Pediatric Drugs

, Volume 20, Issue 3, pp 265–272 | Cite as

Optimizing Amikacin Dosage in Pediatrics Based on Population Pharmacokinetic/Pharmacodynamic Modeling

  • Saeed Alqahtani
  • Manal Abouelkheir
  • Abdullah Alsultan
  • Yasmine Elsharawy
  • Aljawharah Alkoraishi
  • Reem Osman
  • Wael Mansy
short communication



Our objective was to determine the population pharmacokinetic parameters of amikacin in pediatric patients to contribute to the future development of a revised optimum dose and population-specific dosing regimens.


We performed a retrospective chart review in non-critical pediatric patients (aged 1–12 years) who received amikacin for suspected or proven Gram-negative infection at a university hospital. The population pharmacokinetic models were developed using Monolix 4.4. Pharmacokinetic/pharmacodynamic (PK/PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets.


The analysis included 134 amikacin plasma concentrations from 67 patients with a mean ± standard deviation age of 4.1 ± 3.9 years and bodyweight of 15 ± 8.4 kg. The patients received an amikacin total daily dose (TDD) of 23 ± 7.3 mg/kg, which resulted in peak and trough concentrations of 20.65 ± 7.6 and 2.4 ± 1.7 mg/l, respectively. The estimated pharmacokinetic parameters for amikacin were 1.2 l/h and 6.5 l for total body clearance (CL) and the volume of distribution (V), respectively. Dosing simulations showed that the standard dosing regimen (15 mg/kg/day) of amikacin achieved the PK/PD target of peak serum concentration (Cpeak)/minimum inhibitory concentration (MIC) ≥ 8 for an MIC of 2 mg/l; higher doses were required to achieve higher MIC values.


The simulation results indicated that amikacin 20 mg/kg once daily provided a higher probability of target attainment with lower toxicity than dosing three times daily. In addition, combination therapy is recommended for pathogens with an MIC of ≥ 8 mg/l.


Compliance with Ethical Standards


The authors acknowledge financial support from the College of Pharmacy Research Center and the Deanship of Scientific Research, King Saud University (Riyadh, Saudi Arabia).

Conflict of interest

Saeed Alqahtani, Manal Abouelkheir, Abdullah Alsultan, Yasmine Elsharawy, Aljawharah Alkoraishi, Reem Osman, and Wael Mansy have no conflicts of interest.


  1. 1.
    Tally FP, Louie TJ, Weinstein WM, Bartlett JG, Gorbach SL. Amikacin therapy for severe gram-negative sepsis. Emphasis on infections with gentamicin-resistant organisms. Ann Intern Med. 1975;83(4):484–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Cho SY, Choi SM, Park SH, Lee DG, Choi JH, Yoo JH. Amikacin therapy for urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Korean J Intern Med. 2016;31(1):156–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Han SB, Lee SC, Lee SY, Jeong DC, Kang JH. Aminoglycoside therapy for childhood urinary tract infection due to extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumoniae. BMC Infect Dis. 2015;13(15):414.CrossRefGoogle Scholar
  4. 4.
    Bassetti M, Righi E, Esposito S, Petrosillo N, Nicolini L. Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol. 2008;3(6):649–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev. 2014;07(1):CD003344.Google Scholar
  6. 6.
    Kumana CR, Yuen KY. Parenteral aminoglycoside therapy. Selection, administration and monitoring. Drugs. 1994;47(6):902–13.CrossRefPubMedGoogle Scholar
  7. 7.
    Isaksson B, Nilsson L, Maller R, Soren L. Postantibiotic effect of aminoglycosides on gram-negative bacteria evaluated by a new method. J Antimicrob Chemother. 1988;22(1):23–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Beaucaire G, Leroy O, Beuscart C, Karp P, Chidiac C, Caillaux M. Clinical and bacteriological efficacy, and practical aspects of amikacin given once daily for severe infections. J Antimicrob Chemother. 1999;127(Suppl C):91–103.Google Scholar
  10. 10.
    Moore RD, Smith CR, Lietman PS. The association of aminoglycoside plasma levels with mortality in patients with gram-negative bacteremia. J Infect Dis. 1984;149(3):443–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Moore RD, Smith CR, Lietman PS. Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am J Med. 1984;77(4):657–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Boucher BA, Coffey BC, Kuhl DA, Tolley EA, Fabian TC. Algorithm for assessing renal dysfunction risk in critically ill trauma patients receiving aminoglycosides. Am J Surg. 1990;160(5):473–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Garraffo R, Iliadis A, Cano JP, Dellamonica P, Lapalus P. Application of Bayesian estimation for the prediction of an appropriate dosage regimen of amikacin. J Pharm Sci. 1989;78(9):753–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Zelenitsky SA, Harding GK, Sun S, Ubhi K, Ariano RE. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother. 2003;52(4):668–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Begg EJ, Barclay ML, Kirkpatrick CM. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol. 2001;52(Suppl 1):35S–43S.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother. 1999;43(3):623–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother. 1991;27(Supple C):29–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother. 1999;43(7):1549–55.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Best EJ, Gazarian M, Cohn R, Wilkinson M, Palasanthiran P. Once-daily gentamicin in infants and children: a prospective cohort study evaluating safety and the role of therapeutic drug monitoring in minimizing toxicity. Pediatr Infect Dis J. 2011;30(10):827–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Contopoulos-Ioannidis DG, Giotis ND, Baliatsa DV, Ioannidis JP. Extended-interval aminoglycoside administration for children: a meta-analysis. Pediatrics. 2004;114(1):e111–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Freeman CD, Nicolau DP, Belliveau PP, Nightingale CH. Once-daily dosing of aminoglycosides: review and recommendations for clinical practice. J Antimicrob Chemother. 1997;39(6):677–86.CrossRefPubMedGoogle Scholar
  22. 22.
    FerriolsLisart R, AlosAlminana M. Effectiveness and safety of once-daily aminoglycosides: a meta-analysis. Am J Health Syst Ph. 1996;53(10):1141–50.Google Scholar
  23. 23.
    Smyth AR, Bhatt J, Nevitt SJ. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2017;3:CD002009.PubMedGoogle Scholar
  24. 24.
    Lavielle M, Mentre F. Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. J Pharmacokinet Pharmacodyn. 2007;34(2):229–49.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104(6):849–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Schwartz GJ, Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr. 1985;106(3):522–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Staples A, LeBlond R, Watkins S, Wong C, Brandt J. Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol. 2010;25(11):2321–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother. 2008;52(11):3987–93.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Anderson GD. Developmental pharmacokinetics. Semin Pediatr Neurol. 2010;17(4):208–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Kopcha RG, Fant WK, Warden GD. Increased dosing requirements for amikacin in burned children. J Antimicrob Chemother. 1991;28(5):747–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Sherwin CM, Wead S, Stockmann C, Healy D, Spigarelli MG, Neely A, et al. Amikacin population pharmacokinetics among paediatric burn patients. Burns. 2014;40(2):311–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Bressolle F, Gouby A, Martinez JM, Joubert P, Saissi G, Guillaud R, et al. Population pharmacokinetics of amikacin in critically ill patients. Antimicrob Agents Chemother. 1996;40(7):1682–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Belfayol L, Talon P, Eveillard M, Alet P, Fauvelle F. Pharmacokinetics of once-daily amikacin in pediatric patients. Clin Microbiol Infect. 1996;2(3):186–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Treluyer JM, Merle Y, Tonnelier S, Rey E, Pons G. Nonparametric population pharmacokinetic analysis of amikacin in neonates, infants, and children. Antimicrob Agents Chemother. 2002;46(5):1381–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu T, Stockmann C, Healy DP, Olson J, Wead S, Neely AN, et al. Determination of optimal amikacin dosing regimens for pediatric patients with burn wound sepsis. J Burn Care Res. 2015;36(4):e244–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Burdet C, Pajot O, Couffignal C, Armand-Lefevre L, Foucrier A, Laouenan C, et al. Population pharmacokinetics of single-dose amikacin in critically ill patients with suspected ventilator-associated pneumonia. Eur J Clin Pharmacol. 2015;71(1):75–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Delattre IK, Musuamba FT, Nyberg J, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetic modeling and optimal sampling strategy for Bayesian estimation of amikacin exposure in critically ill septic patients. Ther Drug Monit. 2010;32(6):749–56.CrossRefPubMedGoogle Scholar
  38. 38.
    Gonzalez LS 3rd, Spencer JP. Aminoglycosides: a practical review. Am Fam Phys. 1998;58(8):1811–20.Google Scholar
  39. 39.
    Langhendries JP, Battisti O, Bertrand JM, Francois A, Darimont J, Ibrahim S, et al. Once-a-day administration of amikacin in neonates: assessment of nephrotoxicity and ototoxicity. Dev Pharmacol Ther. 1993;20(3–4):220–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Prescott WA Jr. A survey of extended-interval aminoglycoside dosing practices in United States adult cystic fibrosis programs. Respir Care. 2014;59(9):1353–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Barza M, Ioannidis JP, Cappelleri JC, Lau J. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ. 1996;312(7027):338–45.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, 2018.
  43. 43.
    Kato H, Hagihara M, Hirai J, Sakanashi D, Suematsu H, Nishiyama N, et al. Evaluation of amikacin pharmacokinetics and pharmacodynamics for optimal initial dosing regimen. Drugs R D. 2017;17(1):177–87.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical Pharmacy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Clinical Pharmacokinetics and Pharmacodynamics UnitKing Saud University Medical CityRiyadhSaudi Arabia
  3. 3.Pediatric Clinical Pharmacy Services, King Saud University Medical CityKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Drug and Poison Information Center, King Saud University Medical CityKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Drug Information Center, Sultan Bin Abdulaziz Humanitarian CityKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations