Abstract
The number of older individuals receiving a kidney transplant as replacement therapy has significantly increased in the past decades and this increase is expected to continue. Older patients have a lower rate of acute rejection but an increased incidence of death with a functioning graft. Several factors, including an increased incidence of infections, post-transplant malignancy and cardiovascular comorbidity and mortality, contribute to this increased risk. Notwithstanding, kidney transplantation is still the best form of kidney replacement therapy in all patients with chronic kidney disease, including in older individuals. The best form of immunosuppression and the optimal dose of these medications in older recipients remains a topic of discussion. Pharmacological studies have usually excluded older patients and when included, patients were highly selected and their numbers insignificant to draw a reasonable conclusion. The reduced incidence of acute rejection in older recipients has largely been attributed to immunosenescence. Immunosenescence refers to the aging of the innate and adaptive immunity, accumulating in phenotypic and functional changes. These changes influences the response of the immune system to new challenges. In older individuals, immunosenescence is associated with increased susceptibility to infectious pathogens, a decreased response after vaccinations, increased risk of malignancies and cardiovascular morbidity and mortality. Chronic kidney disease is associated with premature immunosenescent changes, and these are independent of aging. The immunosenescent state is associated with low-grade sterile inflammation termed inflammaging. This chronic low-grade inflammation triggers a compensatory immunosuppressive state to avoid further tissue damage, leaving older individuals with chronic kidney disease in an immune-impaired state before kidney transplantation. Immunosuppression after transplantation may further enhance progression of this immunosenescent state. This review covers the role of immunosenescence in older kidney transplant recipients and it details present knowledge of the changes in chronic kidney disease and after transplantation. The impact of immunosuppression on the progression and complications of an immunosenescent state are discussed, and the future direction of a possible clinical implementation of immunosenescence to individualize/reduce immunosuppression in older recipients is laid out.
Similar content being viewed by others
References
Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30. https://doi.org/10.1056/NEJM199912023412303.
Heinbokel T, Elkhal A, Liu G, Edtinger K, Tullius SG. Immunosenescence and organ transplantation. Transplant Rev (Orlando). 2013;27(3):65–75. https://doi.org/10.1016/j.trre.2013.03.001.
Smits JM, Persijn GG, van Houwelingen HC, Claas FH, Frei U. Evaluation of the Eurotransplant Senior Program. The results of the first year. Am J Transplant. 2002;2(7):664–70. https://doi.org/10.1034/j.1600-6143.2002.20713.x.
Rosengard BR, Feng S, Alfrey EJ, Zaroff JG, Emond JC, Henry ML, et al. Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor. Am J Transplant. 2002;2(8):701–11. https://doi.org/10.1034/j.1600-6143.2002.20804.x.
Metzger RA, Delmonico FL, Feng S, Port FK, Wynn JJ, Merion RM. Expanded criteria donors for kidney transplantation. Am J Transplant. 2003;3(Suppl 4):114–25. https://doi.org/10.1034/j.1600-6143.3.s4.11.x.
Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–47. https://doi.org/10.1093/ndt/gfn667.
Heldal K, Hartmann A, Leivestad T, Svendsen MV, Foss A, Lien B, et al. Clinical outcomes in elderly kidney transplant recipients are related to acute rejection episodes rather than pretransplant comorbidity. Transplantation. 2009;87(7):1045–51. https://doi.org/10.1097/TP.0b013e31819cdddd.
Lai X, Chen G, Qiu J, Wang C, Chen L. Recipient-related risk factors for graft failure and death in elderly kidney transplant recipients. PLoS One. 2014;9(11): e112938. https://doi.org/10.1371/journal.pone.0112938.
Artiles A, Dominguez A, Subiela JD, Boissier R, Campi R, Prudhomme T, et al. Kidney transplant outcomes in elderly population: a systematic review and meta-analysis. Eur Urol Open Sci. 2023;51:13–25. https://doi.org/10.1016/j.euros.2023.02.011.
So S, Au EHK, Lim WH, Lee VWS, Wong G. Factors influencing long-term patient and allograft outcomes in elderly kidney transplant recipients. Kidney Int Rep. 2021;6(3):727–36. https://doi.org/10.1016/j.ekir.2020.11.035.
Lemoine M, Titeca Beauport D, Lobbedez T, Choukroun G, Hurault de Ligny B, Hazzan M, et al. Risk factors for early graft failure and death after kidney transplantation in recipients older than 70 years. Kidney Int Rep. 2019;4(5):656–66. https://doi.org/10.1016/j.ekir.2019.01.014.
Jankowska M, Bzoma B, Malyszko J, Malyszko J, Slupski M, Kobus G, et al. Early outcomes and long-term survival after kidney transplantation in elderly versus younger recipients from the same donor in a matched-pairs analysis. Medicine (Baltimore). 2021;100(51): e28159. https://doi.org/10.1097/MD.0000000000028159.
Gill JS, Tonelli M, Johnson N, Kiberd B, Landsberg D, Pereira BJ. The impact of waiting time and comorbid conditions on the survival benefit of kidney transplantation. Kidney Int. 2005;68(5):2345–51. https://doi.org/10.1111/j.1523-1755.2005.00696.x.
Hemmersbach-Miller M, Alexander BD, Sudan DL, Pieper C, Schmader KE. Single-center analysis of infectious complications in older adults during the first year after kidney transplantation. Eur J Clin Microbiol Infect Dis. 2019;38(1):141–8. https://doi.org/10.1007/s10096-018-3405-5.
Oh SJ, Lee JK, Shin OS. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 2019;19(6): e37. https://doi.org/10.4110/in.2019.19.e37.
Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, et al. Immunosenescence: implications for response to infection and vaccination in older people. Maturitas. 2015;82(1):50–5. https://doi.org/10.1016/j.maturitas.2015.05.004.
Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13(1):151. https://doi.org/10.1186/s13045-020-00986-z.
Fulop T, Larbi A, Witkowski JM, Kotb R, Hirokawa K, Pawelec G. Immunosenescence and cancer. Crit Rev Oncog. 2013;18(6):489–513. https://doi.org/10.1615/critrevoncog.2013010597.
Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 2020;20(2):89–106. https://doi.org/10.1038/s41568-019-0222-9.
Costantini E, D’Angelo C, Reale M. The role of immunosenescence in neurodegenerative diseases. Mediators Inflamm. 2018;2018:6039171. https://doi.org/10.1155/2018/6039171.
Amoriello R, Mariottini A, Ballerini C. Immunosenescence and autoimmunity: exploiting the T-Cell Receptor Repertoire to Investigate the Impact of Aging on Multiple Sclerosis. Front Immunol. 2021;12: 799380. https://doi.org/10.3389/fimmu.2021.799380.
Tae YuH, Youn JC, Lee J, Park S, Chi HS, Lee J, et al. Characterization of CD8(+)CD57(+) T cells in patients with acute myocardial infarction. Cell Mol Immunol. 2015;12(4):466–73. https://doi.org/10.1038/cmi.2014.74.
Mella A, Mariano F, Dolla C, Gallo E, Manzione AM, Di Vico MC, et al. Bacterial and Viral Infection and Sepsis in Kidney Transplanted Patients. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10030701.
Fishman JA. Opportunistic infections–coming to the limits of immunosuppression? Cold Spring Harb Perspect Med. 2013;3(10): a015669. https://doi.org/10.1101/cshperspect.a015669.
Gutierrez-Dalmau A, Campistol JM. Immunosuppressive therapy and malignancy in organ transplant recipients: a systematic review. Drugs. 2007;67(8):1167–98. https://doi.org/10.2165/00003495-200767080-00006.
Cheung CY, Tang SCW. An update on cancer after kidney transplantation. Nephrol Dial Transplant. 2019;34(6):914–20. https://doi.org/10.1093/ndt/gfy262.
Gallagher MP, Kelly PJ, Jardine M, Perkovic V, Cass A, Craig JC, et al. Long-term cancer risk of immunosuppressive regimens after kidney transplantation. J Am Soc Nephrol. 2010;21(5):852–8. https://doi.org/10.1681/ASN.2009101043.
Xia M, Yang H, Tong X, Xie H, Cui F, Shuang W. Risk factors for new-onset diabetes mellitus after kidney transplantation: a systematic review and meta-analysis. J Diabetes Investig. 2021;12(1):109–22. https://doi.org/10.1111/jdi.13317.
Ghisdal L, Van Laecke S, Abramowicz MJ, Vanholder R, Abramowicz D. New-onset diabetes after renal transplantation: risk assessment and management. Diabetes Care. 2012;35(1):181–8. https://doi.org/10.2337/dc11-1230.
Kasiske BL, Guijarro C, Massy ZA, Wiederkehr MR, Ma JZ. Cardiovascular disease after renal transplantation. J Am Soc Nephrol. 1996;7(1):158–65. https://doi.org/10.1681/ASN.V71158.
Devine PA, Courtney AE, Maxwell AP. Cardiovascular risk in renal transplant recipients. J Nephrol. 2019;32(3):389–99. https://doi.org/10.1007/s40620-018-0549-4.
Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant. 2011;11(11):2279–96. https://doi.org/10.1111/j.1600-6143.2011.03754.x.
Xia T, Zhu S, Wen Y, Gao S, Li M, Tao X, et al. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: a systematic review and meta-analysis. Drug Des Devel Ther. 2018;12:417–28. https://doi.org/10.2147/DDDT.S149340.
Rana A, Murthy B, Pallister Z, Kueht M, Cotton R, Galvan NTN, et al. Profiling risk for acute rejection in kidney transplantation: recipient age is a robust risk factor. J Nephrol. 2017;30(6):859–68. https://doi.org/10.1007/s40620-016-0354-x.
Frei U, Noeldeke J, Machold-Fabrizii V, Arbogast H, Margreiter R, Fricke L, et al. Prospective age-matching in elderly kidney transplant recipients—a 5-year analysis of the Eurotransplant Senior Program. Am J Transplant. 2008;8(1):50–7. https://doi.org/10.1111/j.1600-6143.2007.02014.x.
Halleck F, Khadzhynov D, Liefeldt L, Schrezenmeier E, Lehner L, Duerr M, et al. Immunologic outcome in elderly kidney transplant recipients: is it time for HLA-DR matching? Nephrol Dial Transplant. 2016;31(12):2143–9. https://doi.org/10.1093/ndt/gfw248.
De Fijter J, Dreyer G, Mallat M, Budde K, Pratschke J, Klempnauer J, et al. A paired-kidney allocation study found superior survival with HLA-DR compatible kidney transplants in the Eurotransplant Senior Program. Kidney Int. 2023;104(3):552–61. https://doi.org/10.1016/j.kint.2023.05.025.
Dreyer GJ, Hemke AC, Reinders ME, de Fijter JW. Transplanting the elderly: balancing aging with histocompatibility. Transplant Rev (Orlando). 2015;29(4):205–11. https://doi.org/10.1016/j.trre.2015.08.003.
De Fijter JW. The impact of age on rejection in kidney transplantation. Drugs Aging. 2005;22(5):433–49. https://doi.org/10.2165/00002512-200522050-00007.
Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194–201. https://doi.org/10.1002/ar.1092320205.
Akoh JA, Mathuram TU. Renal transplantation from elderly living donors. J Transplant. 2013;2013: 475964. https://doi.org/10.1155/2013/475964.
Martins PN, Tullius SG, Markmann JF. Immunosenescence and immune response in organ transplantation. Int Rev Immunol. 2014;33(3):162–73. https://doi.org/10.3109/08830185.2013.829469.
Hricik DE, Formica RN, Nickerson P, Rush D, Fairchild RL, Poggio ED, et al. Adverse outcomes of tacrolimus withdrawal in immune-quiescent kidney transplant recipients. J Am Soc Nephrol. 2015;26(12):3114–22. https://doi.org/10.1681/ASN.2014121234.
Dugast E, Soulillou JP, Foucher Y, Papuchon E, Guerif P, Paul C, et al. Failure of calcineurin inhibitor (tacrolimus) weaning randomized trial in long-term stable kidney transplant recipients. Am J Transplant. 2016;16(11):3255–61. https://doi.org/10.1111/ajt.13946.
Meier-Kriesche HU, Ojo AO, Hanson JA, Kaplan B. Exponentially increased risk of infectious death in older renal transplant recipients. Kidney Int. 2001;59(4):1539–43. https://doi.org/10.1046/j.1523-1755.2001.0590041539.x.
Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007;357(25):2601–14. https://doi.org/10.1056/NEJMra064928.
Yu MY, Kim YC, Lee JP, Lee H, Kim YS. Death with graft function after kidney transplantation: a single-center experience. Clin Exp Nephrol. 2018;22(3):710–8. https://doi.org/10.1007/s10157-017-1503-9.
Borriello M, Ingrosso D, Perna AF, Lombardi A, Maggi P, Altucci L, et al. BK virus infection and BK-virus-associated nephropathy in renal transplant recipients. Genes (Basel). 2022. https://doi.org/10.3390/genes13071290.
Pullerits K, Garland S, Rengarajan S, Guiver M, Chinnadurai R, Middleton RJ, et al. Kidney transplant-associated viral infection rates and outcomes in a single-centre cohort. Viruses. 2022. https://doi.org/10.3390/v14112406.
Tang Y, Guo J, Li J, Zhou J, Mao X, Qiu T. Risk factors for cytomegalovirus infection and disease after kidney transplantation: a meta-analysis. Transpl Immunol. 2022;74: 101677. https://doi.org/10.1016/j.trim.2022.101677.
Au E, Wong G, Chapman JR. Cancer in kidney transplant recipients. Nat Rev Nephrol. 2018;14(8):508–20. https://doi.org/10.1038/s41581-018-0022-6.
Webster AC, Craig JC, Simpson JM, Jones MP, Chapman JR. Identifying high risk groups and quantifying absolute risk of cancer after kidney transplantation: a cohort study of 15,183 recipients. Am J Transplant. 2007;7(9):2140–51. https://doi.org/10.1111/j.1600-6143.2007.01908.x.
Sprangers B, Nair V, Launay-Vacher V, Riella LV, Jhaveri KD. Risk factors associated with post-kidney transplant malignancies: an article from the Cancer-Kidney International Network. Clin Kidney J. 2018;11(3):315–29. https://doi.org/10.1093/ckj/sfx122.
Livingston-Rosanoff D, Foley DP, Leverson G, Wilke LG. Impact of pre-transplant malignancy on outcomes after kidney transplantation: united network for organ sharing database analysis. J Am Coll Surg. 2019;229(6):568–79. https://doi.org/10.1016/j.jamcollsurg.2019.06.001.
Pham PT, Pham PC, Danovitch GM. Cardiovascular disease posttransplant. Semin Nephrol. 2007;27(4):430–44. https://doi.org/10.1016/j.semnephrol.2007.03.005.
Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Ishani A, et al. US renal data system 2013 annual data report. Am J Kidney Dis. 2014;63(1 Suppl):A7. https://doi.org/10.1053/j.ajkd.2013.11.001.
Liefeldt L, Budde K. Risk factors for cardiovascular disease in renal transplant recipients and strategies to minimize risk. Transpl Int. 2010;23(12):1191–204. https://doi.org/10.1111/j.1432-2277.2010.01159.x.
Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S112–9. https://doi.org/10.1053/ajkd.1998.v32.pm9820470.
Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transplant. 2002;2(9):807–18. https://doi.org/10.1034/j.1600-6143.2002.20902.x.
Morales JM, Dominguez-Gil B. Cardiovascular risk profile with the new immunosuppressive combinations after renal transplantation. J Hypertens. 2005;23(9):1609–16. https://doi.org/10.1097/01.hjh.0000180159.81640.2f.
Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V, et al. Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation. 2003;108(6):678–83. https://doi.org/10.1161/01.CIR.0000084505.54603.C7.
Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.
Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016;2016:8426874. https://doi.org/10.1155/2016/8426874.
Ongradi J, Kovesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing. 2010;14(7):7. https://doi.org/10.1186/1742-4933-7-7.
Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, et al. Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol. 2019;10:2247. https://doi.org/10.3389/fimmu.2019.02247.
Bauer ME. Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. Immun Ageing. 2020;17:6. https://doi.org/10.1186/s12979-020-00178-w.
Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.
Rodrigues LP, Teixeira VR, Alencar-Silva T, Simonassi-Paiva B, Pereira RW, Pogue R, et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 2021;59:9–21. https://doi.org/10.1016/j.cytogfr.2021.01.006.
Aspinall R, Andrew D. Thymic involution in aging. J Clin Immunol. 2000;20(4):250–6. https://doi.org/10.1023/a:1006611518223.
Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 2020;17:2. https://doi.org/10.1186/s12979-020-0173-8.
Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev. 2005;205:72–93. https://doi.org/10.1111/j.0105-2896.2005.00275.x.
Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 2009;30(7):374–81. https://doi.org/10.1016/j.it.2009.05.001.
Mitchell WA, Lang PO, Aspinall R. Tracing thymic output in older individuals. Clin Exp Immunol. 2010;161(3):497–503. https://doi.org/10.1111/j.1365-2249.2010.04209.x.
Den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mogling R, de Boer AB, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity. 2012;36(2):288–97. https://doi.org/10.1016/j.immuni.2012.02.006.
Cossarizza A, Ortolani C, Monti D, Franceschi C. Cytometric analysis of immunosenescence. Cytometry. 1997;27(4):297–313. https://doi.org/10.1002/(sici)1097-0320(19970401)27:4%3c297::aid-cyto1%3e3.0.co;2-a.
Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174(11):7446–52. https://doi.org/10.4049/jimmunol.174.11.7446.
Rodriguez IJ, Lalinde Ruiz N, Llano Leon M, Martinez Enriquez L, Montilla Velasquez MDP, Ortiz Aguirre JP, et al. Immunosenescence study of T cells: a systematic review. Front Immunol. 2020;11: 604591. https://doi.org/10.3389/fimmu.2020.604591.
Tu W, Rao S. Mechanisms underlying T cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol. 2016;7:2111. https://doi.org/10.3389/fmicb.2016.02111.
Weltevrede M, Eilers R, de Melker HE, van Baarle D. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: a systematic review. Exp Gerontol. 2016;77:87–95. https://doi.org/10.1016/j.exger.2016.02.005.
Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169(4):1984–92. https://doi.org/10.4049/jimmunol.169.4.1984.
Bektas A, Schurman SH, Sen R, Ferrucci L. Human T cell immunosenescence and inflammation in aging. J Leukoc Biol. 2017;102(4):977–88. https://doi.org/10.1189/jlb.3RI0716-335R.
Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev. 2005;205:158–69. https://doi.org/10.1111/j.0105-2896.2005.00256.x.
Effros RB. Loss of CD28 expression on T lymphocytes: a marker of replicative senescence. Dev Comp Immunol. 1997;21(6):471–8. https://doi.org/10.1016/s0145-305x(97)00027-x.
Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology. 1996;88(4):501–7. https://doi.org/10.1046/j.1365-2567.1996.d01-689.x.
Looney RJ, Falsey A, Campbell D, Torres A, Kolassa J, Brower C, et al. Role of cytomegalovirus in the T cell changes seen in elderly individuals. Clin Immunol. 1999;90(2):213–9. https://doi.org/10.1006/clim.1998.4638.
Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, et al. T cell chemokine receptor expression in aging. J Immunol. 2003;170(2):895–904. https://doi.org/10.4049/jimmunol.170.2.895.
Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–52. https://doi.org/10.1007/s00262-016-1803-z.
Blanco E, Perez-Andres M, Arriba-Mendez S, Contreras-Sanfeliciano T, Criado I, Pelak O, et al. Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood. J Allergy Clin Immunol. 2018;141(6):2208–19. https://doi.org/10.1016/j.jaci.2018.02.017. (e16).
Cancro MP, Hao Y, Scholz JL, Riley RL, Frasca D, Dunn-Walters DK, et al. B cells and aging: molecules and mechanisms. Trends Immunol. 2009;30(7):313–8. https://doi.org/10.1016/j.it.2009.04.005.
Johnson KM, Owen K, Witte PL. Aging and developmental transitions in the B cell lineage. Int Immunol. 2002;14(11):1313–23. https://doi.org/10.1093/intimm/dxf092.
Stephan RP, Lill-Elghanian DA, Witte PL. Development of B cells in aged mice: decline in the ability of pro-B cells to respond to IL-7 but not to other growth factors. J Immunol. 1997;158(4):1598–609.
Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood. 1998;91(1):75–88.
Muller-Sieburg CE, Sieburg HB, Bernitz JM, Cattarossi G. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood. 2012;119(17):3900–7. https://doi.org/10.1182/blood-2011-12-376749.
Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol. 1999;162(6):3342–9.
Colonna-Romano G, Bulati M, Aquino A, Vitello S, Lio D, Candore G, et al. B cell immunosenescence in the elderly and in centenarians. Rejuven Res. 2008;11(2):433–9. https://doi.org/10.1089/rej.2008.0664.
Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 2005;175(5):3262–7. https://doi.org/10.4049/jimmunol.175.5.3262.
Chong Y, Ikematsu H, Yamaji K, Nishimura M, Nabeshima S, Kashiwagi S, et al. CD27(+) (memory) B cell decrease and apoptosis-resistant CD27(-) (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol. 2005;17(4):383–90. https://doi.org/10.1093/intimm/dxh218.
Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8(1):18–25. https://doi.org/10.1111/j.1474-9726.2008.00443.x.
Dunn-Walters DK, Ademokun AA. B cell repertoire and ageing. Curr Opin Immunol. 2010;22(4):514–20. https://doi.org/10.1016/j.coi.2010.04.009.
Tabibian-Keissar H, Hazanov L, Schiby G, Rosenthal N, Rakovsky A, Michaeli M, et al. Aging affects B-cell antigen receptor repertoire diversity in primary and secondary lymphoid tissues. Eur J Immunol. 2016;46(2):480–92. https://doi.org/10.1002/eji.201545586.
Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9(3):185–94. https://doi.org/10.1038/nri2508.
Luscieti P, Hubschmid T, Cottier H, Hess MW, Sobin LH. Human lymph node morphology as a function of age and site. J Clin Pathol. 1980;33(5):454–61. https://doi.org/10.1136/jcp.33.5.454.
Kamburova EG, Koenen HJ, Boon L, Hilbrands LB, Joosten I. In vitro effects of rituximab on the proliferation, activation and differentiation of human B cells. Am J Transplant. 2012;12(2):341–50. https://doi.org/10.1111/j.1600-6143.2011.03833.x.
Karnell JL, Karnell FG 3rd, Stephens GL, Rajan B, Morehouse C, Li Y, et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol. 2011;187(7):3603–12. https://doi.org/10.4049/jimmunol.1003319.
Pence BD. Fanning the flames of inflammaging: impact of monocyte metabolic reprogramming. Immunometabolism. 2020;2(3): e200025. https://doi.org/10.20900/immunometab20200025.
Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74-80. https://doi.org/10.1182/blood-2010-02-258558.
Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;21(11):30. https://doi.org/10.1186/1471-2172-11-30.
Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75. https://doi.org/10.1111/j.1474-9726.2012.00851.x.
Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C, et al. Phenotypic and functional alterations of monocyte subsets with aging. Immun Ageing. 2022;19(1):63. https://doi.org/10.1186/s12979-022-00321-9.
De Maeyer RPH, Chambers ES. The impact of ageing on monocytes and macrophages. Immunol Lett. 2021;230:1–10. https://doi.org/10.1016/j.imlet.2020.12.003.
Fietta A, Merlini C, De Bernardi PM, Gandola L, Piccioni PD, Grassi C. Non specific immunity in aged healthy subjects and in patients with chronic bronchitis. Aging (Milano). 1993;5(5):357–61. https://doi.org/10.1007/BF03324187.
Herrero C, Sebastian C, Marques L, Comalada M, Xaus J, Valledor AF, et al. Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol. 2002;37(2–3):389–94. https://doi.org/10.1016/s0531-5565(01)00205-4.
Biasi D, Carletto A, Dell’Agnola C, Caramaschi P, Montesanti F, Zavateri G, et al. Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation. 1996;20(6):673–81. https://doi.org/10.1007/BF01488803.
Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci. 1989;44(22):1655–64. https://doi.org/10.1016/0024-3205(89)90482-7.
Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70(6):881–6.
Bartlett DB, Fox O, McNulty CL, Greenwood HL, Murphy L, Sapey E, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun. 2016;56:12–20. https://doi.org/10.1016/j.bbi.2016.02.024.
Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3(4):217–26. https://doi.org/10.1111/j.1474-9728.2004.00110.x.
Hazeldine J, Harris P, Chapple IL, Grant M, Greenwood H, Livesey A, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13(4):690–8. https://doi.org/10.1111/acel.12222.
Sabbatini M, Bona E, Novello G, Migliario M, Reno F. Aging hampers neutrophil extracellular traps (NETs) efficacy. Aging Clin Exp Res. 2022;34(10):2345–53. https://doi.org/10.1007/s40520-022-02201-0.
Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84. https://doi.org/10.1016/j.humimm.2009.07.005.
Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol. 2007;122(2):220–8. https://doi.org/10.1016/j.clim.2006.09.012.
Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev. 2011;10(3):336–45. https://doi.org/10.1016/j.arr.2010.06.004.
Uyemura K, Castle SC, Makinodan T. The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev. 2002;123(8):955–62. https://doi.org/10.1016/s0047-6374(02)00033-7.
Agrawal A, Agrawal S, Gupta S. Dendritic cells in human aging. Exp Gerontol. 2007;42(5):421–6. https://doi.org/10.1016/j.exger.2006.11.007.
Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–27. https://doi.org/10.4049/jimmunol.0901022.
Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22. https://doi.org/10.4049/jimmunol.178.11.6912.
Miyaji C, Watanabe H, Toma H, Akisaka M, Tomiyama K, Sato Y, et al. Functional alteration of granulocytes, NK cells, and natural killer T cells in centenarians. Hum Immunol. 2000;61(9):908–16. https://doi.org/10.1016/s0198-8859(00)00153-1.
Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood. 1993;82(9):2767–73.
Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol. 1999;34(2):253–65. https://doi.org/10.1016/s0531-5565(98)00076-x.
Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, et al. Immunosenescence of human natural killer cells. J Innate Immun. 2011;3(4):337–43. https://doi.org/10.1159/000328005.
Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116(19):3865–74. https://doi.org/10.1182/blood-2010-04-282301.
Chiu YL, Shu KH, Yang FJ, Chou TY, Chen PM, Lay FY, et al. A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: the iESRD study. Immun Ageing. 2018;15:27. https://doi.org/10.1186/s12979-018-0131-x.
Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33(3):375–86. https://doi.org/10.1016/j.immuni.2010.08.012.
Betjes MG, Langerak AW, van der Spek A, de Wit EA, Litjens NH. Premature aging of circulating T cells in patients with end-stage renal disease. Kidney Int. 2011;80(2):208–17. https://doi.org/10.1038/ki.2011.110.
Crépin T, Legendre M, Carron C, Vachey C, Courivaud C, Rebibou JM, et al. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol Dial Transplant. 2020;35(4):624–32. https://doi.org/10.1093/ndt/gfy276.
Xiang F, Chen R, Cao X, Shen B, Chen X, Ding X, et al. Premature aging of circulating T cells predicts all-cause mortality in hemodialysis patients. BMC Nephrol. 2020;21(1):271. https://doi.org/10.1186/s12882-020-01920-8.
Schaenman JM, Rossetti M, Sidwell T, Groysberg V, Sunga G, Korin Y, et al. Increased T cell immunosenescence and accelerated maturation phenotypes in older kidney transplant recipients. Hum Immunol. 2018;79(9):659–67. https://doi.org/10.1016/j.humimm.2018.06.006.
Wang L, Rondaan C, de Joode AAE, Raveling-Eelsing E, Bos NA, Westra J. Changes in T and B cell subsets in end stage renal disease patients before and after kidney transplantation. Immun Ageing. 2021;18(1):43. https://doi.org/10.1186/s12979-021-00254-9.
Lee GH, Lee JY, Jang J, Kang YJ, Choi SA, Kim HC, et al. Anti-thymocyte globulin-mediated immunosenescent alterations of T cells in kidney transplant patients. Clin Transl Immunol. 2022;11(11): e1431. https://doi.org/10.1002/cti2.1431.
Zaza G, Leventhal J, Signorini L, Gambaro G, Cravedi P. Effects of antirejection drugs on innate immune cells after kidney transplantation. Front Immunol. 2019;10:2978. https://doi.org/10.3389/fimmu.2019.02978.
Trzonkowski P, Debska-Slizien A, Jankowska M, Wardowska A, Carvalho-Gaspar M, Hak L, et al. Immunosenescence increases the rate of acceptance of kidney allotransplants in elderly recipients through exhaustion of CD4+ T-cells. Mech Ageing Dev. 2010;131(2):96–104. https://doi.org/10.1016/j.mad.2009.12.006.
Krenzien F, Quante M, Heinbokel T, Seyda M, Minami K, Uehara H, et al. Age-dependent metabolic and immunosuppressive effects of tacrolimus. Am J Transplant. 2017;17(5):1242–54. https://doi.org/10.1111/ajt.14087.
Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268): 268ra179. https://doi.org/10.1126/scitranslmed.3009892.
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5. https://doi.org/10.1038/nature08221.
Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82. https://doi.org/10.1111/j.1474-9726.2012.00832.x.
Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98): ra75. https://doi.org/10.1126/scisignal.2000559.
Petrara MR, Serraino D, Di Bella C, Neri F, Del Bianco P, Brutti M, et al. Immune activation, immune senescence and levels of Epstein Barr Virus in kidney transplant patients: impact of mTOR inhibitors. Cancer Lett. 2020;28(469):323–31. https://doi.org/10.1016/j.canlet.2019.10.045.
Trzonkowski P, Zilvetti M, Chapman S, Wieckiewicz J, Sutherland A, Friend P, et al. Homeostatic repopulation by CD28-CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am J Transplant. 2008;8(2):338–47. https://doi.org/10.1111/j.1600-6143.2007.02078.x.
Issa NC, Fishman JA. Infectious complications of antilymphocyte therapies in solid organ transplantation. Clin Infect Dis. 2009;48(6):772–86. https://doi.org/10.1086/597089.
Hardinger KL. Rabbit antithymocyte globulin induction therapy in adult renal transplantation. Pharmacotherapy. 2006;26(12):1771–83. https://doi.org/10.1592/phco.26.12.1771.
Wang L, Motter J, Bae S, Ahn JB, Kanakry JA, Jackson J, et al. Induction immunosuppression and the risk of incident malignancies among older and younger kidney transplant recipients: a prospective cohort study. Clin Transplant. 2020;34(12): e14121. https://doi.org/10.1111/ctr.14121.
Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation. 2012;93(12):1179–88. https://doi.org/10.1097/TP.0b013e318257ad41.
Alloway RR, Woodle ES, Abramowicz D, Segev DL, Castan R, Ilsley JN, et al. Rabbit anti-thymocyte globulin for the prevention of acute rejection in kidney transplantation. Am J Transplant. 2019;19(8):2252–61. https://doi.org/10.1111/ajt.15342.
Kidney Disease: Improving Global Outcomes Transplant Work G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;93:S1–155. https://doi.org/10.1111/j.1600-6143.2009.02834.x.
Lebranchu Y, Baan C, Biancone L, Legendre C, Morales JM, Naesens M, et al. Pretransplant identification of acute rejection risk following kidney transplantation. Transpl Int. 2014;27(2):129–38. https://doi.org/10.1111/tri.12205.
Tullius SG, Tran H, Guleria I, Malek SK, Tilney NL, Milford E. The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann Surg. 2010;252(4):662–74. https://doi.org/10.1097/SLA.0b013e3181f65c7d.
Fijter JW, Mallat MJK, Doxiadis IIN, Ringers J, Rosendaal FR, Claas FHJ, et al. Increased immunogenicity and cause of graft loss of old donor kidneys. J Am Soc Nephrol. 2001;12(7):1538–46. https://doi.org/10.1681/ASN.V1271538.
Ojo AO, Hanson JA, Wolfe RA, Leichtman AB, Agodoa LY, Port FK. Long-term survival in renal transplant recipients with graft function. Kidney Int. 2000;57(1):307–13. https://doi.org/10.1046/j.1523-1755.2000.00816.x.
Corsonello A, Pedone C, Incalzi RA. Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions. Curr Med Chem. 2010;17(6):571–84. https://doi.org/10.2174/092986710790416326.
Delafuente JC. Pharmacokinetic and pharmacodynamic alterations in the geriatric patient. Consult Pharm. 2008;23(4):324–34. https://doi.org/10.4140/tcp.n.2008.324.
Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011;12(7):601–10. https://doi.org/10.2174/138920011796504527.
Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209. https://doi.org/10.1016/j.taap.2004.01.010.
Warrington JS, Greenblatt DJ, von Moltke LL. Age-related differences in CYP3A expression and activity in the rat liver, intestine, and kidney. J Pharmacol Exp Ther. 2004;309(2):720–9. https://doi.org/10.1124/jpet.103.061077.
Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ, et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am J Transplant. 2012;12(12):3326–36. https://doi.org/10.1111/j.1600-6143.2012.04232.x.
Blosser CD, Huverserian A, Bloom RD, Abt PD, Goral S, Thomasson A, et al. Age, exclusion criteria, and generalizability of randomized trials enrolling kidney transplant recipients. Transplantation. 2011;91(8):858–63. https://doi.org/10.1097/TP.0b013e31820f42d9.
Zulman DM, Sussman JB, Chen X, Cigolle CT, Blaum CS, Hayward RA. Examining the evidence: a systematic review of the inclusion and analysis of older adults in randomized controlled trials. J Gen Intern Med. 2011;26(7):783–90. https://doi.org/10.1007/s11606-010-1629-x.
Betjes MG, Meijers RW, de Wit EA, Weimar W, Litjens NH. Terminally differentiated CD8+ Temra cells are associated with the risk for acute kidney allograft rejection. Transplantation. 2012;94(1):63–9. https://doi.org/10.1097/TP.0b013e31825306ff.
Shabir S, Smith H, Kaul B, Pachnio A, Jham S, Kuravi S, et al. Cytomegalovirus-associated CD4(+) CD28(null) cells in NKG2D-dependent glomerular endothelial injury and kidney allograft dysfunction. Am J Transplant. 2016;16(4):1113–28. https://doi.org/10.1111/ajt.13614.
Dedeoglu B, Meijers RW, Klepper M, Hesselink DA, Baan CC, Litjens NH, et al. Loss of CD28 on peripheral T cells decreases the risk for early acute rejection after kidney transplantation. PLoS One. 2016;11(3): e0150826. https://doi.org/10.1371/journal.pone.0150826.
Jacquemont L, Tilly G, Yap M, Doan-Ngoc TM, Danger R, Guerif P, et al. Terminally differentiated effector memory CD8(+) T cells identify kidney transplant recipients at high risk of graft failure. J Am Soc Nephrol. 2020;31(4):876–91. https://doi.org/10.1681/ASN.2019080847.
Heine GH, Ulrich C, Seibert E, Seiler S, Marell J, Reichart B, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008;73(5):622–9. https://doi.org/10.1038/sj.ki.5002744.
Bottomley MJ, Harden PN, Wood KJ. CD8+ immunosenescence predicts post-transplant cutaneous squamous cell carcinoma in high-risk patients. J Am Soc Nephrol. 2016;27(5):1505–15. https://doi.org/10.1681/ASN.2015030250.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
No funding.
Conflicts of Interest
The authors have no conflict of interest.
Ethics Approval
Not applicable.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Availability of Data and Materials
Not applicable.
Code Availability
Not applicable.
Authors’ Contributions
B.P Jallah conducted the literature review and drafted the manuscript. D. Kuypers performed additional literature review, provided ideas for the drafting process and edited the drafted manuscript.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jallah, B.P., Kuypers, D.R.J. Impact of Immunosenescence in Older Kidney Transplant Recipients: Associated Clinical Outcomes and Possible Risk Stratification for Immunosuppression Reduction. Drugs Aging 41, 219–238 (2024). https://doi.org/10.1007/s40266-024-01100-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40266-024-01100-5