child psychiatry practice: a national survey. Sleep Med. 2010;11(7):692–700.

    PubMed  Google Scholar 

  86. Naaijen J, Lythgoe DJ, Amiri H, Buitelaar JK, Glennon JC. Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: a review of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev. 2015;52:74–88.

    CAS  PubMed  Google Scholar 

  87. Purkayastha P, Malapati A, Yogeeswari P, Sriram D. A review on GABA/glutamate pathway for therapeutic intervention of ASD and ADHD. Curr Med Chem. 2015;22(15):1850–9.

    CAS  PubMed  Google Scholar 

  88. Berry-Kravis E, Hagerman R, Visootsak J, Budimirovic D, Kaufmann WE, Cherubini M, et al. Arbaclofen in fragile X syndrome: results of phase 3 trials. J Neurodev Disord. 2017;9:3.

    PubMed  PubMed Central  Google Scholar 

  89. Brondino N, Fusar-Poli L, Panisi C, Damiani S, Barale F, Politi P. Pharmacological modulation of GABA function in autism spectrum disorders: a systematic review of human studies. J Autism Dev Disord. 2016;46(3):825–39.

    PubMed  Google Scholar 

  90. Erickson CA, Veenstra-Vanderweele JM, Melmed RD, McCracken JT, Ginsberg LD, Sikich L, et al. STX209 (arbaclofen) for autism spectrum disorders: an 8-week open-label study. J Autism Dev Disord. 2014;44(4):958–64.

    PubMed  Google Scholar 

  91. Frye RE. Clinical potential, safety, and tolerability of arbaclofen in the treatment of autism spectrum disorder. Drug Healthcare Patient Saf. 2014;6:69–766.

    Google Scholar 

  92. Veenstra-VanderWeele J, Cook EH, King BH, Zarevics P, Cherubini M, Walton-Bowen K, et al. Arbaclofen in children and adolescents with autism spectrum disorder: a randomized, controlled, phase 2 trial. Neuropsychopharmacology. 2017;42(7):1390–8.

    CAS  PubMed  Google Scholar 

  93. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.

    CAS  PubMed  Google Scholar 

  94. Price RB, Iosifescu DV, Murrough JW, Chang LC, Al Jurdi RK, Iqbal SZ, et al. Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression. Depress Anxiety. 2014;31(4):335–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Molecular psychiatry. 2018 Mar 13.

  96. Bachenberg KL. Oral ketamine for the management of combative autistic adult. Anesthesiology. 1998;89(2):549–50.

    CAS  PubMed  Google Scholar 

  97. Wink LK, O'Melia AM, Shaffer RC, Pedapati E, Friedmann K, Schaefer T, et al. Intranasal ketamine treatment in an adult with autism spectrum disorder. J Clin Psychiatry. 2014;75(8):835–6.

    PubMed  Google Scholar 

  98. Study of intranasal ketamine for social impairment in autism spectrum disorder - Full Text View - ClinicalTrials.gov. 2018 [cited 2018 3/31/2018]; Available from: https://clinicaltrials.gov/ct2/show/NCT02611921

  99. Nikvarz N, Alaghband-Rad J, Tehrani-Doost M, Alimadadi A, Ghaeli P. Comparing efficacy and side effects of memantine vs. risperidone in the treatment of autistic disorder. Pharmacopsychiatry. 2017;50(1):19–25.

  100. Owley T, Salt J, Guter S, Grieve A, Walton L, Ayuyao N, et al. A prospective, open-label trial of memantine in the treatment of cognitive, behavioral, and memory dysfunction in pervasive developmental disorders. J Child Adolescent Psychopharmacol. 2006;16(5):517–24.

    Google Scholar 

  101. Study of pharmacokinetics, safety, efficacy, and tolerability of memantine in children with autism - Full Text View - ClinicalTrials.gov. 2018 [cited 2018; Available from: https://clinicaltrials.gov/ct2/show/NCT00872898

  102. Hage A, Banaschewski T, Buitelaar JK, Dijkhuizen RM, Franke B, Lythgoe DJ, et al. Glutamatergic medication in the treatment of obsessive compulsive disorder (OCD) and autism spectrum disorder (ASD) - study protocol for a randomised controlled trial. Trials. 2016;17(1):141.

    PubMed  PubMed Central  Google Scholar 

  103. Lemonnier E, Villeneuve N, Sonie S, Serret S, Rosier A, Roue M, et al. Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Transl Psychiatry. 2017;7(3):e1056.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Erickson CA, Wink LK, Ray B, Early MC, Stiegelmeyer E, Mathieu-Frasier L, et al. Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology. 2013;228(1):75–84.

    CAS  PubMed  Google Scholar 

  105. Erickson CA, Ray B, Maloney B, Wink LK, Bowers K, Schaefer TL, et al. Impact of acamprosate on plasma amyloid-beta precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J Psychiatr Res. 2014;59:220–8.

    PubMed  PubMed Central  Google Scholar 

  106. Erickson CA, Early M, Stigler KA, Wink LK, Mullett JE, McDougle CJ. An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. J Child Adolescent Psychopharmacol. 2011;21(6):565–9.

    CAS  Google Scholar 

  107. Erickson CA, Wink LK, Early MC, Stiegelmeyer E, Mathieu-Frasier L, Patrick V, et al. Brief report: pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder. J Autism Dev Disord. 2014;44(4):981–7.

    PubMed  Google Scholar 

  108. Fung LK, Libove RA, Phillips J, Haddad F, Hardan AY. Brief report: an open-label study of the neurosteroid pregnenolone in adults with autism spectrum disorder. J Autism Dev Disord. 2014;44(11):2971–7.

    PubMed  PubMed Central  Google Scholar 

  109. Wink LK, Adams R, Wang Z, Klaunig JE, Plawecki MH, Posey DJ, et al. A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder. Mole Autism. 2016;7:26.

    Google Scholar 

  110. Gladysz D, Krzywdzinska A, Hozyasz KK. Immune abnormalities in autism spectrum disorder-could they hold promise for causative treatment? Mol Neurobiol. 2018 Jan 6.

  111. Melamed IR, Heffron M, Testori A, Lipe K. A pilot study of high-dose intravenous immunoglobulin 5% for autism: impact on autism spectrum and markers of neuroinflammation. Autism Res. 2018;11(3):421–33.

    PubMed  Google Scholar 

  112. Bradstreet JJ, Sych N, Antonucci N, Klunnik M, Ivankova O, Matyashchuk I, et al. Efficacy of fetal stem cell transplantation in autism spectrum disorders: an open-labeled pilot study. Cell Transplant. 2014;23(Suppl 1):S105–S112112.

    PubMed  Google Scholar 

  113. McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014;133(5):872–83.

    PubMed  Google Scholar 

  114. Williams K, Wray JA, Wheeler DM. Intravenous secretin for autism spectrum disorders (ASD). The Cochrane database of systematic reviews. 2012 Apr 18(4):Cd003495.

  115. Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017;11:120.

    PubMed  PubMed Central  Google Scholar 

  116. Santocchi E, Guiducci L, Fulceri F, Billeci L, Buzzigoli E, Apicella F, et al. Gut to brain interaction in autism spectrum disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry. 2016;4(16):183.

    Google Scholar 

  117. Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome2017.

  118. Bozzatello P, Brignolo E, De Grandi E, Bellino S. Supplementation with omega-3 fatty acids in psychiatric disorders: a review of literature data. Journal of clinical medicine. 2016 Jul 27;5(8).

  119. Agostoni C, Nobile M, Ciappolino V, Delvecchio G, Tesei A, Turolo S, et al. The role of omega-3 fatty acids in developmental psychopathology: a systematic review on early psychosis, autism, and ADHD. Int J Mol Sci. 2017;18(12).

  120. James S, Montgomery P, Williams K. Omega-3 fatty acids supplementation for autism spectrum disorders (ASD). Cochrane Database Systemat Rev. 2011 Nov 9(11):Cd007992.

  121. Cheng YS, Tseng PT, Chen YW, Stubbs B, Yang WC, Chen TY, et al. Supplementation of omega 3 fatty acids may improve hyperactivity, lethargy, and stereotypy in children with autism spectrum disorders: a meta-analysis of randomized controlled trials. Neuropsychiatric Dis Treat. 2017;13:2531–43.

    CAS  Google Scholar 

  122. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci USA. 2014;111(43):15550–5.

    CAS  PubMed  Google Scholar 

  123. Singh K, Zimmerman AW. Sulforaphane treatment of young men with autism spectrum disorder. CNS Neurol Disord: Drug Targets. 2016;15(5):597–601.

    CAS  Google Scholar 

  124. Vahabzadeh A, McDougle CJ. Maternal folic acid supplementation and risk of autism. JAMA. 2013;309(21):2208.

    CAS  PubMed  Google Scholar 

  125. Frye RE, Slattery J, Delhey L, Furgerson B, Strickland T, Tippett M, et al. Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial. Mole Psychiatry. 2018;23(2):247–56.

    CAS  Google Scholar 

  126. Zamberletti E, Gabaglio M, Parolaro D. The endocannabinoid system and autism spectrum disorders: insights from animal models. International journal of molecular sciences. 2017 Sep 7;18(9).

  127. Karhson DS, Hardan AY, Parker KJ. Endocannabinoid signaling in social functioning: an RDoC perspective. Transl Psychiatry. 2016;6(9):e905.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Campbell CT, Phillips MS, Manasco K. Cannabinoids in pediatrics. The journal of pediatric pharmacology and therapeutics: JPPT: the official journal of PPAG. 2017;22(3):176–85.

  129. Kruger T, Christophersen E. An open label study of the use of dronabinol (Marinol) in the management of treatment-resistant self-injurious behavior in 10 retarded adolescent patients. J Dev Behav Pediatr. 2006;27(5):433.

    Google Scholar 

  130. Kurz R, Blaas K. Use of dronabinol (delta-9-THC) in autism: a prospective single-case-study with an early infantile autistic child. Cannabinoids2010. p. 4–6

  131. Solimini R, Rotolo MC, Pichini S, Pacifici R. Neurological disorders in medical use of cannabis: an update. CNS Neurol Disord: Drug Targets. 2017;16(5):527–33.

    CAS  Google Scholar 

  132. Preti A, Melis M, Siddi S, Vellante M, Doneddu G, Fadda R. Oxytocin and autism: a systematic review of randomized controlled trials. J Child Adolescent Psychopharmacol. 2014;24(2):54–68.

    CAS  Google Scholar 

  133. Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mole Psychiatry. 2016;21(9):1225–311.

    CAS  Google Scholar 

  134. Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR, et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology. 2003;28(1):193–8.

    CAS  PubMed  Google Scholar 

  135. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci USA. 2010;107(9):4389–94.

    CAS  PubMed  Google Scholar 

  136. Dadds MR, MacDonald E, Cauchi A, Williams K, Levy F, Brennan J. Nasal oxytocin for social deficits in childhood autism: a randomized controlled trial. J Autism Dev Disord. 2014;44(3):521–31.

    PubMed  Google Scholar 

  137. Anagnostou E, Soorya L, Chaplin W, Bartz J, Halpern D, Wasserman S, et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mole Autism. 2012;3(1):16.

    CAS  Google Scholar 

  138. Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP, Karhson DS, et al. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci USA. 2017;114(30):8119–244.

    CAS  PubMed  Google Scholar 

  139. Kim SJ, Young LJ, Gonen D, Veenstra-VanderWeele J, Courchesne R, Courchesne E, et al. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Molecular Psychiatry. 2002;7(5):503–7.

    CAS  PubMed  Google Scholar 

  140. Yang SY, Cho SC, Yoo HJ, Cho IH, Park M, Yoe J, et al. Family-based association study of microsatellites in the 5' flanking region of AVPR1A with autism spectrum disorder in the Korean population. Psychiatry Res. 2010;178(1):199–201.

    CAS  PubMed  Google Scholar 

  141. Yirmiya N, Rosenberg C, Levi S, Salomon S, Shulman C, Nemanov L, et al. Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Molecular Psychiatry. 2006;11(5):488–94.

    CAS  PubMed  Google Scholar 

  142. Umbricht D, Del Valle RM, Hollander E, McCracken JT, Shic F, Scahill L, et al. A single dose, randomized, controlled proof-of-mechanism study of a novel vasopressin 1a receptor antagonist (RG7713) in high-functioning adults with autism spectrum disorder. Neuropsychopharmacology. 2017;42(9):1914–23.

    CAS  PubMed  Google Scholar 

  143. A study of balovaptan in adults with autism spectrum disorder with a 2-year open-label extension - Full Text View - ClinicalTrials.gov. 2018; Available from: https://clinicaltrials.gov/ct2/show/NCT03504917

Download references

Acknowledgements

The authors acknowledge Nicole Friedman for her efforts editing a previous draft of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Lamy.

Ethics declarations

Funding

The authors declare that no sources of funding were used to assist with the preparation of this review.

Conflict of interest

The authors declare that they have no interests that compete directly with this work, though Dr. Lamy, Dr. Dominick, Dr. Wink, Dr. Pedapati, and Dr. Erickson do receive research support from various sources for other work. Dr. Lamy’s current research is supported by OVID Therapeutics and the Simon’s Foundation. Dr. Dominick’s current research is supported by OVID therapeutics and Roche Pharmaceuticals. Dr. Wink’s current and/or past research is supported by the Simons Research Foundation, Autism Speaks, Riovant Sciences Ltd, and Cures Within Reach. She is an inventor on intellectual property held by Cincinnati Children’s Hospital Research Foundation for a treatment in autism spectrum disorder. Dr. Wink has also served as a past consultant for Otsuka and Ovid. Dr. Pedapati receives research support from Cincinnati Children’s Hospital Research Foundation and the National Institutes of Health. Dr. Erickson has received current and/or past research support from the National Institutes of Health, the United States Department of Defense, the United States Centers for Disease Control, the John Merck Fund, Autism Speaks, the Simons Foundation, Cincinnati Children's Hospital Research Foundation, the FRAXA Research Foundation, the National Fragile X Foundation, the Roche Group, Seaside Therapeutics, Novartis, Neuren, Alcobra, and Indiana University School of Medicine. He is a past consultant to Alcobra, the Roche Group, and Novartis. He is a current consultant to Fulcrum Therapeutics. He holds equity interest in and is a consultant for Confluence Pharmaceuticals. He is the inventor on intellectual property held by Cincinnati Children's Hospital Research Foundation and Indiana University describing methods for diagnosis and treatment methods in autism spectrum disorder and fragile X syndrome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamy, M., Pedapati, E.V., Dominick, K.L. et al. Recent Advances in the Pharmacological Management of Behavioral Disturbances Associated with Autism Spectrum Disorder in Children and Adolescents. Pediatr Drugs 22, 473–483 (2020). https://doi.org/10.1007/s40272-020-00408-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-020-00408-0

Navigation