Skip to main content

Advertisement

Log in

Administration and Dosing of Systemic Antifungal Agents in Pediatric Patients

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Neonates and immunosuppressed/immunocompromised pediatric patients are at high risk of invasive fungal diseases. Appropriate antifungal selection and optimized dosing are imperative to the successful prevention and treatment of these life-threatening infections. Conventional amphotericin B was the mainstay of antifungal therapy for many decades, but dose-limiting nephrotoxicity and infusion-related adverse events impeded its use. Despite the development of several new antifungal classes and agents in the past 20 years, and their now routine use in at-risk pediatric populations, data to guide the optimal dosing of antifungals in children are limited. This paper reviews the spectra of activity for approved antifungal agents and summarizes the current literature specific to pediatric patients regarding pharmacokinetic/pharmacodynamic data, dosing, and therapeutic drug monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Downes KJ, Ellis D, Lavigne S, Bryan M, Zaoutis TE, Fisher BT. The use of echinocandins in hospitalized children in the United States. Med Mycol. 2018. https://doi.org/10.1093/mmy/myy084.

    Article  PubMed  Google Scholar 

  2. Prasad PA, Coffin SE, Leckerman KH, Walsh TJ, Zaoutis TE. Pediatric antifungal utilization: new drugs, new trends. Pediatr Infect Dis J. 2008;27(12):1083–8.

    PubMed  PubMed Central  Google Scholar 

  3. Lestner JM, Smith PB, Cohen-Wolkowiez M, Benjamin DK Jr, Hope WW. Antifungal agents and therapy for infants and children with invasive fungal infections: a pharmacological perspective. Br J Clin Pharmacol. 2013;75(6):1381–95.

    CAS  PubMed  Google Scholar 

  4. Andes D. Antifungal agents pharmacokinetics and pharmacodynamics of amphotericin B. In: Nightingale CH, Ambrose PG, Drusano GL, Murakawa T, editors. Antimicrobial pharmacodynamics in theory and clinical practice. 2nd ed. New York: Informa Healthcare USA, Inc.; 2007.

    Google Scholar 

  5. Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–9.

    CAS  PubMed  Google Scholar 

  6. Prakash A, Sharma C, Singh A, Kumar Singh P, Kumar A, Hagen F, et al. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infect. 2016;22(3):277 (e1–9).

    PubMed  Google Scholar 

  7. Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S, Machouart M, et al. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J Clin Microbiol. 2012;50(1):66–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldman RD, Koren G. Amphotericin B nephrotoxicity in children. J Pediatr Hematol Oncol. 2004;26(7):421–6.

    PubMed  Google Scholar 

  9. Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73(9):919–34.

    CAS  PubMed  Google Scholar 

  10. Botero Aguirre JP, Restrepo Hamid AM. Amphotericin B deoxycholate versus liposomal amphotericin B: effects on kidney function. Cochrane Database Syst Rev. 2015;23(11):CD010481.

    Google Scholar 

  11. Blyth CC, Hale K, Palasanthiran P, O’Brien T, Bennett MH. Antifungal therapy in infants and children with proven, probable or suspected invasive fungal infections. Cochrane Database Syst Rev. 2010;17(2):CD006343.

    Google Scholar 

  12. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1–50.

    PubMed  Google Scholar 

  13. Ascher SB, Smith PB, Watt K, Benjamin DK, Cohen-Wolkowiez M, Clark RH, et al. Antifungal therapy and outcomes in infants with invasive Candida infections. Pediatr Infect Dis J. 2012;31(5):439–43.

    PubMed  PubMed Central  Google Scholar 

  14. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322.

    PubMed  Google Scholar 

  15. Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin Microbiol Infect. 2014;20(Suppl 3):5–26.

    CAS  PubMed  Google Scholar 

  16. Chapman SW, Dismukes WE, Proia LA, Bradsher RW, Pappas PG, Threlkeld MG, et al. Clinical practice guidelines for the management of blastomycosis: 2008 update by the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(12):1801–12.

    CAS  PubMed  Google Scholar 

  17. Galgiani JN, Ampel NM, Blair JE, Catanzaro A, Geertsma F, Hoover SE, et al. 2016 Infectious Diseases Society of America (IDSA) clinical practice guideline for the treatment of coccidioidomycosis. Clin Infect Dis. 2016;63(6):e112–46.

    PubMed  Google Scholar 

  18. Wheat LJ, Freifeld AG, Kleiman MB, Baddley JW, McKinsey DS, Loyd JE, et al. Clinical practice guidelines for the management of patients with histoplasmosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis. 2007;45(7):807–25.

    PubMed  Google Scholar 

  19. Patterson TF, Thompson GR III, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63(4):e1–60.

    PubMed  PubMed Central  Google Scholar 

  20. Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother. 2001;45(3):922–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiederhold NP, Tam VH, Chi J, Prince RA, Kontoyiannis DP, Lewis RE. Pharmacodynamic activity of amphotericin B deoxycholate is associated with peak plasma concentrations in a neutropenic murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2006;50(2):469–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother. 2002;46(3):834–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Benson JM, Nahata MC. Pharmacokinetics of amphotericin B in children. Antimicrob Agents Chemother. 1989;33(11):1989–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Starke JR, Mason EO Jr, Kramer WG, Kaplan SL. Pharmacokinetics of amphotericin B in infants and children. J Infect Dis. 1987;155(4):766–74.

    CAS  PubMed  Google Scholar 

  25. Koren G, Lau A, Klein J, Golas C, Bologa-Campeanu M, Soldin S, et al. Pharmacokinetics and adverse effects of amphotericin B in infants and children. J Pediatr. 1988;113(3):559–63.

    CAS  PubMed  Google Scholar 

  26. Nath CE, McLachlan AJ, Shaw PJ, Coakley JC, Earl JW. Amphotericin B dose optimization in children with malignant diseases. Chemotherapy. 2007;53(2):142–7.

    CAS  PubMed  Google Scholar 

  27. Nath CE, McLachlan AJ, Shaw PJ, Gunning R, Earl JW. Population pharmacokinetics of amphotericin B in children with malignant diseases. Br J Clin Pharmacol. 2001;52(6):671–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother. 2002;46(3):828–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Adler-Moore JP, Proffitt RT. Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect. 2008;14(Suppl 4):25–36.

    CAS  PubMed  Google Scholar 

  30. Groll AH, Giri N, Petraitis V, Petraitiene R, Candelario M, Bacher JS, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182(1):274–82.

    CAS  PubMed  Google Scholar 

  31. Walsh TJ, Whitcomb P, Piscitelli S, Figg WD, Hill S, Chanock SJ, et al. Safety, tolerance, and pharmacokinetics of amphotericin B lipid complex in children with hepatosplenic candidiasis. Antimicrob Agents Chemother. 1997;41(9):1944–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wurthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ. Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother. 2005;49(12):5092–8.

    PubMed  PubMed Central  Google Scholar 

  33. Amantea MA, Bowden RA, Forrest A, Working PK, Newman MS, Mamelok RD. Population pharmacokinetics and renal function-sparing effects of amphotericin B colloidal dispersion in patients receiving bone marrow transplants. Antimicrob Agents Chemother. 1995;39(9):2042–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong Y, Shaw PJ, Tattam BN, Nath CE, Earl JW, Stephen KR, et al. Plasma protein distribution and its impact on pharmacokinetics of liposomal amphotericin B in paediatric patients with malignant diseases. Eur J Clin Pharmacol. 2007;63(2):165–72.

    CAS  PubMed  Google Scholar 

  35. Collette N, van der Auwera P, Lopez AP, Heymans C, Meunier F. Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B-deoxycholate. Antimicrob Agents Chemother. 1989;33(3):362–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vogelsinger H, Weiler S, Djanani A, Kountchev J, Bellmann-Weiler R, Wiedermann CJ, et al. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother. 2006;57(6):1153–60.

    CAS  PubMed  Google Scholar 

  37. Groll AH, Lyman CA, Petraitis V, Petraitiene R, Armstrong D, Mickiene D, et al. Compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid formulations. Antimicrob Agents Chemother. 2006;50(10):3418–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Weiler S, Falkensammer G, Hammerer-Lercher A, Anliker M, Vogelsinger H, Joannidis M, et al. Pulmonary epithelial lining fluid concentrations after use of systemic amphotericin B lipid formulations. Antimicrob Agents Chemother. 2009;53(11):4934–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fisher JF, Sobel JD, Kauffman CA, Newman CA. Candida urinary tract infections—treatment. Clin Infect Dis. 2011;52(Suppl 6):S457–66.

    PubMed  Google Scholar 

  40. Hope WW, Castagnola E, Groll AH, Roilides E, Akova M, Arendrup MC, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect. 2012;18(Suppl 7):38–52.

    CAS  PubMed  Google Scholar 

  41. Payne KD, Hall RG. Dosing of antifungal agents in obese people. Expert Rev Anti-infect Ther. 2016;14(2):257–67.

    CAS  PubMed  Google Scholar 

  42. Wasmann RE, Smit C, van Dongen EPH, Wiezer RMJ, Adler-Moore J, de Beer YM, et al. Fixed dosing of liposomal amphotericin b in morbidly obese individuals. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz885.

    Article  PubMed Central  Google Scholar 

  43. Eriksson U, Seifert B, Schaffner A. Comparison of effects of amphotericin B deoxycholate infused over 4 or 24 hours: randomised controlled trial. BMJ. 2001;322(7286):579–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Falagas ME, Karageorgopoulos DE, Tansarli GS. continuous versus conventional infusion of amphotericin B deoxycholate: a meta-analysis. PloS One. 2013;8(10):e77075.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kotwani RN, Gokhale PC, Bodhe PV, Kirodian BG, Kshirsagar NA, Pandya SK. A comparative study of plasma concentrations of liposomal amphotericin B (L-AMP-LRC-1) in adults, children and neonates. Int J Pharm. 2002;238(1–2):11–5.

    CAS  PubMed  Google Scholar 

  46. Seibel NL, Shad AT, Bekersky I, Groll AH, Gonzalez C, Wood LV, et al. Safety, Tolerability, and pharmacokinetics of liposomal amphotericin B in immunocompromised pediatric patients. Antimicrob Agents Chemother. 2017;61:e01477–16.

    PubMed  PubMed Central  Google Scholar 

  47. O’Connor L, Livermore J, Sharp AD, Goodwin J, Gregson L, Howard SJ, et al. Pharmacodynamics of liposomal amphotericin B and flucytosine for cryptococcal meningoencephalitis: safe and effective regimens for immunocompromised patients. J Infect Dis. 2013;208(2):351–61.

    PubMed  PubMed Central  Google Scholar 

  48. Lestner JM, Groll AH, Aljayyoussi G, Seibel NL, Shad A, Gonzalez C, et al. Population pharmacokinetics of liposomal amphotericin B in immunocompromised children. Antimicrob Agents Chemother. 2016;60(12):7340–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, et al. Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother. 2001;45(12):3487–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong Y, Shaw PJ, Nath CE, Yadav SP, Stephen KR, Earl JW, et al. Population pharmacokinetics of liposomal amphotericin B in pediatric patients with malignant diseases. Antimicrob Agents Chemother. 2006;50(3):935–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bes DF, Rosanova MT, Sberna N, Arrizurieta E. Deoxycholate amphotericin B and nephrotoxicity in the pediatric setting. Pediatr Infect Dis J. 2014;33(8):e198–206.

    PubMed  Google Scholar 

  52. Branch RA. Prevention of amphotericin B-induced renal impairment. A review on the use of sodium supplementation. Arch Intern Med. 1988;148(11):2389–94.

    CAS  PubMed  Google Scholar 

  53. Medoff G, Kobayashi GS. Strategies in the treatment of systemic fungal infections. N Engl J Med. 1980;302(3):145–55.

    CAS  PubMed  Google Scholar 

  54. Sunakawa K, Tsukimoto I, Tsunematsu Y, Honda M, Iwai N, Maniwa T, et al. Evaluation of the safety and efficacy of liposomal amphotericin B (L-AMB) in children. J Infect Chemother. 2012;18(4):456–65.

    CAS  PubMed  Google Scholar 

  55. Arning M, Kliche KO, Heer-Sonderhoff AH, Wehmeier A. Infusion-related toxicity of three different amphotericin B formulations and its relation to cytokine plasma levels. Mycoses. 1995;38(11–12):459–65.

    CAS  PubMed  Google Scholar 

  56. Bowden R, Chandrasekar P, White MH, Li X, Pietrelli L, Gurwith M, et al. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis. 2002;35(4):359–66.

    CAS  PubMed  Google Scholar 

  57. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017;45(6):737–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fromtling RA. Overview of medically important antifungal azole derivatives. Clin Microbiol Rev. 1988;1(2):187–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Powers-Fletcher MV, Kendall BA, Griffin AT, Hanson KE. Filamentous fungi. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.DMIH2-0002-2015.

    Article  PubMed  Google Scholar 

  60. Ramos-Martin V, O’Connor O, Hope W. Clinical pharmacology of antifungal agents in pediatrics: children are not small adults. Curr Opin Pharmacol. 2015;24:128–34.

    CAS  PubMed  Google Scholar 

  61. Resendiz Sharpe A, Lagrou K, Meis JF, Chowdhary A, Lockhart SR, Verweij PE, et al. Triazole resistance surveillance in Aspergillus fumigatus. Med Mycol. 2018;56(suppl_1):83–92.

    PubMed  Google Scholar 

  62. Verweij PE, Zhang J, Debets AJM, Meis JF, van de Veerdonk FL, Schoustra SE, et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect Dis. 2016;16(11):e251–60.

    CAS  PubMed  Google Scholar 

  63. Lepak AJ, Andes DR. Antifungal pharmacokinetics and pharmacodynamics. Cold Spring Harb Perspect Med. 2014;5(5):a019653.

    PubMed  Google Scholar 

  64. Andes D. Pharmacokinetics and pharmacodynamics of antifungals. Infect Dis Clin N Am. 2006;20(3):679–97.

    Google Scholar 

  65. Gerhart JG, Watt KM, Edginton A, Wade KC, Salerno SN, Benjamin DK Jr, et al. Physiologically-based pharmacokinetic modeling of fluconazole using plasma and cerebrospinal fluid samples from preterm and term infants. CPT Pharmacometr Syst Pharmacol. 2019;8(7):500–10.

    CAS  Google Scholar 

  66. Debruyne D. Clinical pharmacokinetics of fluconazole in superficial and systemic mycoses. Clin Pharmacokinet. 1997;33(1):52–77.

    CAS  PubMed  Google Scholar 

  67. Bourcier K, Hyland R, Kempshall S, Jones R, Maximilien J, Irvine N, et al. Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole- and triazole-containing antifungal drugs in human liver microsomes and recombinant UGT enzymes. Drug Metab Dispos. 2010;38(6):923–9.

    CAS  PubMed  Google Scholar 

  68. Brammer KW, Coakley AJ, Jezequel SG, Tarbit MH. The disposition and metabolism of [14C]fluconazole in humans. Drug Metab Dispos Biol Fate Chem. 1991;19(4):764–7.

    CAS  PubMed  Google Scholar 

  69. Bae SK, Park SJ, Shim EJ, Mun JH, Kim EY, Shin JG, et al. Increased oral bioavailability of itraconazole and its active metabolite, 7-hydroxyitraconazole, when coadministered with a vitamin C beverage in healthy participants. J Clin Pharmacol. 2011;51(3):444–51.

    CAS  PubMed  Google Scholar 

  70. Mouton JW, van Peer A, de Beule K, Van Vliet A, Donnelly JP, Soons PA. Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrob Agents Chemother. 2006;50(12):4096–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lim SG, Sawyerr AM, Hudson M, Sercombe J, Pounder RE. Short report: the absorption of fluconazole and itraconazole under conditions of low intragastric acidity. Aliment Pharmacol Ther. 1993;7(3):317–21.

    CAS  PubMed  Google Scholar 

  72. Van Peer A, Woestenborghs R, Heykants J, Gasparini R, Gauwenbergh G. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol. 1989;36(4):423–6.

    PubMed  Google Scholar 

  73. de Repentigny L, Ratelle J, Leclerc JM, Cornu G, Sokal EM, Jacqmin P, et al. Repeated-dose pharmacokinetics of an oral solution of itraconazole in infants and children. Antimicrob Agents Chemother. 1998;42(2):404–8.

    PubMed  PubMed Central  Google Scholar 

  74. Schmitt C, Perel Y, Harousseau JL, Lemerle S, Chwetzoff E, le Moing JP, et al. Pharmacokinetics of itraconazole oral solution in neutropenic children during long-term prophylaxis. Antimicrob Agents Chemother. 2001;45(5):1561–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Allegra S, Fatiguso G, De Francia S, Favata F, Pirro E, Carcieri C, et al. Pharmacokinetic evaluation of oral itraconazole for antifungal prophylaxis in children. Clin Exp Pharmacol Physiol. 2017;44(11):1083–8.

    CAS  PubMed  Google Scholar 

  76. De Beule K, Van Gestel J. Pharmacology of itraconazole. Drugs. 2001;61(Suppl 1):27–37.

    PubMed  Google Scholar 

  77. Heykants J, Van Peer A, Van de Velde V, Van Rooy P, Meuldermans W, Lavrijsen K, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses. 1989;32(Suppl 1):67–87.

    PubMed  Google Scholar 

  78. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15.

    CAS  PubMed  Google Scholar 

  79. Leveque D, Nivoix Y, Jehl F, Herbrecht R. Clinical pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2006;27(4):274–84.

    CAS  PubMed  Google Scholar 

  80. Purkins L, Wood N, Kleinermans D, Greenhalgh K, Nichols D. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole. Br J Clin Pharmacol. 2003;56(Suppl 1):17–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yanni SB, Annaert PP, Augustijns P, Bridges A, Gao Y, Benjamin DK Jr, et al. Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab Dispos. 2008;36(6):1119–25.

    CAS  PubMed  Google Scholar 

  82. Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin DK Jr, Thakker DR. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos. 2010;38(1):25–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang G, Lei HP, Li Z, Tan ZR, Guo D, Fan L, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65(3):281–5.

    CAS  PubMed  Google Scholar 

  84. Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196–204.

    CAS  PubMed  Google Scholar 

  85. Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother. 2012;56(6):3032–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44.

    CAS  PubMed  Google Scholar 

  87. Walsh TJ, Driscoll T, Milligan PA, Wood ND, Schlamm H, Groll AH, et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob Agents Chemother. 2010;54(10):4116–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zane NR, Thakker DR. A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet. 2014;53(12):1171–82.

    CAS  PubMed  Google Scholar 

  89. Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman AN, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos. 2003;31(6):731–41.

    CAS  PubMed  Google Scholar 

  90. Hsu AJ, Dabb A, Arav-Boger R. Autoinduction of voriconazole metabolism in a child with invasive pulmonary aspergillosis. Pharmacotherapy. 2015;35(4):e20–6.

    CAS  PubMed  Google Scholar 

  91. Mulanovich V, Lewis RE, Raad II, Kontoyiannis DP. Random plasma concentrations of voriconazole decline over time. J Infect. 2007;55(5):e129–30.

    PubMed  Google Scholar 

  92. Torres HA, Hachem RY, Chemaly RF, Kontoyiannis DP, Raad II. Posaconazole: a broad-spectrum triazole antifungal. Lancet Infect Dis. 2005;5(12):775–85.

    CAS  PubMed  Google Scholar 

  93. Ezzet F, Wexler D, Courtney R, Krishna G, Lim J, Laughlin M. Oral bioavailability of posaconazole in fasted healthy subjects: comparison between three regimens and basis for clinical dosage recommendations. Clin Pharmacokinet. 2005;44(2):211–20.

    CAS  PubMed  Google Scholar 

  94. Kersemaekers WM, van Iersel T, Nassander U, O’Mara E, Waskin H, Caceres M, et al. Pharmacokinetics and safety study of posaconazole intravenous solution administered peripherally to healthy subjects. Antimicrob Agents Chemother. 2015;59(2):1246–51.

    PubMed  PubMed Central  Google Scholar 

  95. Sansone-Parsons A, Krishna G, Calzetta A, Wexler D, Kantesaria B, Rosenberg MA, et al. Effect of a nutritional supplement on posaconazole pharmacokinetics following oral administration to healthy volunteers. Antimicrob Agents Chemother. 2006;50(5):1881–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Boonsathorn S, Cheng I, Kloprogge F, Alonso C, Lee C, Doncheva B, et al. Clinical pharmacokinetics and dose recommendations for posaconazole in infants and children. Clin Pharmacokinet. 2019;58(1):53–61.

    CAS  PubMed  Google Scholar 

  97. Vanstraelen K, Colita A, Bica AM, Mols R, Augustijns P, Peersman N, et al. Pharmacokinetics of posaconazole oral suspension in children dosed according to body surface area. Pediatr Infect Dis J. 2016;35(2):183–8.

    PubMed  Google Scholar 

  98. Ghosal A, Hapangama N, Yuan Y, Achanfuo-Yeboah J, Iannucci R, Chowdhury S, et al. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos Biol Fate Chem. 2004;32(2):267–71.

    CAS  PubMed  Google Scholar 

  99. Krieter P, Flannery B, Musick T, Gohdes M, Martinho M, Courtney R. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother. 2004;48(9):3543–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Krishna G, Moton A, Ma L, Savant I, Martinho M, Seiberling M, et al. Effects of oral posaconazole on the pharmacokinetic properties of oral and intravenous midazolam: a phase I, randomized, open-label, crossover study in healthy volunteers. Clin Ther. 2009;31(2):286–98.

    CAS  PubMed  Google Scholar 

  101. Wexler D, Courtney R, Richards W, Banfield C, Lim J, Laughlin M. Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur J Pharm Sci. 2004;21(5):645–53.

    CAS  PubMed  Google Scholar 

  102. Courtney R, Wexler D, Radwanski E, Lim J, Laughlin M. Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol. 2004;57(2):218–22.

    PubMed  PubMed Central  Google Scholar 

  103. Doring M, Cabanillas Stanchi KM, Queudeville M, Feucht J, Blaeschke F, Schlegel P, et al. Efficacy, safety and feasibility of antifungal prophylaxis with posaconazole tablet in paediatric patients after haematopoietic stem cell transplantation. J Cancer Res Clin Oncol. 2017;143(7):1281–92.

    PubMed  Google Scholar 

  104. Arrieta AC, Sung L, Bradley JS, Zwaan CM, Gates D, Waskin H, et al. A non-randomized trial to assess the safety, tolerability, and pharmacokinetics of posaconazole oral suspension in immunocompromised children with neutropenia. PLoS One. 2019;14(3):e0212837.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Groll A, Abdel-Azim H, Lehrnbecher T, Steinbach W, Paschke A, Mangin E, et al. Safety, tolerability and pharmacokinetics of posaconazole intravenous solution and oral powder for suspension in children with neutropenia. Amsterdam: European Congress of Clinical Microbiology & Infectious Diseases; 2019.

  106. Rybak JM, Marx KR, Nishimoto AT, Rogers PD. Isavuconazole: pharmacology, pharmacodynamics, and current clinical experience with a new triazole antifungal agent. Pharmacotherapy. 2015;35(11):1037–51.

    CAS  PubMed  Google Scholar 

  107. Pettit NN, Carver PL. Isavuconazole: a new option for the management of invasive fungal infections. Ann Pharmacother. 2015;49(7):825–42.

    CAS  PubMed  Google Scholar 

  108. Schmitt-Hoffmann A, Roos B, Heep M, Schleimer M, Weidekamm E, Brown T, et al. Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother. 2006;50(1):279–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kovanda LL, Desai AV, Lu Q, Townsend RW, Akhtar S, Bonate P, et al. Isavuconazole population pharmacokinetic analysis using nonparametric estimation in patients with invasive fungal disease (results from the VITAL study). Antimicrob Agents Chemother. 2016;60(8):4568–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Watt K, Manzoni P, Cohen-Wolkowiez M, Rizzollo S, Boano E, Jacqz-Aigrain E, et al. Triazole use in the nursery: fluconazole, voriconazole, posaconazole, and ravuconazole. Curr Drug Metab. 2013;14(2):193–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Piper L, Smith PB, Hornik CP, Cheifetz IM, Barrett JS, Moorthy G, et al. Fluconazole loading dose pharmacokinetics and safety in infants. Pediatr Infect Dis J. 2011;30(5):375–8.

    PubMed  PubMed Central  Google Scholar 

  112. Stockmann C, Constance JE, Roberts JK, Olson J, Doby EH, Ampofo K, et al. Pharmacokinetics and pharmacodynamics of antifungals in children and their clinical implications. Clin Pharmacokinet. 2014;53(5):429–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Leong YH, Boast A, Cranswick N, Curtis N, Gwee A. Itraconazole dosing and drug monitoring at a tertiary children’s hospital. Pediatr Infect Dis J. 2019;38(1):60–4.

    PubMed  Google Scholar 

  114. Simon A, Besuden M, Vezmar S, Hasan C, Lampe D, Kreutzberg S, et al. Itraconazole prophylaxis in pediatric cancer patients receiving conventional chemotherapy or autologous stem cell transplants. Support Care Cancer. 2007;15(2):213–20.

    PubMed  Google Scholar 

  115. Gastine S, Lehrnbecher T, Muller C, Farowski F, Bader P, Ullmann-Moskovits J, et al. Pharmacokinetic modeling of voriconazole to develop an alternative dosing regimen in children. Antimicrob Agents Chemother. 2018;62:e01194–17. https://doi.org/10.1128/AAC.01194-17.

    Article  PubMed  Google Scholar 

  116. Gerin M, Mahlaoui N, Elie C, Lanternier F, Bougnoux ME, Blanche S, et al. Therapeutic drug monitoring of voriconazole after intravenous administration in infants and children with primary immunodeficiency. Ther Drug Monit. 2011;33(4):464–6.

    CAS  PubMed  Google Scholar 

  117. Arrieta AF, Steinbach W, Muller W, Sue P, Yin D, Danziger-Isakov L, et al. An open-label, phase I, multi-centre study to evaluate the pharmacokinetic, safety and tolerability profile of intravenous isavuconazonium sulfate in paediatric patients. Amsterdam: European Congress of Clinical Microbiology & Infectious Diseases; 2019.

  118. McCarthy MW, Moriyama B, Petraitiene R, Walsh TJ, Petraitis V. Clinical pharmacokinetics and pharmacodynamics of isavuconazole. Clin Pharmacokinet. 2018;57(12):1483–91.

    CAS  PubMed  Google Scholar 

  119. Seyedmousavi S, Mouton JW, Melchers WJ, Bruggemann RJ, Verweij PE. The role of azoles in the management of azole-resistant aspergillosis: from the bench to the bedside. Drug Resist Updates. 2014;17(3):37–50.

    Google Scholar 

  120. van der Elst KC, Pereboom M, van den Heuvel ER, Kosterink JG, Scholvinck EH, Alffenaar JW. Insufficient fluconazole exposure in pediatric cancer patients and the need for therapeutic drug monitoring in critically ill children. Clin Infect Dis. 2014;59(11):1527–33.

    PubMed  Google Scholar 

  121. Bruggemann RJ, Donnelly JP, Aarnoutse RE, Warris A, Blijlevens NM, Mouton JW, et al. Therapeutic drug monitoring of voriconazole. Ther Drug Monit. 2008;30(4):403–11.

    PubMed  Google Scholar 

  122. Luong ML, Al-Dabbagh M, Groll AH, Racil Z, Nannya Y, Mitsani D, et al. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother. 2016;71(7):1786–99.

    CAS  PubMed  Google Scholar 

  123. Lempers VJ, Meuwese E, Mavinkurve-Groothuis AM, Henriet S, van der Sluis IM, Hanff LM, et al. Impact of dose adaptations following voriconazole therapeutic drug monitoring in pediatric patients. Med Mycol. 2019;57(8):937–43. https://doi.org/10.1093/mmy/myz006.

    Article  PubMed  Google Scholar 

  124. Dekkers BGJ, Bakker M, van der Elst KCM, Sturkenboom MGG, Veringa A, Span LFR, et al. Therapeutic drug monitoring of posaconazole: an update. Curr Fungal Infect Rep. 2016;10:51–61.

    PubMed  PubMed Central  Google Scholar 

  125. Jancel T, Shaw PA, Hallahan CW, Kim T, Freeman AF, Holland SM, et al. Therapeutic drug monitoring of posaconazole oral suspension in paediatric patients younger than 13 years of age: a retrospective analysis and literature review. J Clin Pharm Ther. 2017;42(1):75–9.

    CAS  PubMed  Google Scholar 

  126. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69(5):1162–76.

    CAS  PubMed  Google Scholar 

  127. Groll AH, Townsend R, Desai A, Azie N, Jones M, Engelhardt M, et al. Drug–drug interactions between triazole antifungal agents used to treat invasive aspergillosis and immunosuppressants metabolized by cytochrome P450 3A4. Transpl Infect Dis. 2017. https://doi.org/10.1111/tid.12751.

    Article  PubMed  Google Scholar 

  128. Lempers VJ, Martial LC, Schreuder MF, Blijlevens NM, Burger DM, Aarnoutse RE, et al. Drug-interactions of azole antifungals with selected immunosuppressants in transplant patients: strategies for optimal management in clinical practice. Curr Opin Pharmacol. 2015;24:38–44.

    CAS  PubMed  Google Scholar 

  129. Kieu V, Jhangiani K, Dadwal S, Nakamura R, Pon D. Effect of isavuconazole on tacrolimus and sirolimus serum concentrations in allogeneic hematopoietic stem cell transplant patients: A drug-drug interaction study. Transpl Infect Dis. 2019;21(1):e13007.

    PubMed  Google Scholar 

  130. Blyth CC, Palasanthiran P, O’Brien TA. Antifungal therapy in children with invasive fungal infections: a systematic review. Pediatrics. 2007;119(4):772–84.

    PubMed  Google Scholar 

  131. Walsh TJ, Pappas P, Winston DJ, Lazarus HM, Petersen F, Raffalli J, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med. 2002;346(4):225–34.

    CAS  PubMed  Google Scholar 

  132. Tang H, Shi W, Song Y, Han J. Voriconazole exposure and risk of cutaneous squamous cell carcinoma among lung or hematopoietic cell transplant patients: a systematic review and meta-analysis. J Am Acad Dermatol. 2019;80(2):500–7 (e10).

    CAS  PubMed  Google Scholar 

  133. Mansh M, Binstock M, Williams K, Hafeez F, Kim J, Glidden D, et al. Voriconazole exposure and risk of cutaneous squamous cell carcinoma, aspergillus colonization, invasive aspergillosis and death in lung transplant recipients. Am J Transplant. 2016;16(1):262–70.

    CAS  PubMed  Google Scholar 

  134. Wojenski DJ, Bartoo GT, Merten JA, Dierkhising RA, Barajas MR, El-Azhary RA, et al. Voriconazole exposure and the risk of cutaneous squamous cell carcinoma in allogeneic hematopoietic stem cell transplant patients. Transpl Infect Dis. 2015;17(2):250–8.

    CAS  PubMed  Google Scholar 

  135. Cohen BE, Krivitskiy I, Bui S, Forrester K, Kahn J, Barbers R, et al. Comparison of skin cancer incidence in Caucasian and non-Caucasian liver vs. lung transplant recipients: a tale of two regimens. Clin Drug Investig. 2019;39(2):197–203.

    CAS  PubMed  Google Scholar 

  136. Patil A, Majumdar S. Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol. 2017;69(12):1635–60.

    CAS  PubMed  Google Scholar 

  137. Chang CC, Slavin MA, Chen SC. New developments and directions in the clinical application of the echinocandins. Arch Toxicol. 2017;91(4):1613–21.

    CAS  PubMed  Google Scholar 

  138. Gil-Alonso S, Quindos G, Canton E, Eraso E, Jauregizar N. Killing kinetics of anidulafungin, caspofungin and micafungin against Candida parapsilosis species complex: evaluation of the fungicidal activity. Revista Iberoamericana de Micologia. 2019;36(1):24–9.

    PubMed  Google Scholar 

  139. Bartizal K, Gill CJ, Abruzzo GK, Flattery AM, Kong L, Scott PM, et al. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob Agents Chemother. 1997;41(11):2326–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Aruanno M, Glampedakis E, Lamoth F. Echinocandins for the treatment of invasive aspergillosis: from laboratory to bedside. Antimicrob Agents Chemother. 2019;63:e00399–19. https://doi.org/10.1128/AAC.00399-19.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, et al. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother. 2002;46(9):3001–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J Clin Microbiol. 2013;51(8):2571–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Dannaoui E. Antifungal resistance in mucorales. Int J Antimicrob Agents. 2017;50(5):617–21.

    CAS  PubMed  Google Scholar 

  144. Perlin DS. Echinocandin resistance in candida. Clin Infect Dis. 2015;1(61 Suppl 6):S612–7.

    Google Scholar 

  145. Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagn Microbiol Infect Dis. 2011;69(1):45–50.

    CAS  PubMed  Google Scholar 

  146. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN. Twenty years of the SENTRY Antifungal Surveillance Program: results for candida species from 1997–2016. Open Forum Infect Dis. 2019;6(Suppl 1):S79–s94.

    PubMed  PubMed Central  Google Scholar 

  147. Fraser M, Borman AM, Thorn R, Lawrance LM. Resistance to echinocandin antifungal agents in the United Kingdom in clinical isolates of Candida glabrata: fifteen years of interpretation and assessment. Med Mycol. 2019. https://doi.org/10.1093/mmy/myz053.

    Article  PubMed  Google Scholar 

  148. Cornely OA, Vazquez J, De Waele J, Betts R, Rotstein C, Nucci M, et al. Efficacy of micafungin in invasive candidiasis caused by common Candida species with special emphasis on non-albicans Candida species. Mycoses. 2014;57(2):79–89.

    CAS  PubMed  Google Scholar 

  149. Mohamed WA, Ismail M. A randomized, double-blind, prospective study of caspofungin vs. amphotericin B for the treatment of invasive candidiasis in newborn infants. J Trop Pediatr. 2012;58(1):25–30.

    PubMed  Google Scholar 

  150. Benjamin DK Jr, Kaufman DA, Hope WW, Smith PB, Arrieta A, Manzoni P, et al. A phase 3 study of micafungin versus amphotericin B deoxycholate in infants with invasive candidiasis. Pediatr Infect Dis J. 2018;37(10):992–8.

    PubMed  PubMed Central  Google Scholar 

  151. Maertens JA, Madero L, Reilly AF, Lehrnbecher T, Groll AH, Jafri HS, et al. A randomized, double-blind, multicenter study of caspofungin versus liposomal amphotericin B for empiric antifungal therapy in pediatric patients with persistent fever and neutropenia. Pediatr Infect Dis J. 2010;29(5):415–20.

    PubMed  Google Scholar 

  152. Kordalewska M, Lee A, Park S, Berrio I, Chowdhary A, Zhao Y, et al. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob Agents Chemother. 2018;62:e00238–18. https://doi.org/10.1128/AAC.00238-18.

    Article  PubMed  PubMed Central  Google Scholar 

  153. U.S. Centers for Disease Control and Prevention. Recommendations for treatment of Candida auris infections. 2018. https://www.cdc.gov/fungal/candida-auris/c-auris-treatment.html#treatment. Cited 17 July 2019.

  154. Louie A, Deziel M, Liu W, Drusano MF, Gumbo T, Drusano GL. Pharmacodynamics of caspofungin in a murine model of systemic candidiasis: importance of persistence of caspofungin in tissues to understanding drug activity. Antimicrob Agents Chemother. 2005;49(12):5058–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Andes D, Diekema DJ, Pfaller MA, Prince RA, Marchillo K, Ashbeck J, et al. In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52(2):539–50.

    CAS  PubMed  Google Scholar 

  156. Andes D, Diekema DJ, Pfaller MA, Bohrmuller J, Marchillo K, Lepak A. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother. 2010;54(6):2497–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Nguyen KT, Taa P, Hoang BT, Cheng S, Hao B, Nguyen MH, et al. Anidulafungin is fungicidal and exerts a variety of postantifungal effects against Candida albicans, C. glabrata, C. parapsilosis, and C. krusei isolates. Antimicrob Agents Chemother. 2009;53(8):3347–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas C. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-d-glucan synthase. Antimicrob Agents Chemother. 1994;38(7):1480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Tabata K, Katashima M, Kawamura A, Tanigawara Y, Sunagawa K. Linear pharmacokinetics of micafungin and its active metabolites in Japanese pediatric patients with fungal infections. Biol Pharm Bull. 2006;29(8):1706–11.

    CAS  PubMed  Google Scholar 

  160. Wasmann RE, Muilwijk EW, Burger DM, Verweij PE, Knibbe CA, Bruggemann RJ. Clinical pharmacokinetics and pharmacodynamics of micafungin. Clin Pharmacokinet. 2018;57(3):267–86.

    CAS  PubMed  Google Scholar 

  161. Groll AH, Gullick BM, Petraitiene R, Petraitis V, Candelario M, Piscitelli SC, et al. Compartmental pharmacokinetics of the antifungal echinocandin caspofungin (MK-0991) in rabbits. Antimicrob Agents Chemother. 2001;45(2):596–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Niwa T, Yokota Y, Tokunaga A, Yamato Y, Kagayama A, Fujiwara T, et al. Tissue distribution after intravenous dosing of micafungin, an antifungal drug, to rats. Biol Pharm Bull. 2004;27(7):1154–6.

    CAS  PubMed  Google Scholar 

  163. Goldblum D, Fausch K, Frueh BE, Theurillat R, Thormann W, Zimmerli S. Ocular penetration of caspofungin in a rabbit uveitis model. Gr Arch Clin Exp Ophthalmol. 2007;245(6):825–33.

    Google Scholar 

  164. Mochizuki K, Sawada A, Suemori S, Kawakami H, Niwa Y, Kondo Y, et al. Intraocular penetration of intravenous micafungin in inflamed human eyes. Antimicrob Agents Chemother. 2013;57(8):4027–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Strenger V, Farowski F, Muller C, Hofer N, Dornbusch HJ, Sperl D, et al. Low penetration of caspofungin into cerebrospinal fluid following intravenous administration of standard doses. Int J Antimicrob Agents. 2017;50(2):272–5.

    CAS  PubMed  Google Scholar 

  166. Stone JA, Xu X, Winchell GA, Deutsch PJ, Pearson PG, Migoya EM, et al. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother. 2004;48(3):815–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Damle B, Stogniew M, Dowell J. Pharmacokinetics and tissue distribution of anidulafungin in rats. Antimicrob Agents Chemother. 2008;52(7):2673–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Gabardi S, Martin S, Sura M, Mohammed A, Golan Y. Micafungin treatment and eradication of candiduria among hospitalized patients. Int Urol Nephrol. 2016;48(11):1881–5.

    CAS  PubMed  Google Scholar 

  169. Grau S, Luque S, Echeverria-Esnal D, Sorli L, Campillo N, Montero M, et al. Urinary micafungin levels are sufficient to treat urinary tract infections caused by Candida spp. Int J Antimicrob Agents. 2016;48(2):212–4.

    CAS  PubMed  Google Scholar 

  170. Rezai MS, Vaezi A, Fakhim H, Soleimani A, Mohammad Jafari H, Mohseni S, et al. Successful treatment with caspofungin of candiduria in a child with Wilms tumor; review of literature. Journal de Mycologie Medicale. 2017;27(2):261–5.

    CAS  PubMed  Google Scholar 

  171. Sobel JD, Bradshaw SK, Lipka CJ, Kartsonis NA. Caspofungin in the treatment of symptomatic candiduria. Clin Infect Dis. 2007;44(5):e46–9.

    CAS  PubMed  Google Scholar 

  172. Hope WW, Mickiene D, Petraitis V, Petraitiene R, Kelaher AM, Hughes JE, et al. The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: implications for echinocandin therapy in neonates. J Infect Dis. 2008;197(1):163–71.

    CAS  PubMed  Google Scholar 

  173. Jans J, Bruggemann RJ, Christmann V, Verweij PE, Warris A. Favorable outcome of neonatal cerebrospinal fluid shunt-associated Candida meningitis with caspofungin. Antimicrob Agents Chemother. 2013;57(5):2391–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Liu KH, Wu CJ, Chou CH, Lee HC, Lee NY, Hung ST, et al. Refractory candidal meningitis in an immunocompromised patient cured by caspofungin. J Clin Microbiol. 2004;42(12):5950–3.

    PubMed  PubMed Central  Google Scholar 

  175. Okugawa S, Ota Y, Tatsuno K, Tsukada K, Kishino S, Koike K. A case of invasive central nervous system aspergillosis treated with micafungin with monitoring of micafungin concentrations in the cerebrospinal fluid. Scand J Infect Dis. 2007;39(4):344–6.

    CAS  PubMed  Google Scholar 

  176. Auriti C, Falcone M, Ronchetti MP, Goffredo BM, Cairoli S, Crisafulli R, et al. High-dose micafungin for preterm neonates and infants with invasive and central nervous system candidiasis. Antimicrob Agents Chemother. 2016;60(12):7333–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hope WW, Smith PB, Arrieta A, Buell DN, Roy M, Kaibara A, et al. Population pharmacokinetics of micafungin in neonates and young infants. Antimicrob Agents Chemother. 2010;54(6):2633–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Vazquez JA. Anidulafungin: a new echinocandin with a novel profile. Clin Ther. 2005;27(6):657–73.

    CAS  PubMed  Google Scholar 

  179. Chandrasekar PH, Sobel JD. Micafungin: a new echinocandin. Clin Infect Dis. 2006;42(8):1171–8.

    CAS  PubMed  Google Scholar 

  180. Balani SK, Xu X, Arison BH, Silva MV, Gries A, DeLuna FA, et al. Metabolites of caspofungin acetate, a potent antifungal agent, in human plasma and urine. Drug Metab Dispos. 2000;28(11):1274–8.

    CAS  PubMed  Google Scholar 

  181. Weiler S, Seger C, Pfisterer H, Stienecke E, Stippler F, Welte R, et al. Pharmacokinetics of caspofungin in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother. 2013;57(8):4053–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Aguilar G, Ferriols R, Lozano A, Ezquer C, Carbonell JA, Jurado A, et al. Optimal doses of caspofungin during continuous venovenous hemodiafiltration in critically ill patients. Crit Care. 2017;21(1):17.

    PubMed  PubMed Central  Google Scholar 

  183. Roger C, Wallis SC, Muller L, Saissi G, Lipman J, Bruggemann RJ, et al. Caspofungin population pharmacokinetics in critically ill patients undergoing continuous veno-venous haemofiltration or haemodiafiltration. Clin Pharmacokinet. 2017;56(9):1057–68.

    CAS  PubMed  Google Scholar 

  184. Kurland S, Furebring M, Lowdin E, Eliasson E, Nielsen EI, Sjolin J. Pharmacokinetics of caspofungin in critically ill patients in relation to liver dysfunction: differential impact of plasma albumin and bilirubin levels. Antimicrob Agents Chemother. 2019;63:e02466–18. https://doi.org/10.1128/AAC.02466-18.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hope WW, Kaibara A, Roy M, Arrieta A, Azie N, Kovanda LL, et al. Population pharmacokinetics of micafungin and its metabolites M1 and M5 in children and adolescents. Antimicrob Agents Chemother. 2015;59(2):905–13.

    PubMed  PubMed Central  Google Scholar 

  186. Hope WW, Seibel NL, Schwartz CL, Arrieta A, Flynn P, Shad A, et al. Population pharmacokinetics of micafungin in pediatric patients and implications for antifungal dosing. Antimicrob Agents Chemother. 2007;51(10):3714–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Mehta PA, Vinks AA, Filipovich A, Bleesing J, Jodele S, Jordan MB, et al. Alternate-day micafungin antifungal prophylaxis in pediatric patients undergoing hematopoietic stem cell transplantation: a pharmacokinetic study. Biol Blood Marrow Transplant. 2010;16(10):1458–62.

    PubMed  Google Scholar 

  188. Bochennek K, Balan A, Muller-Scholden L, Becker M, Farowski F, Muller C, et al. Micafungin twice weekly as antifungal prophylaxis in paediatric patients at high risk for invasive fungal disease. J Antimicrob Chemother. 2015;70(5):1527–30.

    CAS  PubMed  Google Scholar 

  189. Chandra S, Fukuda T, Mizuno K, Davies SM, Teusink-Cross A, Tarin R, et al. Micafungin antifungal prophylaxis in children undergoing HSCT: can we give higher doses, less frequently? A pharmacokinetic study. J Antimicrob Chemother. 2018;73(6):1651–8.

    CAS  PubMed  Google Scholar 

  190. Lehrnbecher T, Bochennek K, Klingebiel T, Gastine S, Hempel G, Groll AH. Extended dosing regimens for fungal prophylaxis. Clin Microbiol Rev. 2019;32:e00010–19. https://doi.org/10.1128/CMR.00010-19.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Heresi GP, Gerstmann DR, Reed MD, van den Anker JN, Blumer JL, Kovanda L, et al. The pharmacokinetics and safety of micafungin, a novel echinocandin, in premature infants. Pediatr Infect Dis J. 2006;25(12):1110–5.

    PubMed  Google Scholar 

  192. Smith PB, Walsh TJ, Hope W, Arrieta A, Takada A, Kovanda LL, et al. Pharmacokinetics of an elevated dosage of micafungin in premature neonates. Pediatr Infect Dis J. 2009;28(5):412–5.

    PubMed  PubMed Central  Google Scholar 

  193. Li CC, Sun P, Dong Y, Bi S, Desai R, Dockendorf MF, et al. Population pharmacokinetics and pharmacodynamics of caspofungin in pediatric patients. Antimicrob Agents Chemother. 2011;55(5):2098–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Yang XM, Leroux S, Storme T, Zhang DL, de Beaumais TA, Shi HY, et al. Body surface area-based dosing regimen of caspofungin in children: a population pharmacokinetics confirmatory study. Antimicrob Agents Chemother. 2019;63:e00248–19. https://doi.org/10.1128/AAC.00248-19.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Neely M, Jafri HS, Seibel N, Knapp K, Adamson PC, Bradshaw SK, et al. Pharmacokinetics and safety of caspofungin in older infants and toddlers. Antimicrob Agents Chemother. 2009;53(4):1450–6.

    CAS  PubMed  Google Scholar 

  196. Walsh TJ, Adamson PC, Seibel NL, Flynn PM, Neely MN, Schwartz C, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother. 2005;49(11):4536–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Saez-Llorens X, Macias M, Maiya P, Pineros J, Jafri HS, Chatterjee A, et al. Pharmacokinetics and safety of caspofungin in neonates and infants less than 3 months of age. Antimicrob Agents Chemother. 2009;53(3):869–75.

    CAS  PubMed  Google Scholar 

  198. Gustot T, Ter Heine R, Brauns E, Cotton F, Jacobs F, Bruggemann RJ. Caspofungin dosage adjustments are not required for patients with Child-Pugh B or C cirrhosis. J Antimicrob Chemother. 2018;73(9):2493–6.

    CAS  PubMed  Google Scholar 

  199. Muilwijk EW, Schouten JA, van Leeuwen HJ, van Zanten AR, de Lange DW, Colbers A, et al. Pharmacokinetics of caspofungin in ICU patients. J Antimicrob Chemother. 2014;69(12):3294–9.

    CAS  PubMed  Google Scholar 

  200. Yang QT, Zhai YJ, Chen L, Zhang T, Yan Y, Meng T, et al. Whole-body physiology-based pharmacokinetics of caspofungin for general patients, intensive care unit patients and hepatic insufficiency patients. Acta Pharmacol Sin. 2018;39(9):1533–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Benjamin DK Jr, Driscoll T, Seibel NL, Gonzalez CE, Roden MM, Kilaru R, et al. Safety and pharmacokinetics of intravenous anidulafungin in children with neutropenia at high risk for invasive fungal infections. Antimicrob Agents Chemother. 2006;50(2):632–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Cohen-Wolkowiez M, Benjamin DK Jr, Piper L, Cheifetz IM, Moran C, Liu P, et al. Safety and pharmacokinetics of multiple-dose anidulafungin in infants and neonates. Clin Pharmacol Ther. 2011;89(5):702–7.

    CAS  PubMed  Google Scholar 

  203. Benjamin DK Jr, Deville JG, Azie N, Kovanda L, Roy M, Wu C, et al. Safety and pharmacokinetic profiles of repeated-dose micafungin in children and adolescents treated for invasive candidiasis. Pediatr Infect Dis J. 2013;32(11):e419–25.

    PubMed  Google Scholar 

  204. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000;46(2):171–9.

    CAS  PubMed  Google Scholar 

  205. Harris BE, Manning BW, Federle TW, Diasio RB. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob Agents Chemother. 1986;29(1):44–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Hope WW, Warn PA, Sharp A, Reed P, Keevil B, Louie A, et al. Optimization of the dosage of flucytosine in combination with amphotericin B for disseminated candidiasis: a pharmacodynamic rationale for reduced dosing. Antimicrob Agents Chemother. 2007;51(10):3760–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Pasqualotto AC, Howard SJ, Moore CB, Denning DW. Flucytosine therapeutic monitoring: 15 years experience from the UK. J Antimicrob Chemother. 2007;59(4):791–3.

    CAS  PubMed  Google Scholar 

  208. Soltani M, Tobin CM, Bowker KE, Sunderland J, MacGowan AP, Lovering AM. Evidence of excessive concentrations of 5-flucytosine in children aged below 12 years: a 12-year review of serum concentrations from a UK clinical assay reference laboratory. Int J Antimicrob Agents. 2006;28(6):574–7.

    CAS  PubMed  Google Scholar 

  209. Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr. 1990;116(5):791–7.

    CAS  PubMed  Google Scholar 

  210. Stamm AM, Diasio RB, Dismukes WE, Shadomy S, Cloud GA, Bowles CA, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med. 1987;83(2):236–42.

    CAS  PubMed  Google Scholar 

  211. Vermes A, van Der Sijs H, Guchelaar HJ. Flucytosine: correlation between toxicity and pharmacokinetic parameters. Chemotherapy. 2000;46(2):86–94.

    CAS  PubMed  Google Scholar 

  212. Gupta AK, Adamiak A, Cooper EA. The efficacy and safety of terbinafine in children. J Eur Acad Dermatol Venereol. 2003;17(6):627–40.

    CAS  PubMed  Google Scholar 

  213. Zehender H, Denouel J, Roy M, Le Saux L, Schaub P. Simultaneous determination of terbinafine (Lamisil) and five metabolites in human plasma and urine by high-performance liquid chromatography using on-line solid-phase extraction. J Chromatogr B Biomed Appl. 1995;664(2):347–55.

    CAS  PubMed  Google Scholar 

  214. Jones TC. Overview of the use of terbinafine (Lamisil) in children. Br J Dermatol. 1995;132(5):683–9.

    CAS  PubMed  Google Scholar 

  215. Nejjam F, Zagula M, Cabiac MD, Guessous N, Humbert H, Lakhdar H. Pilot study of terbinafine in children suffering from tinea capitis: evaluation of efficacy, safety and pharmacokinetics. Br J Dermatol. 1995;132(1):98–105.

    CAS  PubMed  Google Scholar 

  216. Vazquez JA. Clinical practice: combination antifungal therapy for mold infections: much ado about nothing? Clin Infect Dis. 2008;46(12):1889–901.

    PubMed  Google Scholar 

  217. Abdel-Rahman SM, Herron J, Fallon-Friedlander S, Hauffe S, Horowitz A, Riviere GJ. Pharmacokinetics of terbinafine in young children treated for tinea capitis. Pediatr Infect Dis J. 2005;24(10):886–91.

    PubMed  Google Scholar 

  218. Revankar SG, Nailor MD, Sobel JD. Use of terbinafine in rare and refractory mycoses. Future Microbiol. 2008;3(1):9–17.

    CAS  PubMed  Google Scholar 

  219. Dolton MJ, Perera V, Pont LG, McLachlan AJ. Terbinafine in combination with other antifungal agents for treatment of resistant or refractory mycoses: investigating optimal dosing regimens using a physiologically based pharmacokinetic model. Antimicrob Agents Chemother. 2014;58(1):48–54.

    PubMed  PubMed Central  Google Scholar 

  220. Araujo OE, Flowers FP, King MM. Griseofulvin: a new look at an old drug. DICP. 1990;24(9):851–4.

    CAS  PubMed  Google Scholar 

  221. Ginsburg CM, McCracken GH Jr, Petruska M, Olsen K. Effect of feeding on bioavailability of griseofulvin in children. J Pediatr. 1983;102(2):309–11.

    CAS  PubMed  Google Scholar 

  222. Chen X, Jiang X, Yang M, Bennett C, Gonzalez U, Lin X, et al. Systemic antifungal therapy for tinea capitis in children: an abridged cochrane review. J Am Acad Dermatol. 2017;76(2):368–74.

    PubMed  Google Scholar 

  223. Knasmuller S, Parzefall W, Helma C, Kassie F, Ecker S, Schulte-Hermann R. Toxic effects of griseofulvin: disease models, mechanisms, and risk assessment. Crit Rev Toxicol. 1997;27(5):495–537.

    CAS  PubMed  Google Scholar 

  224. Khoza S, Moyo I, Ncube D. Comparative hepatotoxicity of fluconazole, ketoconazole, itraconazole, terbinafine, and griseofulvin in rats. J Toxicol. 2017;2017:6746989.

    PubMed  PubMed Central  Google Scholar 

  225. Fisher BT. The changing landscape for paediatric regulation of pharmaceutical agents with a focus on antifungal agents. Curr Fungal Infect Rep. 2016;10(1):1–6.

    Google Scholar 

  226. Seibel NL, Schwartz C, Arrieta A, Flynn P, Shad A, Albano E, et al. Safety, tolerability, and pharmacokinetics of micafungin (FK463) in febrile neutropenic pediatric patients. Antimicrob Agents Chemother. 2005;49(8):3317–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK Jr, Capparelli EV. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs. 2014;74(8):891–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Debruyne D, Ryckelynck JP. Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet. 1993;24(1):10–27.

    CAS  PubMed  Google Scholar 

  229. Michael C, Bierbach U, Frenzel K, Lange T, Basara N, Niederwieser D, et al. Voriconazole pharmacokinetics and safety in immunocompromised children compared to adult patients. Antimicrob Agents Chemother. 2010;54(8):3225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Downes.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

KJD is supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under award number K23HD091365 and has received research support from Merck & Co., Inc. and Pfizer, Inc. unrelated to the current work. BTF has received research support from Pfizer, Inc. and Merck Pharmaceuticals unrelated to the current work. BTF also serves as the Chair of a data safety monitoring board for Astellas. NRZ is supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under award number 1K99HD096123. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the above supporting agencies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downes, K.J., Fisher, B.T. & Zane, N.R. Administration and Dosing of Systemic Antifungal Agents in Pediatric Patients. Pediatr Drugs 22, 165–188 (2020). https://doi.org/10.1007/s40272-020-00379-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-020-00379-2

Navigation