Skip to main content
Log in

A Review of Regional Anesthesia in Infants

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Regional anesthesia provides effective anesthesia and pain relief in infants with age-specific data attesting to safety and efficacy. Regional anesthesia decreases exposure to opioids and general anesthetic agents and associated adverse drug effects, suppresses the stress response, and provides better hemodynamic stability compared to general anesthesia. Regional anesthesia can prevent long-term behavioral responses to pain. As a result, the overall number and variety of nerve blocks being used in infants is increasing. While neuraxial blocks are the most common blocks performed in infants, the introduction of ultrasound imaging and a better safety profile has advanced the use of peripheral nerve blocks. Infant-specific pharmacokinetic and pharmacodynamic data of local anesthetic medications are reviewed including risk factors for the accumulation of high serum levels of unbound, pharmacologically active drug. Bupivacaine accumulates with continuous infusion and 2-chloroprocaine can be used as an alternative. Local anesthetic systemic toxicity has the highest incidence in infants less than 6 months of age and is associated with bolus dosing and penile nerve blocks. Local anesthetic toxicity is treated by securing the airway, suppression of seizure activity and implementation of cardiopulmonary resuscitation. Administration of intralipid (intravenous lipid emulsion) is initiated at the first sign of toxicity. A high level of expertise in regional anesthesia is needed when treating infants due to their unique development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bösenberg AT, Jöhr M, Wolf AR. Pro con debate: the use of regional vs systemic analgesia for neonatal surgery. Paediatr Anaesth. 2011;21(12):1247–58. https://doi.org/10.1111/j.1460-9592.2011.03638.x.

    Article  PubMed  Google Scholar 

  2. Berde CB, Jaksic T, Lynn AM, Maxwell LG, Soriano SG, Tibboel D. Anesthesia and analgesia during and after surgery in neonates. Clin Ther. 2005;27(6):900–21. https://doi.org/10.1016/j.clinthera.2005.06.020.

    Article  CAS  PubMed  Google Scholar 

  3. Bösenberg AT, Bland BA, Schulte-Steinberg O, Downing JW. Thoracic epidural anesthesia via caudal route in infants. Anesthesiology. 1988;69(2):265–9.

    Article  PubMed  Google Scholar 

  4. Murrell D, Gibson PR, Cohen RC. Continuous epidural analgesia in newborn infants undergoing major surgery. J Pediatr Surg. 1993;4:548–52. https://doi.org/10.1016/0022-3468(93)90614-q.

    Article  Google Scholar 

  5. Jöhr M, Berger TM. Regional anaesthetic techniques for neonatal surgery: indications and selection of techniques. Best Pract Res Clin Anaesthesiol. 2004;2:357–75. https://doi.org/10.1016/j.bpa.2003.11.004.

    Article  Google Scholar 

  6. Abouleish AE, Chung DH, Cohen M. Caudal anesthesia for vascular access procedures in two extremely small premature neonates. Pediatr Surg Int. 2005;21(9):749–51. https://doi.org/10.1007/s00383-005-1474-x.

    Article  PubMed  Google Scholar 

  7. Frenkel O, Mansour K, Fischer JWJ. Ultrasound-guided femoral nerve block for pain control in an infant with a femur fracture due to nonaccidental trauma. Pediatr Emerg Care. 2012;28(2):183–4. https://doi.org/10.1097/pec.0b013e3182447ea3.

    Article  PubMed  Google Scholar 

  8. Bairdain S, Dodson B, Zurakowski D, Waisel DB, Jennings RW, Boretsky KR. Paravertebral nerve block catheters using chloroprocaine in infants with prolonged mechanical ventilation for treatment of long-gap esophageal atresia. Pediatr Anesth. 2015;25(11):1151–7. https://doi.org/10.1111/pan.12736.

    Article  Google Scholar 

  9. Lönnqvist PA. Regional anaesthesia and analgesia in the neonate. Best Pract Res Clin Anaesthesiol. 2010;3:309–21. https://doi.org/10.1016/j.bpa.2010.02.012.

    Article  CAS  Google Scholar 

  10. Bösenberg AT. Epidural analgesia for major neonatal surgery. Paediatr Anaesth. 1998;8(6):479–83.

    Article  PubMed  Google Scholar 

  11. Kandiah N, Walker K, Boretsky K. Ultrasound-guided paravertebral block facilitated tracheal extubation in a 5-week-old infant with rib fractures and respiratory failure. A A Case Rep. 2014;2(10):131–2. https://doi.org/10.1213/xaa.0000000000000023.

    Article  PubMed  Google Scholar 

  12. Williams RK, Adams DC, Aladjem EV, et al. The safety and efficacy of spinal anesthesia for surgery in infants: the Vermont infant spinal registry. Anesth Analg. 2006;102(1):67–71. https://doi.org/10.1213/01.ane.0000159162.86033.21.

    Article  PubMed  Google Scholar 

  13. Fredrickson MJ, Seal P. Ultrasound-guided transversus abdominis plane block for neonatal abdominal surgery. Anaesth Intensive Care. 2009;37(3):469–72. https://doi.org/10.1016/j.envint.2006.11.017.

    Article  CAS  PubMed  Google Scholar 

  14. Breschan C, Kraschl R, Jost R, Marhofer P, Likar R. Axillary brachial plexus block for treatment of severe forearm ischemia after arterial cannulation in an extremely low birth-weight infant. Paediatr Anaesth. 2004;14(8):681–4. https://doi.org/10.1111/j.1460-9592.2004.01282.x.

    Article  PubMed  Google Scholar 

  15. Anand KJ, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1(8524):62–6.

    Article  CAS  PubMed  Google Scholar 

  16. Anand KJ, Hansen DD, Hickey PR. Hormonal-metabolic stress responses in neonates undergoing cardiac surgery. Anesthesiology. 1990;73(4):661–70.

    Article  CAS  PubMed  Google Scholar 

  17. Wolf AR, Doyle E, Thomas E. Modifying infant stress responses to major surgery: spinal vs extradural vs opioid analgesia. Paediatr Anaesth. 1998;8(4):305. https://doi.org/10.1046/j.1460-9592.1998.00239.x.

    Article  CAS  PubMed  Google Scholar 

  18. Wolf AR. Effects of regional analgesia on stress responses to pediatric surgery. Paediatr Anaesth. 2012;22(1):19–24. https://doi.org/10.1111/j.1460-9592.2011.03714.x.

    Article  PubMed  Google Scholar 

  19. Taddio A, Katz J, Ilersich AL, Koren G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet. 1997;349(9052):599–603. https://doi.org/10.1016/s0140-6736(96)10316-0.

    Article  CAS  PubMed  Google Scholar 

  20. Peters JWB, Koot HM, de Boer JB, et al. Major surgery within the first 3 months of life and subsequent biobehavioral pain responses to immunization at later age: a case comparison study. Pediatrics. 2003;111(1):129–35.

    Article  PubMed  Google Scholar 

  21. Peters JWB, Schouw R, Anand KJS, Van Dijk M, Duivenvoorden HJ, Tibboel D. Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain. 2005;114(3):444–54. https://doi.org/10.1016/j.pain.2005.01.014.

    Article  PubMed  Google Scholar 

  22. Walker SM, Fitzgerald M, Hathway GJ. Surgical injury in the neonatal rat alters the adult pattern of descending modulation from the rostroventral medulla. Anesthesiology. 2015;122(6):1391–400. https://doi.org/10.1097/aln.0000000000000658.

    Article  PubMed  Google Scholar 

  23. Walker SM, Tochiki KK, Fitzgerald M. Hindpaw incision in early life increases the hyperalgesic response to repeat surgical injury: critical period and dependence on initial afferent activity. Pain. 2009;147(1–3):99–106. https://doi.org/10.1016/j.pain.2009.08.017.

    Article  PubMed  Google Scholar 

  24. Morton NS, Errera A. APA national audit of pediatric opioid infusions. Paediatr Anaesth. 2010;20(2):119–25. https://doi.org/10.1111/j.1460-9592.2009.03187.x.

    Article  PubMed  Google Scholar 

  25. Chidambaran V, Olbrecht V, Hossain M, Sadhasivam S, Rose J, Meyer MJ. Risk predictors of opioid-induced critical respiratory events in children: naloxone use as a quality measure of opioid safety. Pain Med. 2014;15(12):2139–49. https://doi.org/10.1111/pme.12575.

    Article  PubMed  Google Scholar 

  26. Martin LD, Jimenez N, Lynn AM. A review of perioperative anesthesia and analgesia for infants: updates and trends to watch. F1000Research. 2017;6:120. https://doi.org/10.12688/f1000research.10272.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NHG. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92(2):208–17.

    Article  CAS  PubMed  Google Scholar 

  28. McRorie TI, Lynn AM, Nespeca MK, Opheim KE, Slattery JT. The maturation of morphine clearance and metabolism. Am J Dis Child. 1992;146(8):972–6.

    CAS  PubMed  Google Scholar 

  29. Lynn A, Nespeca MK, Bratton SL, Strauss SG, Shen DD. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg. 1998;86(5):958–63.

    Article  CAS  PubMed  Google Scholar 

  30. Bardo MT, Hughes RA. Single-dose tolerance to morphine-induced analgesic and hypoactive effects in infant rats. Dev Psychobiol. 1981;14(5):415–23. https://doi.org/10.1002/dev.420140504.

    Article  CAS  PubMed  Google Scholar 

  31. Arnold JH, Truog RD, Orav EJ, Scavone JM, Hershenson MB. Tolerance and dependence in neonates sedated with fentanyl during extracorporeal membrane oxygenation. Anesthesiology. 1990;73(6):1136–40.

    Article  CAS  PubMed  Google Scholar 

  32. Krekels EHJ, Tibboel D, de Wildt SN, et al. Evidence-based morphine dosing for postoperative neonates and infants. Clin Pharmacokinet. 2014;53(6):553–63. https://doi.org/10.1007/s40262-014-0135-4.

    Article  CAS  PubMed  Google Scholar 

  33. Hoehn T, Jetzek-Zader M, Blohm M, Mayatepek E. Early peristalsis following epidural analgesia during abdominal surgery in an extremely low birth weight infant. Paediatr Anaesth. 2007;17(2):176–9. https://doi.org/10.1111/j.1460-9592.2006.02038.x.

    Article  PubMed  Google Scholar 

  34. Hohn A, Trieschmann U, Franklin J, et al. Incidence of peri-operative paediatric cardiac arrest: influence of a specialised paediatric anaesthesia team. Eur J Anaesthesiol. 2018;36(1):55–63. https://doi.org/10.1097/eja.0000000000000863.

    Article  Google Scholar 

  35. Tiret L, Nivoche Y, Hatton F, Desmonts JM, Vourc’h G. Complications related to anaesthesia in infants and children. A prospective survey of 40,240 anaesthetics. Br J Anaesth. 1988;61(3):263–9.

    Article  CAS  PubMed  Google Scholar 

  36. Westerkamp AC, De Geus AF, Molenbuur B, et al. Comparing peri-operative complications of paediatric and adult anaesthesia. Eur J Anaesthesiol. 2018;35(4):280–8. https://doi.org/10.1097/eja.0000000000000769.

    Article  PubMed  Google Scholar 

  37. Gregory GA, Steward DJ. Life-threatening perioperative apnea in the ex-”premie”. Anesthesiology. 1983;59(6):495–8.

    Article  CAS  PubMed  Google Scholar 

  38. Habre W, Disma N, Virag K, et al. Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir Med. 2017;5(5):412–25. https://doi.org/10.1016/s2213-2600(17)30116-9.

    Article  PubMed  Google Scholar 

  39. Mamie C, Habre W, Delhumeau C, Argiroffo CB, Morabia A. Incidence and risk factors of perioperative respiratory adverse events in children undergoing elective surgery. Paediatr Anaesth. 2004;14(3):218–24. https://doi.org/10.1111/j.1460-9592.2004.01169.x.

    Article  PubMed  Google Scholar 

  40. Drake-Brockman TFE, Ramgolam A, Zhang G, Hall GL, von Ungern-Sternberg BS. The effect of endotracheal tubes versus laryngeal mask airways on perioperative respiratory adverse events in infants: a randomised controlled trial. Lancet. 2017;389(10070):701–8. https://doi.org/10.1016/s0140-6736(16)31719-6.

    Article  PubMed  Google Scholar 

  41. Subramanyam R, Yeramaneni S, Hossain MM, Anneken AM, Varughese AM. Perioperative respiratory adverse events in pediatric ambulatory anesthesia: development and validation of a risk prediction tool. Anesth Analg. 2016;122(5):1578–85. https://doi.org/10.1213/ane.0000000000001216.

    Article  CAS  PubMed  Google Scholar 

  42. Davidson AJ, Disma N, De Graaff JC, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016;387(10015):239–50. https://doi.org/10.1016/s0140-6736(15)00608-x.

    Article  PubMed  Google Scholar 

  43. Ecoffey C, Lacroix F, Giaufré E, Orliaguet G, Courrèges P. Epidemiology and morbidity of regional anesthesia in children: a follow-up one-year prospective survey of the French-Language Society of Paediatric Anaesthesiologists (ADARPEF). Paediatr Anaesth. 2010;20(12):1061–9. https://doi.org/10.1111/j.1460-9592.2010.03448.x.

    Article  PubMed  Google Scholar 

  44. Walker BJ, Long JB, Sathyamoorthy M, et al. Complications in pediatric regional anesthesia: an analysis of more than 100,000 blocks from the pediatric regional anesthesia network. Anesthesiology. 2018;129(4):721–32. https://doi.org/10.1097/aln.0000000000002372.

    Article  PubMed  Google Scholar 

  45. Bosenberg AT. Innovative peripheral nerve blocks facilitated by ultrasound guidance. Paediatr Anaesth. 2018;28(8):684–5. https://doi.org/10.1111/pan.13424.

    Article  PubMed  Google Scholar 

  46. Visoiu M, Boretsky KR, Goyal G, Cladis FP, Cassara A. Postoperative analgesia via transversus abdominis plane (TAP) catheter for small weight children-our initial experience. Paediatr Anaesth. 2012;22(3):281–4. https://doi.org/10.1111/j.1460-9592.2011.03783.x.

    Article  PubMed  Google Scholar 

  47. Öksüz G, Bilal B, Gürkan Y, et al. Quadratus lumborum block versus transversus abdominis plane block in children undergoing low abdominal surgery: a randomized controlled trial. Reg Anesth Pain Med. 2017;42(5):674–9. https://doi.org/10.1097/aap.0000000000000645.

    Article  PubMed  Google Scholar 

  48. Boretsky K, Visoiu M, Bigeleisen P. Ultrasound-guided approach to the paravertebral space for catheter insertion in infants and children. Paediatr Anaesth. 2013;23(12):1193–8. https://doi.org/10.1111/pan.12238.

    Article  PubMed  Google Scholar 

  49. Munshey F, Rodriguez S, Diaz E, Tsui B. Continuous erector spinae plane block for an open pyeloplasty in an infant. J Clin Anesth. 2018;47:47–9. https://doi.org/10.1016/j.jclinane.2018.03.015.

    Article  PubMed  Google Scholar 

  50. Tognù A, Cauli V, De Simone N, Aurini L, Manfrini M, Bonarelli S. In-plane ultrasound- guided lumbar plexus block using catheter-over-needle technique in a 14-month-old baby. Reg Anesth Pain Med. 2016;41(4):538–41. https://doi.org/10.1097/aap.0000000000000417.

    Article  PubMed  Google Scholar 

  51. Willschke H, Marhofer P, B̈senberg A, et al. Epidural catheter placement in children: comparing a novel approach using ultrasound guidance and a standard loss-of-resistance technique. Br J Anaesth. 2006;97(2):200–7. https://doi.org/10.1093/bja/ael121.

    Article  CAS  PubMed  Google Scholar 

  52. Mueller CM, Sinclair TJ, Stevens M, Esquivel M, Gordon N. Regional block via continuous caudal infusion as sole anesthetic for inguinal hernia repair in conscious neonates. Pediatr Surg Int. 2017;33(3):341–5. https://doi.org/10.1007/s00383-016-4027-6.

    Article  PubMed  Google Scholar 

  53. Jones LJ, Craven PD, Lakkundi A, Foster JP, Badawi N. Regional (spinal, epidural, caudal) versus general anaesthesia in preterm infants undergoing inguinal herniorrhaphy in early infancy. Cochrane Database Syst Rev. 2015;9(6):CD003669. https://doi.org/10.1002/14651858.cd003669.pub2.

    Article  Google Scholar 

  54. Ebert KM, Jayanthi VR, Alpert SA, et al. Benefits of spinal anesthesia for urologic surgery in the youngest of patients. J Pediatr Urol. 2019;15(1):49.e1–5. https://doi.org/10.1016/j.jpurol.2018.08.011.

    Article  CAS  Google Scholar 

  55. Neal JT, Kaplan SL, Woodford AL, Desai K, Zorc JJ, Chen AE. The effect of bedside ultrasonographic skin marking on infant lumbar puncture success: a randomized controlled trial. Ann Emerg Med. 2017;69(5):610–9. https://doi.org/10.1016/j.annemergmed.2016.09.014.

    Article  PubMed  Google Scholar 

  56. Kelleher S, Boretsky K, Alrayashi W. Images in anesthesiology: use of ultrasound to facilitate neonatal spinal anesthesia. Anesthesiology. 2017. https://doi.org/10.1097/aln.0000000000001468.

    Article  PubMed  Google Scholar 

  57. Cristiani F, Henderson R, Lauber C, Boretsly K. Success of bedside ultrasound to identify puncture site for spinal anesthesia in neonates and infants. Reg Anesth Pain Med. 2019;78:89. https://doi.org/10.1136/rapm-2019-100672. (Epub ahead of print).

    Article  Google Scholar 

  58. McCann ME, Withington DE, Arnup SJ, et al. Differences in blood pressure in infants after general anesthesia compared to awake regional anesthesia (GAS study—a prospective randomized trial). Anesth Analg. 2017;125(3):837–45. https://doi.org/10.1213/ane.0000000000001870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oberlander TF, Berde CB, Lam KH, Rappaport LA, Saul JP. Infants tolerate spinal anesthesia with minimal overall autonomic changes: analysis of heart rate variability in former premature infants undergoing hernia repair. Anesth Analg. 1995;80(1):20–7.

    CAS  PubMed  Google Scholar 

  60. Kachko L, Birk E, Simhi E, Tzeitlin E, Freud E, Katz J. Spinal anesthesia for noncardiac surgery in infants with congenital heart diseases. Paediatr Anaesth. 2012;22(7):647–53.

    Article  PubMed  Google Scholar 

  61. Shenkman Z, Johnson VM, Zurakowski D, Arnon S, Sethna NF. Hemodynamic changes during spinal anesthesia in premature infants with congenital heart disease undergoing inguinal hernia correction. Paediatr Anaesth. 2012;22(9):865–70. https://doi.org/10.1111/j.1460-9592.2012.03873.x.

    Article  PubMed  Google Scholar 

  62. Razlevice I, Rugyte DC, Strumylaite L, Macas A. Assessment of risk factors for cerebral oxygen desaturation during neonatal and infant general anesthesia: an observational, prospective study. BMC Anesthesiol. 2016;16(1):107. https://doi.org/10.1186/s12871-016-0274-2.

    Article  PubMed  PubMed Central  Google Scholar 

  63. López T, Sánchez FJ, Garzón JC, Muriel C. Spinal anesthesia in pediatric patients. Minerva Anesthesiol. 2012;78(1):78–87. https://doi.org/10.1111/j.1460-9592.2011.03769.x.

    Article  Google Scholar 

  64. Trifa M, Tumin D, Whitaker EE, Bhalla T, Jayanthi VR, Tobias JD. Spinal anesthesia for surgery longer than 60 min in infants: experience from the first 2 years of a spinal anesthesia program. J Anesth. 2018;32(4):637–40. https://doi.org/10.1007/s00540-018-2517-5.

    Article  PubMed  Google Scholar 

  65. Rochette A, Raux O, Troncin R, Dadure C, Verdier R, Capdevila X. Clonidine prolongs spinal anesthesia in newborns: a prospective dose-ranging study. Anesth Analg. 2004;98(1):56–9. https://doi.org/10.1213/01.ane.0000093229.17729.6c.

    Article  CAS  PubMed  Google Scholar 

  66. Bouchut JC, Dubois R, Godard J. Clonidine in preterm-infant caudal anesthesia may be responsible for postoperative apnea. Reg Anesth Pain Med. 2001;26(1):83–5. https://doi.org/10.1053/rapm.2001.20455.

    Article  CAS  PubMed  Google Scholar 

  67. Henderson K, Sethna NF, Berde CB. Continuous caudal anesthesia for inguinal hernia repair in former preterm infants. J Clin Anesth. 1993;5(2):129–33.

    Article  CAS  PubMed  Google Scholar 

  68. Sinskey JL, Vecchione TM, Ekstrom BG, Boretsky K. Benefits of ultrasound imaging for placement of caudal epidural blockade in 3 pediatric patients. A A Pract. 2018;10(11):307–9. https://doi.org/10.1213/xaa.0000000000000693.

    Article  PubMed  Google Scholar 

  69. Lönnqvist PA. Continuous paravertebral block in children: initial experience. Anaesthesia. 1992;47(7):607–9. https://doi.org/10.1111/j.1365-2044.1992.tb02336.x.

    Article  PubMed  Google Scholar 

  70. Støving K, Rothe C, Rosenstock CV, Aasvang EK, Lundstrøm LH, Lange KHW. Cutaneous sensory block area, muscle-relaxing effect, and block duration of the transversus abdominis plane block: a randomized, blinded, and placebo-controlled study in healthy volunteers. Reg Anesth Pain Med. 2015;40(4):355–62. https://doi.org/10.1097/aap.0000000000000252.

    Article  PubMed  Google Scholar 

  71. Hernandez MA, Vecchione T, Boretsky K. Dermatomal spread following posterior transversus abdominis plane block in pediatric patients: our initial experience. Pediatr Anesth. 2017;27(3):300–4. https://doi.org/10.1111/pan.13034.

    Article  Google Scholar 

  72. Murouchi T, Iwasaki S, Yamakage M. Quadratus lumborum block: analgesic effects and chronological ropivacaine concentrations after laparoscopic surgery. Reg Anesth Pain Med. 2016;41(2):146–50. https://doi.org/10.1097/aap.0000000000000349.

    Article  CAS  PubMed  Google Scholar 

  73. Zaidi RH, Casanova NF, Haydar B, Voepel-Lewis T, Wan JH. Urethrocutaneous fistula following hypospadias repair: regional anesthesia and other factors. Paediatr Anaesth. 2015;25(11):1144–50. https://doi.org/10.1111/pan.12719.

    Article  PubMed  Google Scholar 

  74. Kundra P, Yuvaraj K, Agrawal K, Krishnappa S, Kumar LT. Surgical outcome in children undergoing hypospadias repair under caudal epidural vs penile block. Pediatr Anesth. 2012;22(7):707–12. https://doi.org/10.1111/j.1460-9592.2011.03702.x.

    Article  Google Scholar 

  75. Taicher BM, Routh JC, Eck JB, Ross SS, Wiener JS, Ross AK. The association between caudal anesthesia and increased risk of postoperative surgical complications in boys undergoing hypospadias repair. Paediatr Anaesth. 2017;27(7):688–94. https://doi.org/10.1111/pan.13119.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hecht S, Piñeda J, Bayne A. Ultrasound-guided pudendal block is a viable alternative to caudal block for hypospadias surgery: a single-surgeon pilot study. Urology. 2018;113:192–6. https://doi.org/10.1016/j.urology.2017.11.006.

    Article  PubMed  Google Scholar 

  77. Kendigelen P, Tutuncu AC, Emre S, Altindas F, Kaya G. Pudendal versus caudal block in children undergoing hypospadias surgery a randomized controlled trial. Reg Anesth Pain Med. 2016;41(5):610–5. https://doi.org/10.1097/aap.0000000000000447.

    Article  PubMed  Google Scholar 

  78. Naja ZM, Ziade FM, Kamel R, El-Kayali S, Daoud N, El-Rajab MA. The effectiveness of pudendal nerve block versus caudal block anesthesia for hypospadias in children. Anesth Analg. 2013;117(6):1401–7. https://doi.org/10.1213/ane.0b013e3182a8ee52.

    Article  PubMed  Google Scholar 

  79. Kaplan I, Jiao Y, AuBuchon JD, Moore RP. Continuous erector spinae plane catheter for analgesia after infant thoracotomy: a case report. A A Pract. 2018;11(9):250–2. https://doi.org/10.1213/xaa.0000000000000799.

    Article  PubMed  Google Scholar 

  80. Kaushal B, Chauhan S, Saini K, et al. Comparison of the efficacy of ultrasound-guided serratus anterior plane block, pectoral nerves II block, and intercostal nerve block for the management of postoperative thoracotomy pain after pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33(2):418–25. https://doi.org/10.1053/j.jvca.2018.08.209.

    Article  PubMed  Google Scholar 

  81. Suresh S, Ecoffey C, Bosenberg A, et al. The European Society of Regional Anaesthesia and Pain Therapy/American Society of Regional Anesthesia and Pain Medicine recommendations on local anesthetics and adjuvants dosage in pediatric regional anesthesia. Reg Anesth Pain Med. 2018;43(2):211–6. https://doi.org/10.1097/aap.0000000000000702.

    Article  PubMed  Google Scholar 

  82. Vittinghoff M, Lönnqvist PA, Mossetti V, et al. Postoperative pain management in children: guidance from the pain committee of the European Society for Paediatric Anaesthesiology (ESPA Pain Management Ladder Initiative). Paediatr Anaesth. 2018;28(6):493–506. https://doi.org/10.1111/pan.13373.

    Article  PubMed  Google Scholar 

  83. Sethna NF, Clendenin D, Athiraman U, Solodiuk J, Rodriguez DP, Zurakowski D. Incidence of epidural catheter-associated infections after continuous epidural analgesia in children. Anesthesiology. 2010;113(1):224–32. https://doi.org/10.1097/aln.0b013e3181de6cc5.

    Article  PubMed  Google Scholar 

  84. Taenzer AH, Clark C, Kovarik WD. Experience with 724 epidurograms for epidural catheter placement in pediatric anesthesia. Reg Anesth Pain Med. 2010;35(5):432–5. https://doi.org/10.1097/aap.0b013e3181ef4b76.

    Article  PubMed  Google Scholar 

  85. Tsui BCH, Wagner A, Cave D, Kearney R. Thoracic and lumbar epidural analgesia via the caudal approach using electrical stimulation guidance in pediatric patients: a review of 289 patients. Anesthesiology. 2004;100(3):683–9. https://doi.org/10.1097/00000542-200403000-00032.

    Article  PubMed  Google Scholar 

  86. Ponde VC, Bedekar VV, Desai AP, Puranik KA. Does ultrasound guidance add accuracy to continuous caudal-epidural catheter placements in neonates and infants? Paediatr Anaesth. 2017;27(10):1010–4. https://doi.org/10.1111/pan.13212.

    Article  PubMed  Google Scholar 

  87. Willschke H, Sitzwohl C, Cox SG, et al. Ultrasonography for ilioinguinal/iliohypogastric nerve blocks in children††. This study was performed at the Red Cross Children Hospital, Klipfontein Road, Rondebosch 7700, Cape Town, South Africa. Br J Anaesth. 2005;95(2):226–30. https://doi.org/10.1093/bja/aei157.

    Article  CAS  PubMed  Google Scholar 

  88. Vecchione TM, Boretsky KR. Ultrasound images of the epidural space through the acoustic window of the infant. Anesthesiology. 2017;126(3):562. https://doi.org/10.1097/aln.0000000000001447.

    Article  PubMed  Google Scholar 

  89. Lowe LH, Johanek AJ, Moore CW. Sonography of the neonatal spine: part I, normal anatomy, imaging pitfalls, and variations that may simulate disorders. Am J Roentgenol. 2007;188(3):733–8. https://doi.org/10.2214/ajr.05.2159.

    Article  Google Scholar 

  90. Oberndorfer U, Marhofer P, Bösenberg A, et al. Ultrasonographic guidance for sciatic and femoral nerve blocks in children. Br J Anaesth. 2007;98(6):797–801. https://doi.org/10.1093/bja/aem092.

    Article  CAS  PubMed  Google Scholar 

  91. Lam DKM, Corry GN, Tsui BCH. Evidence for the use of ultrasound imaging in pediatric regional anesthesia: a systematic review. Reg Anesth Pain Med. 2016;41(2):229–41. https://doi.org/10.1097/aap.0000000000000208.

    Article  CAS  PubMed  Google Scholar 

  92. Weintraud M, Marhofer P, Bösenberg A, et al. Ilioinguinal/iliohypogastric blocks in children: where do we administer the local anesthetic without direct visualization? Anesth Analg. 2008;106(1):89–93. https://doi.org/10.1213/01.ane.0000287679.48530.5f.

    Article  CAS  PubMed  Google Scholar 

  93. Mazoit JX, Dalens BJ. Pharmacokinetics of local anaesthetics in infants and children. Clin Pharmacokinet. 2004;43(1):17–32. https://doi.org/10.2165/00003088-200443010-00002.

    Article  CAS  PubMed  Google Scholar 

  94. Mazoit JX. Local anesthetics and their adjuncts. Paediatr Anaesth. 2012;22(1):31–8. https://doi.org/10.1111/j.1460-9592.2011.03692.x.

    Article  PubMed  Google Scholar 

  95. Gunter JB. Benefit and risks of local anesthetics in infants and children. Pediatr Drugs. 2002;4(10):649–72. https://doi.org/10.2165/00128072-200204100-00003.

    Article  Google Scholar 

  96. Lerman J, Strong HA, LeDez KM, Swartz J, Rieder MJ, Burrows FA. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  97. Aarons L, Sadler B, Pitsiu M, Sjövall J, Henriksson J, Molnár V. Population pharmacokinetic analysis of ropivacaine and its metabolite 2′,6′-pipecoloxylidide from pooled data in neonates, infants, and children. Br J Anaesth. 2011;107(3):409–24. https://doi.org/10.1093/bja/aer154.

    Article  CAS  PubMed  Google Scholar 

  98. Booker PD, Taylor C, Saba G. Perioperative changes in alpha 1-acid glycoprotein concentrations in infants undergoing major surgery. Br J Anaesth. 1996;76(3):365–8.

    Article  CAS  PubMed  Google Scholar 

  99. Rapp HJ, Molnár V, Austin S, et al. Ropivacaine in neonates and infants: a population pharmacokinetic evaluation following single caudal block. Paediatr Anaesth. 2004;14(9):724–32. https://doi.org/10.1111/j.1460-9592.2004.01373.x.

    Article  PubMed  Google Scholar 

  100. Anderson BJ, Hansen TG. Getting the best from pediatric pharmacokinetic data. Paediatr Anaesth. 2004;14(9):713–5. https://doi.org/10.1111/j.1460-9592.2004.01374.x.

    Article  PubMed  Google Scholar 

  101. Hansen TG, Ilett KF, Reid C, Im Lim S, Peter Hackett L, Bergesio R. Caudal ropivacaine in infants: population pharmacokinetics and plasma concentrations. Anesthesiology. 2001;94(4):579–84. https://doi.org/10.1097/00000542-200104000-00009.

    Article  CAS  PubMed  Google Scholar 

  102. Arlander E, Ekström G, Alm C, et al. Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther. 1998;64(5):484–91. https://doi.org/10.1016/s0009-9236(98)90131-x.

    Article  CAS  PubMed  Google Scholar 

  103. Calder A, Bell GT, Andersson M, Thomson AH, Watson DG, Morton NS. Pharmacokinetic profiles of epidural bupivacaine and ropivacaine following single-shot and continuous epidural use in young infants. Paediatr Anaesth. 2012;22(5):430–7. https://doi.org/10.1111/j.1460-9592.2011.03771.x.

    Article  PubMed  Google Scholar 

  104. Bösenberg AT, Thomas J, Cronje L, et al. Pharmacokinetics and efficacy of ropivacaine for continuous epidural infusion in neonates and infants. Paediatr Anaesth. 2005;15(9):739–49. https://doi.org/10.1111/j.1460-9592.2004.01550.x.

    Article  PubMed  Google Scholar 

  105. Luz G, Wieser C, Innerhofer P, Frischhut B, Ulmer H, Benzer A. Free and total bupivacaine plasma concentrations after continuous epidural anaesthesia in infants and children. Paediatr Anaesth. 1998;8(6):473–8.

    Article  CAS  PubMed  Google Scholar 

  106. Suresh S, De Oliveira GS. Blood bupivacaine concentrations after transversus abdominis plane block in neonates: a prospective observational study. Anesth Analg. 2016;122(3):814–7. https://doi.org/10.1213/ane.0000000000001088.

    Article  CAS  PubMed  Google Scholar 

  107. Kokki H. Spinal blocks. Paediatr Anaesth. 2012;22(1):56–64. https://doi.org/10.1111/j.1460-9592.2011.03693.x.

    Article  PubMed  Google Scholar 

  108. Kokki H, Tuovinen K, Hendolin H. Spinal anaesthesia for paediatric day-case surgery: a double-blind, randomized, parallel group, prospective comparison of isobaric and hyperbaric bupivacaine. Br J Anaesth. 1998;81(4):502–6. https://doi.org/10.1093/bja/81.4.502.

    Article  CAS  PubMed  Google Scholar 

  109. Tsui BCH, Boretsky K, Berde C. Maximum recommended dosage of ropivacaine and bupivacaine for pediatric regional anesthesia. Reg Anesth Pain Med. 2018;43(8):895–6. https://doi.org/10.1097/aap.0000000000000855.

    Article  PubMed  Google Scholar 

  110. Muhly WT, Gurnaney HG, Kraemer FW, Ganesh A, Maxwell LG. A retrospective comparison of ropivacaine and 2-chloroprocaine continuous thoracic epidural analgesia for management of postthoracotomy pain in infants. Paediatr Anaesth. 2015;25(11):1162–7. https://doi.org/10.1111/pan.12745.

    Article  PubMed  Google Scholar 

  111. Veneziano G, Tobias J. Chloroprocaine for epidural anesthesia in infants and children. Pediatr Anesthesiol. 2017;27:581–90. https://doi.org/10.1111/pan.13134.

    Article  Google Scholar 

  112. Hernandez MA, Boretsky K. Chloroprocaine: local anesthetic systemic toxicity in a 9-month infant with paravertebral catheter. Paediatr Anaesth. 2016;26(6):665–6. https://doi.org/10.1111/pan.12912.

    Article  PubMed  Google Scholar 

  113. Cladis FP, Litman RS. Transient cardiovascular toxicity with unintentional intravascular injection of 3% 2-chloroprocaine in a 2-month-old infant. Anesthesiology. 2004;100(1):181–3. https://doi.org/10.1097/00000542-200401000-00030.

    Article  PubMed  Google Scholar 

  114. AAP Pharmaceuticals. LLC, Shaumburg IL, Nesacaine (Chlorprocaine hydrochloride), US Food and Drug Website. Revised Nov. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/009435s044lbl.pdf. Accessed 24 June 2019.

  115. Toulon P. Developmental hemostasis: laboratory and clinical implications. Int J Lab Hematol. 2016;38(Suppl 1):66–77. https://doi.org/10.1111/ijlh.12531.

    Article  PubMed  Google Scholar 

  116. Lippi G, Salvagno GL, Rugolotto S, et al. Routine coagulation tests in newborn and young infants. J Thromb Thrombolysis. 2007;24(2):153–5. https://doi.org/10.1007/s11239-007-0046-4.

    Article  PubMed  Google Scholar 

  117. Di Gregorio G, Neal JM, Rosenquist RW, Weinberg GL. Clinical presentation of local anesthetic systemic toxicity: a review of published cases, 1979–2009. Reg Anesth Pain Med. 1979;35(2):181–7.

    Article  Google Scholar 

  118. Mulroy MF. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures. Reg Anesth Pain Med. 2002;27(6):556–61.

    Article  CAS  PubMed  Google Scholar 

  119. Gitman M, Barrington MJ. Local anesthetic systemic toxicity: a review of recent case reports and registries. Reg Anesth Pain Med. 2018;43(2):124–30. https://doi.org/10.1097/aap.0000000000000721.

    Article  PubMed  Google Scholar 

  120. Buck D, Kreeger R, Spaeth J. Case discussion and root cause analysis: bupivacaine overdose in an infant leading to ventricular tachycardia. Anesth Analg. 2014;119(1):137–40. https://doi.org/10.1213/ane.0000000000000275.

    Article  PubMed  Google Scholar 

  121. Groban L. Central nervous system and cardiac effects from long-acting amide local anesthetic toxicity in the intact animal model. Reg Anesth Pain Med. 2003;28(1):3–11. https://doi.org/10.1053/rapm.2003.50014.

    Article  CAS  PubMed  Google Scholar 

  122. Stewart J, Kellett N, Castro D. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth Analg. 2003;97(2):412–6. https://doi.org/10.1016/b978-0-12-409547-2.12548-x.

    Article  CAS  PubMed  Google Scholar 

  123. Groban L, Deal DD, Vernon JC, James RL, Butterworth J. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg. 2001;92(1):37–43. https://doi.org/10.1097/00000539-200101000-00008.

    Article  CAS  PubMed  Google Scholar 

  124. McLeod GA, Burke D. Levobupivacaine. Anaesthesia. 2001;56(4):331–41. https://doi.org/10.1046/j.1365-2044.2001.01964.x.

    Article  CAS  PubMed  Google Scholar 

  125. Graf BM, Abraham I, Eberbach N, Kunst G, Stowe DF, Martin E. Differences in cardiotoxicity of bupivacaine and ropivacaine are the result of physicochemical and stereoselective properties. Anesthesiology. 2002;96(6):1427–34. https://doi.org/10.1097/00000542-200206000-00023.

    Article  CAS  PubMed  Google Scholar 

  126. Yu RN, Houck CS, Casta A, Blum RH. Institutional policy changes to prevent cardiac toxicity associated with bupivacaine penile blockade in infants. A A Case Rep. 2016;7(3):71–5. https://doi.org/10.1213/xaa.0000000000000347.

    Article  PubMed  Google Scholar 

  127. Neal JM, Barrington MJ, Fettiplace MR, et al. The third American Society of Regional Anesthesia and Pain Medicine practice advisory on local anesthetic systemic toxicity: executive summary 2017. Reg Anesth Pain Med. 2018;43(2):113–23. https://doi.org/10.1097/aap.0000000000000720.

    Article  PubMed  Google Scholar 

  128. Hiller DB, Di Gregorio G, Ripper R, et al. Epinephrine impairs lipid resuscitation from bupivacaine overdose: a threshold effect. Anesthesiology. 2009;111(3):498–505. https://doi.org/10.1097/aln.0b013e3181afde0a.

    Article  CAS  PubMed  Google Scholar 

  129. Rosenblatt MA, Abel M, Fischer GW, Itzkovich CJ, Eisenkraft JB. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest. Anesthesiology. 2006;105(1):217–8.

    Article  PubMed  Google Scholar 

  130. Fettiplace MR, Weinberg G. The mechanisms underlying lipid resuscitation therapy. Reg Anesth Pain Med. 2018;43(2):138–49. https://doi.org/10.1097/aap.0000000000000719.

    Article  PubMed  Google Scholar 

  131. Presley JD, Chyka PA. Intravenous lipid emulsion to reverse acute drug toxicity in pediatric patients. Ann Pharmacother. 2013;47(5):735–43. https://doi.org/10.1345/aph.1r666.

    Article  PubMed  Google Scholar 

  132. Fairchild KD, Patterson A, Gumpper KF. Overdose of intravenous fat emulsion in a preterm infant: case report. Nutr Clin Pract. 1999;14(3):116–9. https://doi.org/10.1177/088453369901400304.

    Article  Google Scholar 

  133. Chuo J, Lambert G, Hicks RW. Intralipid medication errors in the neonatal intensive care unit. Jt Comm J Qual Patient Saf. 2007;33(2):104–11.

    Article  PubMed  Google Scholar 

  134. Low E, Ryan CA. Overdose of intravenous intralipid in a premature neonate. Jt Comm J Qual Patient Saf. 2007;33(10):588–9.

    Article  PubMed  Google Scholar 

  135. Pacira Pharmaceuticals, Inc., EXPAREL, US Food and Drug Administration Website. Revised 4/2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022496s9lbl.pd. Accessed 24 June 2019.

  136. Hu D, Onel E, Singla N, Kramer WG, Hadzic A. Pharmacokinetic profile of liposome bupivacaine injection following a single administration at the surgical site. Clin Drug Investig. 2013;33(2):109–15. https://doi.org/10.1007/s40261-012-0043-z.

    Article  CAS  PubMed  Google Scholar 

  137. Haas E, Onel E, Miller H, Ragupathi M, White PF. A double-blind, randomized, active-controlled study for post-hemorrhoidectomy pain management with liposome bupivacaine, a novel local analgesic formulation. Am Surg. 2012;78(5):574–81.

    PubMed  Google Scholar 

  138. Bramlett K, Onel E, Viscusi ER, Jones K. A randomized, double-blind, dose-ranging study comparing wound infiltration of DepoFoam bupivacaine, an extended-release liposomal bupivacaine, to bupivacaine HCl for postsurgical analgesia in total knee arthroplasty. Knee. 2012;19(5):530–6. https://doi.org/10.1016/j.knee.2011.12.004.

    Article  PubMed  Google Scholar 

  139. Balocco AL, Van Zundert PGE, Gan SS, Gan TJ, Hadzic A. Extended release bupivacaine formulations for postoperative analgesia: an update. Curr Opin Anaesthesiol. 2018;31(5):636–42. https://doi.org/10.1097/aco.0000000000000648.

    Article  PubMed  Google Scholar 

  140. Viscusi E, Gimbel JS, Pollack RA, Hu J, Lee G-C. HTX-011 reduced pain intensity and opioid consumption versus bupivacaine HCL in bunionectomy: phase III results from the randomized EPOCH 1 study. Reg Anesth Pain Med. 2019. https://doi.org/10.1136/rapm-2019-100531.

    Article  PubMed  Google Scholar 

  141. Catterall WA. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20(1):15–43. https://doi.org/10.1146/annurev.pa.20.040180.000311.

    Article  CAS  PubMed  Google Scholar 

  142. Padera R, Bellas E, Tse JY, Hao D, Kohane DS. Local myotoxicity from sustained release of bupivacaine from microparticles. Anesthesiology. 2008;108(5):921–8. https://doi.org/10.1097/aln.0b013e31816c8a48.

    Article  CAS  PubMed  Google Scholar 

  143. Lobo K, Donado C, Cornelissen L, et al. A phase 1, dose-escalation, double-blind, block-randomized, controlled trial of safety and efficacy of neosaxitoxin alone and in combination with 0.2% bupivacaine, with and without epinephrine, for cutaneous anesthesia. Anesthesiology. 2015;123(4):873–85. https://doi.org/10.1097/ALN.0000000000000831.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KB wrote and revised the manuscript and approved of the final version.

Corresponding author

Correspondence to Karen R. Boretsky.

Ethics declarations

Funding

Support was provided solely from Department sources.

Conflict of interest

KB declares no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boretsky, K.R. A Review of Regional Anesthesia in Infants. Pediatr Drugs 21, 439–449 (2019). https://doi.org/10.1007/s40272-019-00360-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00360-8

Navigation