Skip to main content

Attributes Used for Cancer Screening Discrete Choice Experiments: A Systematic Review

A Correction to this article was published on 12 November 2021

This article has been updated

Abstract

Background

Evidence from discrete choice experiments can be used to enrich understanding of preferences, inform the (re)design of screening programmes and/or improve communication within public campaigns about the benefits and harms of screening. However, reviews of screening discrete choice experiments highlight significant discrepancies between stated choices and real choices, particularly regarding willingness to undergo cancer screening. The identification and selection of attributes and associated levels is a fundamental component of designing a discrete choice experiment. Misspecification or misinterpretation of attributes may lead to non-compensatory behaviours, attribute non-attendance and responses that lack external validity.

Objectives

We aimed to synthesise evidence on attribute development, alongside an in-depth review of included attributes and methodological challenges, to provide a resource for researchers undertaking future studies in cancer screening.

Methods

A systematic review was conducted to identify discrete choice experiments estimating preferences towards cancer screening, dated between 1990 and December 2020. Data were synthesised narratively. In-depth analysis of attributes led to classification into four categories: test specific, service delivery, outcomes and monetary. Attribute significance and relative importance were also analysed. The International Society for Pharmacoeconomics and Outcomes Research conjoint analysis checklist was used to assess the quality of reporting.

Results

Forty-nine studies were included at full text. They covered a range of cancer sites: over half (26/49) examined colorectal screening. Most studies elicited general public preferences (34/49). In total, 280 attributes were included, 90% (252/280) of which were significant. Overall, test sensitivity and mortality reduction were most frequently found to be the most important to respondents.

Conclusions

Improvements in reporting the identification, selection and construction of attributes used within cancer screening discrete choice experiments are needed. This review also highlights the importance of considering the complexity of choice tasks when considering risk information or compound attributes. Patient and public involvement and stakeholder engagement are recommended to optimise understanding of unavoidably complex choice tasks throughout the design process. To ensure quality and maximise comparability across studies, further research is needed to develop a risk-of-bias measure for discrete choice experiments.

This is a preview of subscription content, access via your institution.

Fig 1:

adapted from Moher, et al.

Fig. 2
Fig. 3

Change history

References

  1. Peirson L, Fitzpatrick-Lewis D, Ciliska D, Warren R. Screening for cervical cancer: a systematic review and meta-analysis. Syst Rev. 2013;2(1):35.

    PubMed  PubMed Central  Article  Google Scholar 

  2. Lin JS, Piper MA, Perdue LA, Rutter CM, Webber EM, O’Connor E, et al. Screening for colorectal cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2016;315(23):2576–94.

    CAS  PubMed  Article  Google Scholar 

  3. Hirst Y, Stoffel S, Baio G, McGregor L, von Wagner C. Uptake of the English Bowel (colorectal) cancer screening programme: an update 5 years after the full roll-out. Eur J Cancer. 2018;103:267–73.

    PubMed  PubMed Central  Article  Google Scholar 

  4. Shahidi N, Cheung WY. Colorectal cancer screening: opportunities to improve uptake, outcomes, and disparities. World J Gastrointest Endosc. 2016;8(20):733–40.

    PubMed  PubMed Central  Article  Google Scholar 

  5. NHS Digital. Cervical screening programme England 2017–18. 2018.

  6. Moons L, Mariman A, Vermeir P, Colemont L, Clays E, Van Vlierberghe H, et al. Sociodemographic factors and strategies in colorectal cancer screening: a narrative review and practical recommendations. Acta Clin Belg. 2020;75(1):33–41.

    PubMed  Article  Google Scholar 

  7. Petkeviciene J, Ivanauskiene R, Klumbiene J. Sociodemographic and lifestyle determinants of non-attendance for cervical cancer screening in Lithuania, 2006–2014. Public Health. 2018;156:79–86.

    CAS  PubMed  Article  Google Scholar 

  8. Elwyn G, Frosch D, Thomson R, Joseph-Williams N, Lloyd A, Kinnersley P, et al. Shared decision making: a model for clinical practice. J Gen Intern Med. 2012;27(10):1361–7.

    PubMed  PubMed Central  Article  Google Scholar 

  9. Vass CM, Payne K. Using discrete choice experiments to inform the benefit-risk assessment of medicines: are we ready yet? Pharmacoeconomics. 2017;35(9):859–66.

    PubMed  PubMed Central  Article  Google Scholar 

  10. Ran T, Cheng C-Y, Misselwitz B, Brenner H, Ubels J, Schlander M. Cost-effectiveness of colorectal cancer screening strategies: a systematic review. Clin Gastroenterol Hepatol. 2019;17(10):1969-81.e15.

    PubMed  Article  Google Scholar 

  11. Soekhai V, de Bekker-Grob EW, Ellis AR, Vass CM. Discrete choice experiments in health economics: past, present and future. Pharmacoeconomics. 2019;37(2):201–26.

    PubMed  Article  Google Scholar 

  12. Ali S, Ronaldson S. Ordinal preference elicitation methods in health economics and health services research: using discrete choice experiments and ranking methods. Br Med Bull. 2012;103(1):21–44.

    PubMed  Article  Google Scholar 

  13. Ryan M, Gerard K. Using discrete choice experiments to value health care programmes: current practice and future research reflections. Appl Health Econ Health Policy. 2003;2(1):55–64.

    PubMed  Google Scholar 

  14. Lancsar E, Louviere J. Conducting discrete choice experiments to inform healthcare decision making. Pharmacoeconomics. 2008;26(8):661–77.

    PubMed  Article  Google Scholar 

  15. Bridges JF, Hauber AB, Marshall D, Lloyd A, Prosser LA, Regier DA, et al. Conjoint analysis applications in health: a checklist: a report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value Health. 2011;14(4):403–13.

    PubMed  Article  Google Scholar 

  16. Coast J, Al-Janabi H, Sutton EJ, Horrocks SA, Vosper AJ, Swancutt DR, et al. Using qualitative methods for attribute development for discrete choice development experiments: issues and recommendations. Health Econ. 2012;21(6):730–41.

    PubMed  Article  Google Scholar 

  17. Ghanouni A, Smith SG, Halligan S, Plumb A, Boone D, Yao GL, et al. Public preferences for colorectal cancer screening tests: a review of conjoint analysis studies. Expert Rev Med Dev. 2013;10(4):489–99.

    CAS  Article  Google Scholar 

  18. Marshall D, McGregor SE, Currie G. Measuring preferences for colorectal cancer screening: what are the implications for moving forward? Patient. 2010;3(2):79–89.

    PubMed  Article  Google Scholar 

  19. Phillips KA, Van Bebber S, Marshall D, Walsh J, Thabane L. A review of studies examining stated preferences for cancer screening. Prev Chronic Dis. 2006;3(3):A75.

    PubMed  PubMed Central  Google Scholar 

  20. Wortley S, Wong G, Kieu A, Howard K. Assessing stated preferences for colorectal cancer screening: a critical systematic review of discrete choice experiments. Patient. 2014;7(3):271–82.

    CAS  PubMed  Article  Google Scholar 

  21. Mansfield C, Tangka FK, Ekwueme DU, Smith JL, Guy Jr GP, Li C, et al. Peer reviewed: stated preference for cancer screening: a systematic review of the literature, 1990–2013. Prev Chronic Dis. 2016;13.

  22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    PubMed  Article  Google Scholar 

  23. Brouwer WB, Culyer AJ, van Exel NJA, Rutten FF. Welfarism vs. extra-welfarism. J Health Econ. 2008;27(2):325–38.

    PubMed  Article  Google Scholar 

  24. Brouwer WB, van Exel NJA, van den Berg B, van den Bos GA, Koopmanschap MA. Process utility from providing informal care: the benefit of caring. Health Policy. 2005;74(1):85–99.

    PubMed  Article  Google Scholar 

  25. Bien DR, Danner M, Vennedey V, Civello D, Evers SM, Hiligsmann M. Patients’ preferences for outcome, process and cost attributes in cancer treatment: a systematic review of discrete choice experiments. Patient. 2017;10(5):553–65.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Coast J, Smith RD, Lorgelly P. Welfarism, extra-welfarism and capability: the spread of ideas in health economics. Soc Sci Med. 2008;67(7):1190–8.

    PubMed  Article  Google Scholar 

  27. Hauber AB, González JM, Groothuis-Oudshoorn CG, Prior T, Marshall DA, Cunningham C, et al. Statistical methods for the analysis of discrete choice experiments: a report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value Health. 2016;19(4):300–15.

    PubMed  Article  Google Scholar 

  28. Salkeld G, Ryan M, Short L. The veil of experience: do consumers prefer what they know best? Health Econ. 2000;9(3):267–70.

    CAS  PubMed  Article  Google Scholar 

  29. Gerard K, Shanahan M, Louviere J. Using stated preference discrete choice modelling to inform health care decisionmaking: a pilot study of breast screening participation. Appl Econ. 2003;35(9):1073–85.

    Article  Google Scholar 

  30. Salkeld G, Solomon M, Short L, Ryan M, Ward JE. Evidence-based consumer choice: a case study in colorectal cancer screening. Aust N Z J Public Health. 2003;27(4):449–55.

    PubMed  Article  Google Scholar 

  31. Fiebig DG, Haas M, Hossain I, Street DJ, Viney R. Decisions about Pap tests: what influences women and providers? Soc Sci Med. 2009;68(10):1766–74.

    PubMed  Article  Google Scholar 

  32. Howard K, Salkeld G. Does attribute framing in discrete choice experiments influence willingness to pay? Results from a discrete choice experiment in screening for colorectal cancer. Value Health. 2009;12(2):354–63.

    PubMed  Article  Google Scholar 

  33. Johar M, Fiebig DG, Haas M, Viney R. Using repeated choice experiments to evaluate the impact of policy changes on cervical screening. Appl Econ. 2013;45(14):1845–55.

    Article  Google Scholar 

  34. Pignone MP, Howard K, Brenner AT, Crutchfield TM, Hawley ST, Lewis CL, et al. Comparing 3 techniques for eliciting patient values for decision making about prostate-specific antigen screening: a randomized controlled trial. JAMA Intern Med. 2013;173(5):362–8.

    PubMed  PubMed Central  Article  Google Scholar 

  35. Brenner A, Howard K, Lewis C, Sheridan S, Crutchfield T, Hawley S, et al. Comparing 3 values clarification methods for colorectal cancer screening decision-making: a randomized trial in the US and Australia. J Gen Intern Med. 2014;29(3):507–13.

    PubMed  Article  Google Scholar 

  36. Howard K, Salkeld GP, Patel MI, Mann GJ, Pignone MP. Men’s preferences and trade-offs for prostate cancer screening: a discrete choice experiment. Health Expect. 2015;18(6):3123–35.

    PubMed  Article  Google Scholar 

  37. Spinks J, Janda M, Soyer HP, Whitty JA. Consumer preferences for teledermoscopy screening to detect melanoma early. J Telemed Telecare. 2016;22(1):39–46.

    PubMed  Article  Google Scholar 

  38. Osborne JM, Flight I, Wilson CJ, Chen G, Ratcliffe J, Young GP. The impact of sample type and procedural attributes on relative acceptability of different colorectal cancer screening regimens. Patient Prefer Adherence. 2018;12:1825–36.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Snoswell CL, Whitty JA, Caffery LJ, Loescher LJ, Gillespie N, Janda M. Direct-to-consumer mobile teledermoscopy for skin cancer screening: preliminary results demonstrating willingness-to-pay in Australia. J Telemed Telecare. 2018;24(10):683–9.

    PubMed  Article  Google Scholar 

  40. Marshall DA, Johnson R, Kulin NA, Ozdemir A, Walsh A, Marshall J, et al. How do physician assessments of patient preferences for colorectal cancer screening tests differ from actual preferences? A comparison in Canada and the United States using a stated-choice survey. Health Econ. 2009;18(12):1420–39.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Pignone MP, Brenner AT, Hawley S, Sheridan SL, Lewis CL, Jonas DE, et al. Conjoint analysis versus rating and ranking for values elicitation and clarification in colorectal cancer screening. J Gen Intern Med. 2012;27(1):45–50.

    PubMed  Article  Google Scholar 

  42. Pignone MP, Crutchfield TM, Brown PM, Hawley ST, Laping JL, Lewis CL, et al. Using a discrete choice experiment to inform the design of programs to promote colon cancer screening for vulnerable populations in North Carolina. BMC Health Serv Res. 2014;14:611.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Kistler CE, Hess TM, Howard K, Pignone MP, Crutchfield TM, Hawley ST, et al. Older adults’ preferences for colorectal cancer-screening test attributes and test choice. Patient Prefer Adherence. 2015;9:1005–16.

    PubMed  PubMed Central  Google Scholar 

  44. Martens CE, Crutchfield TM, Laping JL, Perreras L, Reuland DS, Cubillos L, et al. Why wait until our community gets cancer? Exploring CRC screening barriers and facilitators in the Spanish-speaking community in North Carolina. J Cancer Educ. 2016;31(4):652–9.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Mansfield C, Ekwueme DU, Tangka FKL, Brown DS, Smith JL, Guy GP, et al. Colorectal cancer screening: preferences, past behavior, and future intentions. Patient. 2018;11(6):599–611.

    PubMed  PubMed Central  Article  Google Scholar 

  46. Hendrix N, Hauber B, Lee CI, Bansal A, Veenstra DL. Artificial intelligence in breast cancer screening: primary care provider preferences. J Am Med Inform Assoc. 2021;28(6):1117–242.

    PubMed  Article  Google Scholar 

  47. Hol L, De Bekker-Grob EW, Van Dam L, Donkers B, Kuipers EJ, Habbema JDF, et al. Preferences for colorectal cancer screening strategies: a discrete choice experiment. Br J Cancer. 2010;102(6):972–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. van Dam L, Hol L, Bekker-Grob EWD, Steyerberg EW, Kuipers EJ, Habbema JDF, et al. What determines individuals’ preferences for colorectal cancer screening programmes? A discrete choice experiment. Eur J Cancer. 2010;46(1):150–9.

    PubMed  Article  Google Scholar 

  49. de Bekker-Grob E, Rose JM, Donkers B, Essink-Bot ML, Bangma CH, Steyerberg EW. Men’s preferences for prostate cancer screening: a discrete choice experiment. Br J Cancer. 2013;108(3):533–41.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Benning TM, Dellaert BGC, Dirksen CD, Severens JL. Preferences for potential innovations in non-invasive colorectal cancer screening: a labeled discrete choice experiment for a Dutch screening campaign. Acta Oncol. 2014;53(7):898–908.

    PubMed  Article  Google Scholar 

  51. Benning TM, Dellaert BGC, Severens JL, Dirksen CD. The effect of presenting information about invasive follow-up testing on individuals’ noninvasive colorectal cancer screening participation decision: results from a discrete choice experiment. Value Health. 2014;17(5):578–87.

    PubMed  Article  Google Scholar 

  52. Groothuis-Oudshoorn CG, Fermont JM, van Til JA, Ijzerman MJ. Public stated preferences and predicted uptake for genome-based colorectal cancer screening. BMC Med Inform Decis Mak. 2014;14:18.

    PubMed  PubMed Central  Article  Google Scholar 

  53. de Bekker-Grob EW, Donkers B, Veldwijk J, Jonker MF, Buis S, Huisman J, et al. What factors influence non-participation most in colorectal cancer screening? A discrete choice experiment. Patient. 2021;14(2):269–81.

    PubMed  Article  Google Scholar 

  54. Peters Y, Siersema PD. Public preferences and predicted uptake for esophageal cancer screening strategies: a labeled discrete choice experiment. Clin Transl Gastroenterol. 2020;11(11):e00260.

  55. Ryan M, Wordsworth S. Sensitivity of willingness to pay estimates to the level of attributes in discrete choice experiments. Scottish J Political Econ. 2000;47(5):504–24.

    Article  Google Scholar 

  56. Boone D, Mallett S, Zhu S, Yao GL, Bell N, Ghanouni A, et al. Patients’ & healthcare professionals’ values regarding true- & false-positive diagnosis when colorectal cancer screening by CT colonography: discrete choice experiment. PLoS ONE. 2013;8(12):e80767.

    PubMed  PubMed Central  Article  Google Scholar 

  57. Ghanouni A, Halligan S, Taylor SA, Boone D, Plumb A, Stoffel S, et al. Quantifying public preferences for different bowel preparation options prior to screening CT colonography: a discrete choice experiment. BMJ Open. 2014;4(4):e004327.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Plumb AA, Boone D, Fitzke H, Helbren E, Mallett S, Zhu S, et al. Detection of extracolonic pathologic findings with CT colonography: a discrete choice experiment of perceived benefits versus harms. Radiology. 2014;273(1):144–52.

    PubMed  Article  Google Scholar 

  59. Kitchener HC, Gittins M, Rivero-Arias O, Tsiachristas A, Cruickshank M, Gray A, et al. A cluster randomised trial of strategies to increase cervical screening uptake at first invitation (STRATEGIC). Health Technol Assess. 2016;20(68):1–138.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Vass CM, Rigby D, Payne K. Investigating the heterogeneity in women’s preferences for breast screening: does the communication of risk matter? Value Health. 2018;21(2):219–28.

    PubMed  Article  Google Scholar 

  61. Berchi C, Dupuis J-M, Launoy G. The reasons of general practitioners for promoting colorectal cancer mass screening in France. Eur J Health Econ. 2006;7(2):91–8.

    PubMed  Article  Google Scholar 

  62. Nayaradou M, Berchi C, Dejardin O, Launoy G. Eliciting population preferences for mass colorectal cancer screening organization. Med Decis Making. 2010;30(2):224–33.

    PubMed  Article  Google Scholar 

  63. Sicsic J, Krucien N, Franc C. What are GPs’ preferences for financial and non-financial incentives in cancer screening? Evidence for breast, cervical, and colorectal cancers. Soc Sci Med. 2016;167:116–27.

    PubMed  Article  Google Scholar 

  64. Papin-Lefebvre F, Guillaume E, Moutel G, Launoy G, Berchi C. General practitioners’ preferences with regard to colorectal cancer screening organisation colon cancer screening medico-legal aspects. Health Policy. 2017;121(10):1079–84.

    PubMed  Article  Google Scholar 

  65. Sicsic J, Pelletier-Fleury N, Moumjid N. Women’s benefits and harms trade-offs in breast cancer screening: results from a discrete-choice experiment. Value Health. 2018;21(1):78–88.

    PubMed  Article  Google Scholar 

  66. Charvin M, Launoy G, Berchi C. The effect of information on prostate cancer screening decision process: a discrete choice experiment. BMC Health Serv Res. 2020;20:1–10.

    Article  Google Scholar 

  67. Raginel T, Grandazzi G, Launoy G, Trocmé M, Christophe V, Berchi C, et al. Social inequalities in cervical cancer screening: a discrete choice experiment among French general practitioners and gynaecologists. BMC Health Serv Res. 2020;20(1):1–10.

    Article  Google Scholar 

  68. Arana JE, Leon CJ, Quevedo JL. The effect of medical experience on the economic evaluation of health policies: a discrete choice experiment. Soc Sci Med. 2006;63(2):512–24.

    PubMed  Article  Google Scholar 

  69. Chamot E, Mulambia C, Kapambwe S, Shrestha S, Parham GP, Macwan’gi M, et al. Preference for human papillomavirus-based cervical cancer screening: results of a choice-based conjoint study in Zambia. J Lower Genital Tract Dis. 2015;19(2):119–23.

    Article  Google Scholar 

  70. Li S, Liu S, Ratcliffe J, Gray A, Chen G. Preferences for cervical cancer screening service attributes in rural China: a discrete choice experiment. Patient Prefer Adherence. 2019;13:881.

    PubMed  PubMed Central  Article  Google Scholar 

  71. Oberlin AM, Pasipamire T, Chibwesha CJ. Exploring women’s preferences for HPV-based cervical cancer screening in South Africa. Int J Gynecol Obstet. 2019;146(2):192–9.

    Article  Google Scholar 

  72. Bilger M, Özdemir S, Finkelstein EA. Demand for cancer screening services: results from randomized controlled discrete choice experiments. Value Health. 2020;23(9):1246–55.

    PubMed  Article  Google Scholar 

  73. Kohler RE, Gopal S, Lee CN, Weiner BJ, Reeve BB, Wheeler SB. Breast cancer knowledge, behaviors, and preferences in Malawi: implications for early detection interventions from a discrete choice experiment. J Global Oncol. 2017;3(5):480–9.

    Article  Google Scholar 

  74. Mandrik O, Yaumenenka A, Herrero R, Jonker MF. Population preferences for breast cancer screening policies: discrete choice experiment in Belarus. PLoS ONE. 2019;14(11):e0224667.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Light A, Elhage O, Marconi L, Dasgupta P. Prostate cancer screening: where are we now? BJU Int. 2019;123(6):916–7.

    PubMed  Article  Google Scholar 

  76. Ramezani Doroh V, Delavari A, Yaseri M, Sefiddashti SE, Akbarisari A. Preferences of Iranian average risk population for colorectal cancer screening tests. Int J Health Care Qual Assur. 2019;32(4):677–87.

    PubMed  Article  Google Scholar 

  77. Marshall DA, Johnson FR, Phillips KA, Marshall JK, Thabane L, Kulin NA. Measuring patient preferences for colorectal cancer screening using a choice-format survey. Value Health. 2007;10(5):415–30.

    PubMed  Article  Google Scholar 

  78. Mühlbacher A, Bethge S, Sadler A. Compound attributes for side effect in discrete choice experiments: risk or severity: what is more important to hepatitis C patients? Value Health. 2015;18(7):A629–30.

    Article  Google Scholar 

  79. Harrison M, Rigby D, Vass C, Flynn T, Louviere J, Payne K. Risk as an attribute in discrete choice experiments: a systematic review of the literature. Patient. 2014;7(2):151–70.

    PubMed  Article  Google Scholar 

  80. Freeman AM, Herriges JA, Kling CL. The measurement of environmental and resource values: theory and methods. New York: Routledge; 2014.

    Book  Google Scholar 

  81. Spinks J, Mortimer D. Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments. BMC Med Inform Decis Mak. 2015;16:14.

    Article  Google Scholar 

  82. Regier DA, Watson V, Burnett H, Ungar WJ. Task complexity and response certainty in discrete choice experiments: an application to drug treatments for juvenile idiopathic arthritis. J Behav Exp Econ. 2014;50:40–9.

    Article  Google Scholar 

  83. Flynn TN, Bilger M, Malhotra C, Finkelstein EA. Are efficient designs used in discrete choice experiments too difficult for some respondents? A case study eliciting preferences for end-of-life care. Pharmacoeconomics. 2016;34(3):273–84.

    PubMed  Article  Google Scholar 

  84. Jonker MF, Donkers B, de Bekker-Grob E, Stolk EA. Attribute level overlap (and color coding) can reduce task complexity, improve choice consistency, and decrease the dropout rate in discrete choice experiments. Health Econ. 2019;28(3):350–63.

    PubMed  Article  Google Scholar 

  85. Veldwijk J, Determann D, Lambooij MS, Van Til JA, Korfage IJ, de Bekker-Grob EW, et al. Exploring how individuals complete the choice tasks in a discrete choice experiment: an interview study. BMC Med Res Methodol. 2016;16:45.

    PubMed  PubMed Central  Article  Google Scholar 

  86. Ericsson KA, Simon HA. How to study thinking in everyday life: contrasting think-aloud protocols with descriptions and explanations of thinking. Mind Cult Activ. 1998;5(3):178–86.

    Article  Google Scholar 

  87. Aguiar M, Harrison M, Munro S, Burch T, Kaal KJ, Hudson M, et al. Designing discrete choice experiments using a patient-oriented approach. Patient. 2021;14(4):389–97.

    PubMed  Article  Google Scholar 

  88. Barber S, Bekker H, Marti J, Pavitt S, Khambay B, Meads D. Development of a discrete-choice experiment (DCE) to elicit adolescent and parent preferences for hypodontia treatment. Patient. 2019;12(1):137–48.

    PubMed  Article  Google Scholar 

  89. McCarthy MC, De Abreu LR, McMillan LJ, Meshcheriakova E, Cao A, Gillam L. Finding out what matters in decision-making related to genomics and personalized medicine in pediatric oncology: developing attributes to include in a discrete choice experiment. Patient. 2020;13(3):347–61.

    PubMed  Article  Google Scholar 

  90. Sarikhani Y, Ostovar T, Rossi-Fedele G, Edirippulige S, Bastani P. A protocol for developing a discrete choice experiment to elicit preferences of general practitioners for the choice of specialty. Value Health Reg Issues. 2021;25:80–9.

    PubMed  Article  Google Scholar 

  91. Vellinga A, Devine C, Ho MY, Clarke C, Leahy P, Bourke J, et al. What do patients value as incentives for participation in clinical trials? A pilot discrete choice experiment. Res Ethics. 2020;16(1–2):1–12.

    Article  Google Scholar 

  92. Hollin IL, Craig BM, Coast J, Beusterien K, Vass C, DiSantostefano R, et al. Reporting formative qualitative research to support the development of quantitative preference study protocols and corresponding survey instruments: guidelines for authors and reviewers. Patient. 2020;13(1):121–36.

    PubMed  Article  Google Scholar 

  93. Shields GE, Brown L, Wells A, Capobianco L, Vass C. Utilising patient and public involvement in stated preference research in health: learning from the existing literature and a case study. Patient. 2021;14(4):399–412.

    PubMed  Article  Google Scholar 

  94. Hawton A, Boddy K, Kandiyali R, Tatnell L, Gibson A, Goodwin E. Involving patients in health economics research: “the PACTS principles.” Patient. 2021;14(4):429–34.

    PubMed  Article  Google Scholar 

  95. Callender T, Emberton M, Morris S, Pharoah PD, Pashayan N. Benefit, harm, and cost-effectiveness associated with magnetic resonance imaging before biopsy in age-based and risk-stratified screening for prostate cancer. JAMA Netw Open. 2021;4(3):e2037657.

    PubMed  PubMed Central  Article  Google Scholar 

  96. Griffin E, Hyde C, Long L, Varley-Campbell J, Coelho H, Robinson S, et al. Lung cancer screening by low-dose computed tomography: a cost-effectiveness analysis of alternative programmes in the UK using a newly developed natural history-based economic model. Diagn Progn Res. 2020;4(1):1–11.

    Article  Google Scholar 

  97. Johnson FR, Lancsar E, Marshall D, Kilambi V, Mühlbacher A, Regier DA, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Health. 2013;16(1):3–13.

    Article  Google Scholar 

  98. Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19(6):349–57.

    PubMed  Article  Google Scholar 

  99. Pollard K, Donskoy A-L, Moule P, Donald C, Lima M, Rice C. Developing and evaluating guidelines for patient and public involvement (PPI) in research. Int J Health Care Qual Assur. 2015;28(2):141–55.

    PubMed  Article  Google Scholar 

  100. Edwards AG, Naik G, Ahmed H, Elwyn GJ, Pickles T, Hood K, et al. Personalised risk communication for informed decision making about taking screening tests. Cochrane Database Syst Rev. 2013;2:CD001865.

    Google Scholar 

  101. Fagerlin A, Zikmund-Fisher BJ, Ubel PA. Helping patients decide: ten steps to better risk communication. J Nat Cancer Instit. 2011;103(19):1436–43.

    Article  Google Scholar 

  102. Paling J. Strategies to help patients understand risks. BMJ. 2003;327(7417):745–8.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jenny Lowe, University of Exeter for helping to run the database searches that formed part of this review. We thank Nia Morrish for assisting in the initial screening of the search results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah Hall.

Ethics declarations

Funding

This research arises from the CanTest Collaborative, which is funded by Cancer Research UK (reference number: C8640/A23385), of which Rebekah Hall is a funded PhD student, Willie Hamilton is a director and Anne E. Spencer is a senior faculty member.

Conflicts of interest

The authors have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

All authors contributed to the study conception and design. Searches, screening and data abstraction were performed by RH and AM-L. The first draft of the manuscript was written by RH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Additional information

The original Online version of this article was revised: The data points In figure 2 were missed and published.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 336 kb)

Supplementary file2 (DOCX 333 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hall, R., Medina-Lara, A., Hamilton, W. et al. Attributes Used for Cancer Screening Discrete Choice Experiments: A Systematic Review. Patient 15, 269–285 (2022). https://doi.org/10.1007/s40271-021-00559-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40271-021-00559-3