Skip to main content

Advertisement

Log in

Impact of Immunosenescence in Older Kidney Transplant Recipients: Associated Clinical Outcomes and Possible Risk Stratification for Immunosuppression Reduction

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The number of older individuals receiving a kidney transplant as replacement therapy has significantly increased in the past decades and this increase is expected to continue. Older patients have a lower rate of acute rejection but an increased incidence of death with a functioning graft. Several factors, including an increased incidence of infections, post-transplant malignancy and cardiovascular comorbidity and mortality, contribute to this increased risk. Notwithstanding, kidney transplantation is still the best form of kidney replacement therapy in all patients with chronic kidney disease, including in older individuals. The best form of immunosuppression and the optimal dose of these medications in older recipients remains a topic of discussion. Pharmacological studies have usually excluded older patients and when included, patients were highly selected and their numbers insignificant to draw a reasonable conclusion. The reduced incidence of acute rejection in older recipients has largely been attributed to immunosenescence. Immunosenescence refers to the aging of the innate and adaptive immunity, accumulating in phenotypic and functional changes. These changes influences the response of the immune system to new challenges. In older individuals, immunosenescence is associated with increased susceptibility to infectious pathogens, a decreased response after vaccinations, increased risk of malignancies and cardiovascular morbidity and mortality. Chronic kidney disease is associated with premature immunosenescent changes, and these are independent of aging. The immunosenescent state is associated with low-grade sterile inflammation termed inflammaging. This chronic low-grade inflammation triggers a compensatory immunosuppressive state to avoid further tissue damage, leaving older individuals with chronic kidney disease in an immune-impaired state before kidney transplantation. Immunosuppression after transplantation may further enhance progression of this immunosenescent state. This review covers the role of immunosenescence in older kidney transplant recipients and it details present knowledge of the changes in chronic kidney disease and after transplantation. The impact of immunosuppression on the progression and complications of an immunosenescent state are discussed, and the future direction of a possible clinical implementation of immunosenescence to individualize/reduce immunosuppression in older recipients is laid out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30. https://doi.org/10.1056/NEJM199912023412303.

    Article  PubMed  CAS  Google Scholar 

  2. Heinbokel T, Elkhal A, Liu G, Edtinger K, Tullius SG. Immunosenescence and organ transplantation. Transplant Rev (Orlando). 2013;27(3):65–75. https://doi.org/10.1016/j.trre.2013.03.001.

    Article  PubMed  Google Scholar 

  3. Smits JM, Persijn GG, van Houwelingen HC, Claas FH, Frei U. Evaluation of the Eurotransplant Senior Program. The results of the first year. Am J Transplant. 2002;2(7):664–70. https://doi.org/10.1034/j.1600-6143.2002.20713.x.

    Article  PubMed  Google Scholar 

  4. Rosengard BR, Feng S, Alfrey EJ, Zaroff JG, Emond JC, Henry ML, et al. Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor. Am J Transplant. 2002;2(8):701–11. https://doi.org/10.1034/j.1600-6143.2002.20804.x.

    Article  PubMed  Google Scholar 

  5. Metzger RA, Delmonico FL, Feng S, Port FK, Wynn JJ, Merion RM. Expanded criteria donors for kidney transplantation. Am J Transplant. 2003;3(Suppl 4):114–25. https://doi.org/10.1034/j.1600-6143.3.s4.11.x.

    Article  PubMed  Google Scholar 

  6. Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–47. https://doi.org/10.1093/ndt/gfn667.

    Article  PubMed  Google Scholar 

  7. Heldal K, Hartmann A, Leivestad T, Svendsen MV, Foss A, Lien B, et al. Clinical outcomes in elderly kidney transplant recipients are related to acute rejection episodes rather than pretransplant comorbidity. Transplantation. 2009;87(7):1045–51. https://doi.org/10.1097/TP.0b013e31819cdddd.

    Article  PubMed  Google Scholar 

  8. Lai X, Chen G, Qiu J, Wang C, Chen L. Recipient-related risk factors for graft failure and death in elderly kidney transplant recipients. PLoS One. 2014;9(11): e112938. https://doi.org/10.1371/journal.pone.0112938.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  9. Artiles A, Dominguez A, Subiela JD, Boissier R, Campi R, Prudhomme T, et al. Kidney transplant outcomes in elderly population: a systematic review and meta-analysis. Eur Urol Open Sci. 2023;51:13–25. https://doi.org/10.1016/j.euros.2023.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. So S, Au EHK, Lim WH, Lee VWS, Wong G. Factors influencing long-term patient and allograft outcomes in elderly kidney transplant recipients. Kidney Int Rep. 2021;6(3):727–36. https://doi.org/10.1016/j.ekir.2020.11.035.

    Article  PubMed  Google Scholar 

  11. Lemoine M, Titeca Beauport D, Lobbedez T, Choukroun G, Hurault de Ligny B, Hazzan M, et al. Risk factors for early graft failure and death after kidney transplantation in recipients older than 70 years. Kidney Int Rep. 2019;4(5):656–66. https://doi.org/10.1016/j.ekir.2019.01.014.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jankowska M, Bzoma B, Malyszko J, Malyszko J, Slupski M, Kobus G, et al. Early outcomes and long-term survival after kidney transplantation in elderly versus younger recipients from the same donor in a matched-pairs analysis. Medicine (Baltimore). 2021;100(51): e28159. https://doi.org/10.1097/MD.0000000000028159.

    Article  PubMed  CAS  Google Scholar 

  13. Gill JS, Tonelli M, Johnson N, Kiberd B, Landsberg D, Pereira BJ. The impact of waiting time and comorbid conditions on the survival benefit of kidney transplantation. Kidney Int. 2005;68(5):2345–51. https://doi.org/10.1111/j.1523-1755.2005.00696.x.

    Article  PubMed  Google Scholar 

  14. Hemmersbach-Miller M, Alexander BD, Sudan DL, Pieper C, Schmader KE. Single-center analysis of infectious complications in older adults during the first year after kidney transplantation. Eur J Clin Microbiol Infect Dis. 2019;38(1):141–8. https://doi.org/10.1007/s10096-018-3405-5.

    Article  PubMed  Google Scholar 

  15. Oh SJ, Lee JK, Shin OS. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 2019;19(6): e37. https://doi.org/10.4110/in.2019.19.e37.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, et al. Immunosenescence: implications for response to infection and vaccination in older people. Maturitas. 2015;82(1):50–5. https://doi.org/10.1016/j.maturitas.2015.05.004.

    Article  PubMed  CAS  Google Scholar 

  17. Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13(1):151. https://doi.org/10.1186/s13045-020-00986-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fulop T, Larbi A, Witkowski JM, Kotb R, Hirokawa K, Pawelec G. Immunosenescence and cancer. Crit Rev Oncog. 2013;18(6):489–513. https://doi.org/10.1615/critrevoncog.2013010597.

    Article  PubMed  Google Scholar 

  19. Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 2020;20(2):89–106. https://doi.org/10.1038/s41568-019-0222-9.

    Article  PubMed  CAS  Google Scholar 

  20. Costantini E, D’Angelo C, Reale M. The role of immunosenescence in neurodegenerative diseases. Mediators Inflamm. 2018;2018:6039171. https://doi.org/10.1155/2018/6039171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Amoriello R, Mariottini A, Ballerini C. Immunosenescence and autoimmunity: exploiting the T-Cell Receptor Repertoire to Investigate the Impact of Aging on Multiple Sclerosis. Front Immunol. 2021;12: 799380. https://doi.org/10.3389/fimmu.2021.799380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tae YuH, Youn JC, Lee J, Park S, Chi HS, Lee J, et al. Characterization of CD8(+)CD57(+) T cells in patients with acute myocardial infarction. Cell Mol Immunol. 2015;12(4):466–73. https://doi.org/10.1038/cmi.2014.74.

    Article  CAS  Google Scholar 

  23. Mella A, Mariano F, Dolla C, Gallo E, Manzione AM, Di Vico MC, et al. Bacterial and Viral Infection and Sepsis in Kidney Transplanted Patients. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10030701.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fishman JA. Opportunistic infections–coming to the limits of immunosuppression? Cold Spring Harb Perspect Med. 2013;3(10): a015669. https://doi.org/10.1101/cshperspect.a015669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gutierrez-Dalmau A, Campistol JM. Immunosuppressive therapy and malignancy in organ transplant recipients: a systematic review. Drugs. 2007;67(8):1167–98. https://doi.org/10.2165/00003495-200767080-00006.

    Article  PubMed  CAS  Google Scholar 

  26. Cheung CY, Tang SCW. An update on cancer after kidney transplantation. Nephrol Dial Transplant. 2019;34(6):914–20. https://doi.org/10.1093/ndt/gfy262.

    Article  PubMed  Google Scholar 

  27. Gallagher MP, Kelly PJ, Jardine M, Perkovic V, Cass A, Craig JC, et al. Long-term cancer risk of immunosuppressive regimens after kidney transplantation. J Am Soc Nephrol. 2010;21(5):852–8. https://doi.org/10.1681/ASN.2009101043.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xia M, Yang H, Tong X, Xie H, Cui F, Shuang W. Risk factors for new-onset diabetes mellitus after kidney transplantation: a systematic review and meta-analysis. J Diabetes Investig. 2021;12(1):109–22. https://doi.org/10.1111/jdi.13317.

    Article  PubMed  Google Scholar 

  29. Ghisdal L, Van Laecke S, Abramowicz MJ, Vanholder R, Abramowicz D. New-onset diabetes after renal transplantation: risk assessment and management. Diabetes Care. 2012;35(1):181–8. https://doi.org/10.2337/dc11-1230.

    Article  PubMed  CAS  Google Scholar 

  30. Kasiske BL, Guijarro C, Massy ZA, Wiederkehr MR, Ma JZ. Cardiovascular disease after renal transplantation. J Am Soc Nephrol. 1996;7(1):158–65. https://doi.org/10.1681/ASN.V71158.

    Article  PubMed  CAS  Google Scholar 

  31. Devine PA, Courtney AE, Maxwell AP. Cardiovascular risk in renal transplant recipients. J Nephrol. 2019;32(3):389–99. https://doi.org/10.1007/s40620-018-0549-4.

    Article  PubMed  Google Scholar 

  32. Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant. 2011;11(11):2279–96. https://doi.org/10.1111/j.1600-6143.2011.03754.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xia T, Zhu S, Wen Y, Gao S, Li M, Tao X, et al. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: a systematic review and meta-analysis. Drug Des Devel Ther. 2018;12:417–28. https://doi.org/10.2147/DDDT.S149340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rana A, Murthy B, Pallister Z, Kueht M, Cotton R, Galvan NTN, et al. Profiling risk for acute rejection in kidney transplantation: recipient age is a robust risk factor. J Nephrol. 2017;30(6):859–68. https://doi.org/10.1007/s40620-016-0354-x.

    Article  PubMed  Google Scholar 

  35. Frei U, Noeldeke J, Machold-Fabrizii V, Arbogast H, Margreiter R, Fricke L, et al. Prospective age-matching in elderly kidney transplant recipients—a 5-year analysis of the Eurotransplant Senior Program. Am J Transplant. 2008;8(1):50–7. https://doi.org/10.1111/j.1600-6143.2007.02014.x.

    Article  PubMed  CAS  Google Scholar 

  36. Halleck F, Khadzhynov D, Liefeldt L, Schrezenmeier E, Lehner L, Duerr M, et al. Immunologic outcome in elderly kidney transplant recipients: is it time for HLA-DR matching? Nephrol Dial Transplant. 2016;31(12):2143–9. https://doi.org/10.1093/ndt/gfw248.

    Article  PubMed  Google Scholar 

  37. De Fijter J, Dreyer G, Mallat M, Budde K, Pratschke J, Klempnauer J, et al. A paired-kidney allocation study found superior survival with HLA-DR compatible kidney transplants in the Eurotransplant Senior Program. Kidney Int. 2023;104(3):552–61. https://doi.org/10.1016/j.kint.2023.05.025.

    Article  PubMed  CAS  Google Scholar 

  38. Dreyer GJ, Hemke AC, Reinders ME, de Fijter JW. Transplanting the elderly: balancing aging with histocompatibility. Transplant Rev (Orlando). 2015;29(4):205–11. https://doi.org/10.1016/j.trre.2015.08.003.

    Article  PubMed  CAS  Google Scholar 

  39. De Fijter JW. The impact of age on rejection in kidney transplantation. Drugs Aging. 2005;22(5):433–49. https://doi.org/10.2165/00002512-200522050-00007.

    Article  PubMed  Google Scholar 

  40. Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194–201. https://doi.org/10.1002/ar.1092320205.

    Article  PubMed  CAS  Google Scholar 

  41. Akoh JA, Mathuram TU. Renal transplantation from elderly living donors. J Transplant. 2013;2013: 475964. https://doi.org/10.1155/2013/475964.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Martins PN, Tullius SG, Markmann JF. Immunosenescence and immune response in organ transplantation. Int Rev Immunol. 2014;33(3):162–73. https://doi.org/10.3109/08830185.2013.829469.

    Article  PubMed  CAS  Google Scholar 

  43. Hricik DE, Formica RN, Nickerson P, Rush D, Fairchild RL, Poggio ED, et al. Adverse outcomes of tacrolimus withdrawal in immune-quiescent kidney transplant recipients. J Am Soc Nephrol. 2015;26(12):3114–22. https://doi.org/10.1681/ASN.2014121234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dugast E, Soulillou JP, Foucher Y, Papuchon E, Guerif P, Paul C, et al. Failure of calcineurin inhibitor (tacrolimus) weaning randomized trial in long-term stable kidney transplant recipients. Am J Transplant. 2016;16(11):3255–61. https://doi.org/10.1111/ajt.13946.

    Article  PubMed  CAS  Google Scholar 

  45. Meier-Kriesche HU, Ojo AO, Hanson JA, Kaplan B. Exponentially increased risk of infectious death in older renal transplant recipients. Kidney Int. 2001;59(4):1539–43. https://doi.org/10.1046/j.1523-1755.2001.0590041539.x.

    Article  PubMed  CAS  Google Scholar 

  46. Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007;357(25):2601–14. https://doi.org/10.1056/NEJMra064928.

    Article  PubMed  CAS  Google Scholar 

  47. Yu MY, Kim YC, Lee JP, Lee H, Kim YS. Death with graft function after kidney transplantation: a single-center experience. Clin Exp Nephrol. 2018;22(3):710–8. https://doi.org/10.1007/s10157-017-1503-9.

    Article  PubMed  CAS  Google Scholar 

  48. Borriello M, Ingrosso D, Perna AF, Lombardi A, Maggi P, Altucci L, et al. BK virus infection and BK-virus-associated nephropathy in renal transplant recipients. Genes (Basel). 2022. https://doi.org/10.3390/genes13071290.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pullerits K, Garland S, Rengarajan S, Guiver M, Chinnadurai R, Middleton RJ, et al. Kidney transplant-associated viral infection rates and outcomes in a single-centre cohort. Viruses. 2022. https://doi.org/10.3390/v14112406.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tang Y, Guo J, Li J, Zhou J, Mao X, Qiu T. Risk factors for cytomegalovirus infection and disease after kidney transplantation: a meta-analysis. Transpl Immunol. 2022;74: 101677. https://doi.org/10.1016/j.trim.2022.101677.

    Article  PubMed  Google Scholar 

  51. Au E, Wong G, Chapman JR. Cancer in kidney transplant recipients. Nat Rev Nephrol. 2018;14(8):508–20. https://doi.org/10.1038/s41581-018-0022-6.

    Article  PubMed  Google Scholar 

  52. Webster AC, Craig JC, Simpson JM, Jones MP, Chapman JR. Identifying high risk groups and quantifying absolute risk of cancer after kidney transplantation: a cohort study of 15,183 recipients. Am J Transplant. 2007;7(9):2140–51. https://doi.org/10.1111/j.1600-6143.2007.01908.x.

    Article  PubMed  CAS  Google Scholar 

  53. Sprangers B, Nair V, Launay-Vacher V, Riella LV, Jhaveri KD. Risk factors associated with post-kidney transplant malignancies: an article from the Cancer-Kidney International Network. Clin Kidney J. 2018;11(3):315–29. https://doi.org/10.1093/ckj/sfx122.

    Article  PubMed  CAS  Google Scholar 

  54. Livingston-Rosanoff D, Foley DP, Leverson G, Wilke LG. Impact of pre-transplant malignancy on outcomes after kidney transplantation: united network for organ sharing database analysis. J Am Coll Surg. 2019;229(6):568–79. https://doi.org/10.1016/j.jamcollsurg.2019.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pham PT, Pham PC, Danovitch GM. Cardiovascular disease posttransplant. Semin Nephrol. 2007;27(4):430–44. https://doi.org/10.1016/j.semnephrol.2007.03.005.

    Article  PubMed  CAS  Google Scholar 

  56. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Ishani A, et al. US renal data system 2013 annual data report. Am J Kidney Dis. 2014;63(1 Suppl):A7. https://doi.org/10.1053/j.ajkd.2013.11.001.

    Article  PubMed  Google Scholar 

  57. Liefeldt L, Budde K. Risk factors for cardiovascular disease in renal transplant recipients and strategies to minimize risk. Transpl Int. 2010;23(12):1191–204. https://doi.org/10.1111/j.1432-2277.2010.01159.x.

    Article  PubMed  Google Scholar 

  58. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S112–9. https://doi.org/10.1053/ajkd.1998.v32.pm9820470.

    Article  PubMed  CAS  Google Scholar 

  59. Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transplant. 2002;2(9):807–18. https://doi.org/10.1034/j.1600-6143.2002.20902.x.

    Article  PubMed  CAS  Google Scholar 

  60. Morales JM, Dominguez-Gil B. Cardiovascular risk profile with the new immunosuppressive combinations after renal transplantation. J Hypertens. 2005;23(9):1609–16. https://doi.org/10.1097/01.hjh.0000180159.81640.2f.

    Article  PubMed  CAS  Google Scholar 

  61. Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V, et al. Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation. 2003;108(6):678–83. https://doi.org/10.1161/01.CIR.0000084505.54603.C7.

    Article  PubMed  Google Scholar 

  62. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.

    Article  ADS  PubMed  CAS  Google Scholar 

  63. Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016;2016:8426874. https://doi.org/10.1155/2016/8426874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ongradi J, Kovesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing. 2010;14(7):7. https://doi.org/10.1186/1742-4933-7-7.

    Article  CAS  Google Scholar 

  65. Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, et al. Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol. 2019;10:2247. https://doi.org/10.3389/fimmu.2019.02247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bauer ME. Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. Immun Ageing. 2020;17:6. https://doi.org/10.1186/s12979-020-00178-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Rodrigues LP, Teixeira VR, Alencar-Silva T, Simonassi-Paiva B, Pereira RW, Pogue R, et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 2021;59:9–21. https://doi.org/10.1016/j.cytogfr.2021.01.006.

    Article  PubMed  CAS  Google Scholar 

  69. Aspinall R, Andrew D. Thymic involution in aging. J Clin Immunol. 2000;20(4):250–6. https://doi.org/10.1023/a:1006611518223.

    Article  PubMed  CAS  Google Scholar 

  70. Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 2020;17:2. https://doi.org/10.1186/s12979-020-0173-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev. 2005;205:72–93. https://doi.org/10.1111/j.0105-2896.2005.00275.x.

    Article  PubMed  CAS  Google Scholar 

  72. Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 2009;30(7):374–81. https://doi.org/10.1016/j.it.2009.05.001.

    Article  PubMed  CAS  Google Scholar 

  73. Mitchell WA, Lang PO, Aspinall R. Tracing thymic output in older individuals. Clin Exp Immunol. 2010;161(3):497–503. https://doi.org/10.1111/j.1365-2249.2010.04209.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mogling R, de Boer AB, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity. 2012;36(2):288–97. https://doi.org/10.1016/j.immuni.2012.02.006.

    Article  CAS  Google Scholar 

  75. Cossarizza A, Ortolani C, Monti D, Franceschi C. Cytometric analysis of immunosenescence. Cytometry. 1997;27(4):297–313. https://doi.org/10.1002/(sici)1097-0320(19970401)27:4%3c297::aid-cyto1%3e3.0.co;2-a.

    Article  PubMed  CAS  Google Scholar 

  76. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174(11):7446–52. https://doi.org/10.4049/jimmunol.174.11.7446.

    Article  PubMed  CAS  Google Scholar 

  77. Rodriguez IJ, Lalinde Ruiz N, Llano Leon M, Martinez Enriquez L, Montilla Velasquez MDP, Ortiz Aguirre JP, et al. Immunosenescence study of T cells: a systematic review. Front Immunol. 2020;11: 604591. https://doi.org/10.3389/fimmu.2020.604591.

    Article  PubMed  CAS  Google Scholar 

  78. Tu W, Rao S. Mechanisms underlying T cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol. 2016;7:2111. https://doi.org/10.3389/fmicb.2016.02111.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weltevrede M, Eilers R, de Melker HE, van Baarle D. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: a systematic review. Exp Gerontol. 2016;77:87–95. https://doi.org/10.1016/j.exger.2016.02.005.

    Article  PubMed  CAS  Google Scholar 

  80. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169(4):1984–92. https://doi.org/10.4049/jimmunol.169.4.1984.

    Article  PubMed  CAS  Google Scholar 

  81. Bektas A, Schurman SH, Sen R, Ferrucci L. Human T cell immunosenescence and inflammation in aging. J Leukoc Biol. 2017;102(4):977–88. https://doi.org/10.1189/jlb.3RI0716-335R.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev. 2005;205:158–69. https://doi.org/10.1111/j.0105-2896.2005.00256.x.

    Article  PubMed  CAS  Google Scholar 

  83. Effros RB. Loss of CD28 expression on T lymphocytes: a marker of replicative senescence. Dev Comp Immunol. 1997;21(6):471–8. https://doi.org/10.1016/s0145-305x(97)00027-x.

    Article  PubMed  CAS  Google Scholar 

  84. Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology. 1996;88(4):501–7. https://doi.org/10.1046/j.1365-2567.1996.d01-689.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Looney RJ, Falsey A, Campbell D, Torres A, Kolassa J, Brower C, et al. Role of cytomegalovirus in the T cell changes seen in elderly individuals. Clin Immunol. 1999;90(2):213–9. https://doi.org/10.1006/clim.1998.4638.

    Article  PubMed  CAS  Google Scholar 

  86. Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, et al. T cell chemokine receptor expression in aging. J Immunol. 2003;170(2):895–904. https://doi.org/10.4049/jimmunol.170.2.895.

    Article  PubMed  CAS  Google Scholar 

  87. Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–52. https://doi.org/10.1007/s00262-016-1803-z.

    Article  PubMed  CAS  Google Scholar 

  88. Blanco E, Perez-Andres M, Arriba-Mendez S, Contreras-Sanfeliciano T, Criado I, Pelak O, et al. Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood. J Allergy Clin Immunol. 2018;141(6):2208–19. https://doi.org/10.1016/j.jaci.2018.02.017. (e16).

    Article  PubMed  CAS  Google Scholar 

  89. Cancro MP, Hao Y, Scholz JL, Riley RL, Frasca D, Dunn-Walters DK, et al. B cells and aging: molecules and mechanisms. Trends Immunol. 2009;30(7):313–8. https://doi.org/10.1016/j.it.2009.04.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Johnson KM, Owen K, Witte PL. Aging and developmental transitions in the B cell lineage. Int Immunol. 2002;14(11):1313–23. https://doi.org/10.1093/intimm/dxf092.

    Article  PubMed  CAS  Google Scholar 

  91. Stephan RP, Lill-Elghanian DA, Witte PL. Development of B cells in aged mice: decline in the ability of pro-B cells to respond to IL-7 but not to other growth factors. J Immunol. 1997;158(4):1598–609.

    Article  PubMed  CAS  Google Scholar 

  92. Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood. 1998;91(1):75–88.

    Article  PubMed  CAS  Google Scholar 

  93. Muller-Sieburg CE, Sieburg HB, Bernitz JM, Cattarossi G. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood. 2012;119(17):3900–7. https://doi.org/10.1182/blood-2011-12-376749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol. 1999;162(6):3342–9.

    Article  PubMed  CAS  Google Scholar 

  95. Colonna-Romano G, Bulati M, Aquino A, Vitello S, Lio D, Candore G, et al. B cell immunosenescence in the elderly and in centenarians. Rejuven Res. 2008;11(2):433–9. https://doi.org/10.1089/rej.2008.0664.

    Article  CAS  Google Scholar 

  96. Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 2005;175(5):3262–7. https://doi.org/10.4049/jimmunol.175.5.3262.

    Article  PubMed  CAS  Google Scholar 

  97. Chong Y, Ikematsu H, Yamaji K, Nishimura M, Nabeshima S, Kashiwagi S, et al. CD27(+) (memory) B cell decrease and apoptosis-resistant CD27(-) (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol. 2005;17(4):383–90. https://doi.org/10.1093/intimm/dxh218.

    Article  PubMed  CAS  Google Scholar 

  98. Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8(1):18–25. https://doi.org/10.1111/j.1474-9726.2008.00443.x.

    Article  PubMed  CAS  Google Scholar 

  99. Dunn-Walters DK, Ademokun AA. B cell repertoire and ageing. Curr Opin Immunol. 2010;22(4):514–20. https://doi.org/10.1016/j.coi.2010.04.009.

    Article  PubMed  CAS  Google Scholar 

  100. Tabibian-Keissar H, Hazanov L, Schiby G, Rosenthal N, Rakovsky A, Michaeli M, et al. Aging affects B-cell antigen receptor repertoire diversity in primary and secondary lymphoid tissues. Eur J Immunol. 2016;46(2):480–92. https://doi.org/10.1002/eji.201545586.

    Article  PubMed  CAS  Google Scholar 

  101. Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9(3):185–94. https://doi.org/10.1038/nri2508.

    Article  PubMed  CAS  Google Scholar 

  102. Luscieti P, Hubschmid T, Cottier H, Hess MW, Sobin LH. Human lymph node morphology as a function of age and site. J Clin Pathol. 1980;33(5):454–61. https://doi.org/10.1136/jcp.33.5.454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kamburova EG, Koenen HJ, Boon L, Hilbrands LB, Joosten I. In vitro effects of rituximab on the proliferation, activation and differentiation of human B cells. Am J Transplant. 2012;12(2):341–50. https://doi.org/10.1111/j.1600-6143.2011.03833.x.

    Article  PubMed  CAS  Google Scholar 

  104. Karnell JL, Karnell FG 3rd, Stephens GL, Rajan B, Morehouse C, Li Y, et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol. 2011;187(7):3603–12. https://doi.org/10.4049/jimmunol.1003319.

    Article  PubMed  CAS  Google Scholar 

  105. Pence BD. Fanning the flames of inflammaging: impact of monocyte metabolic reprogramming. Immunometabolism. 2020;2(3): e200025. https://doi.org/10.20900/immunometab20200025.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74-80. https://doi.org/10.1182/blood-2010-02-258558.

    Article  PubMed  CAS  Google Scholar 

  107. Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;21(11):30. https://doi.org/10.1186/1471-2172-11-30.

    Article  CAS  Google Scholar 

  108. Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75. https://doi.org/10.1111/j.1474-9726.2012.00851.x.

    Article  PubMed  CAS  Google Scholar 

  109. Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C, et al. Phenotypic and functional alterations of monocyte subsets with aging. Immun Ageing. 2022;19(1):63. https://doi.org/10.1186/s12979-022-00321-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. De Maeyer RPH, Chambers ES. The impact of ageing on monocytes and macrophages. Immunol Lett. 2021;230:1–10. https://doi.org/10.1016/j.imlet.2020.12.003.

    Article  PubMed  CAS  Google Scholar 

  111. Fietta A, Merlini C, De Bernardi PM, Gandola L, Piccioni PD, Grassi C. Non specific immunity in aged healthy subjects and in patients with chronic bronchitis. Aging (Milano). 1993;5(5):357–61. https://doi.org/10.1007/BF03324187.

    Article  PubMed  CAS  Google Scholar 

  112. Herrero C, Sebastian C, Marques L, Comalada M, Xaus J, Valledor AF, et al. Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol. 2002;37(2–3):389–94. https://doi.org/10.1016/s0531-5565(01)00205-4.

    Article  PubMed  CAS  Google Scholar 

  113. Biasi D, Carletto A, Dell’Agnola C, Caramaschi P, Montesanti F, Zavateri G, et al. Neutrophil migration, oxidative metabolism, and adhesion in elderly and young subjects. Inflammation. 1996;20(6):673–81. https://doi.org/10.1007/BF01488803.

    Article  PubMed  CAS  Google Scholar 

  114. Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci. 1989;44(22):1655–64. https://doi.org/10.1016/0024-3205(89)90482-7.

    Article  PubMed  CAS  Google Scholar 

  115. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70(6):881–6.

    Article  PubMed  CAS  Google Scholar 

  116. Bartlett DB, Fox O, McNulty CL, Greenwood HL, Murphy L, Sapey E, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun. 2016;56:12–20. https://doi.org/10.1016/j.bbi.2016.02.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3(4):217–26. https://doi.org/10.1111/j.1474-9728.2004.00110.x.

    Article  PubMed  CAS  Google Scholar 

  118. Hazeldine J, Harris P, Chapple IL, Grant M, Greenwood H, Livesey A, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13(4):690–8. https://doi.org/10.1111/acel.12222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Sabbatini M, Bona E, Novello G, Migliario M, Reno F. Aging hampers neutrophil extracellular traps (NETs) efficacy. Aging Clin Exp Res. 2022;34(10):2345–53. https://doi.org/10.1007/s40520-022-02201-0.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84. https://doi.org/10.1016/j.humimm.2009.07.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, et al. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol. 2007;122(2):220–8. https://doi.org/10.1016/j.clim.2006.09.012.

    Article  PubMed  CAS  Google Scholar 

  122. Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev. 2011;10(3):336–45. https://doi.org/10.1016/j.arr.2010.06.004.

    Article  PubMed  CAS  Google Scholar 

  123. Uyemura K, Castle SC, Makinodan T. The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev. 2002;123(8):955–62. https://doi.org/10.1016/s0047-6374(02)00033-7.

    Article  PubMed  CAS  Google Scholar 

  124. Agrawal A, Agrawal S, Gupta S. Dendritic cells in human aging. Exp Gerontol. 2007;42(5):421–6. https://doi.org/10.1016/j.exger.2006.11.007.

    Article  PubMed  CAS  Google Scholar 

  125. Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–27. https://doi.org/10.4049/jimmunol.0901022.

    Article  PubMed  CAS  Google Scholar 

  126. Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22. https://doi.org/10.4049/jimmunol.178.11.6912.

    Article  PubMed  CAS  Google Scholar 

  127. Miyaji C, Watanabe H, Toma H, Akisaka M, Tomiyama K, Sato Y, et al. Functional alteration of granulocytes, NK cells, and natural killer T cells in centenarians. Hum Immunol. 2000;61(9):908–16. https://doi.org/10.1016/s0198-8859(00)00153-1.

    Article  PubMed  CAS  Google Scholar 

  128. Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood. 1993;82(9):2767–73.

    Article  PubMed  CAS  Google Scholar 

  129. Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol. 1999;34(2):253–65. https://doi.org/10.1016/s0531-5565(98)00076-x.

    Article  PubMed  CAS  Google Scholar 

  130. Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, et al. Immunosenescence of human natural killer cells. J Innate Immun. 2011;3(4):337–43. https://doi.org/10.1159/000328005.

    Article  PubMed  CAS  Google Scholar 

  131. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116(19):3865–74. https://doi.org/10.1182/blood-2010-04-282301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Chiu YL, Shu KH, Yang FJ, Chou TY, Chen PM, Lay FY, et al. A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: the iESRD study. Immun Ageing. 2018;15:27. https://doi.org/10.1186/s12979-018-0131-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33(3):375–86. https://doi.org/10.1016/j.immuni.2010.08.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Betjes MG, Langerak AW, van der Spek A, de Wit EA, Litjens NH. Premature aging of circulating T cells in patients with end-stage renal disease. Kidney Int. 2011;80(2):208–17. https://doi.org/10.1038/ki.2011.110.

    Article  PubMed  Google Scholar 

  135. Crépin T, Legendre M, Carron C, Vachey C, Courivaud C, Rebibou JM, et al. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol Dial Transplant. 2020;35(4):624–32. https://doi.org/10.1093/ndt/gfy276.

    Article  PubMed  Google Scholar 

  136. Xiang F, Chen R, Cao X, Shen B, Chen X, Ding X, et al. Premature aging of circulating T cells predicts all-cause mortality in hemodialysis patients. BMC Nephrol. 2020;21(1):271. https://doi.org/10.1186/s12882-020-01920-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Schaenman JM, Rossetti M, Sidwell T, Groysberg V, Sunga G, Korin Y, et al. Increased T cell immunosenescence and accelerated maturation phenotypes in older kidney transplant recipients. Hum Immunol. 2018;79(9):659–67. https://doi.org/10.1016/j.humimm.2018.06.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wang L, Rondaan C, de Joode AAE, Raveling-Eelsing E, Bos NA, Westra J. Changes in T and B cell subsets in end stage renal disease patients before and after kidney transplantation. Immun Ageing. 2021;18(1):43. https://doi.org/10.1186/s12979-021-00254-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Lee GH, Lee JY, Jang J, Kang YJ, Choi SA, Kim HC, et al. Anti-thymocyte globulin-mediated immunosenescent alterations of T cells in kidney transplant patients. Clin Transl Immunol. 2022;11(11): e1431. https://doi.org/10.1002/cti2.1431.

    Article  CAS  Google Scholar 

  140. Zaza G, Leventhal J, Signorini L, Gambaro G, Cravedi P. Effects of antirejection drugs on innate immune cells after kidney transplantation. Front Immunol. 2019;10:2978. https://doi.org/10.3389/fimmu.2019.02978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Trzonkowski P, Debska-Slizien A, Jankowska M, Wardowska A, Carvalho-Gaspar M, Hak L, et al. Immunosenescence increases the rate of acceptance of kidney allotransplants in elderly recipients through exhaustion of CD4+ T-cells. Mech Ageing Dev. 2010;131(2):96–104. https://doi.org/10.1016/j.mad.2009.12.006.

    Article  PubMed  CAS  Google Scholar 

  142. Krenzien F, Quante M, Heinbokel T, Seyda M, Minami K, Uehara H, et al. Age-dependent metabolic and immunosuppressive effects of tacrolimus. Am J Transplant. 2017;17(5):1242–54. https://doi.org/10.1111/ajt.14087.

    Article  PubMed  CAS  Google Scholar 

  143. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268): 268ra179. https://doi.org/10.1126/scitranslmed.3009892.

    Article  PubMed  CAS  Google Scholar 

  144. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5. https://doi.org/10.1038/nature08221.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  145. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82. https://doi.org/10.1111/j.1474-9726.2012.00832.x.

    Article  PubMed  CAS  Google Scholar 

  146. Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98): ra75. https://doi.org/10.1126/scisignal.2000559.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Petrara MR, Serraino D, Di Bella C, Neri F, Del Bianco P, Brutti M, et al. Immune activation, immune senescence and levels of Epstein Barr Virus in kidney transplant patients: impact of mTOR inhibitors. Cancer Lett. 2020;28(469):323–31. https://doi.org/10.1016/j.canlet.2019.10.045.

    Article  CAS  Google Scholar 

  148. Trzonkowski P, Zilvetti M, Chapman S, Wieckiewicz J, Sutherland A, Friend P, et al. Homeostatic repopulation by CD28-CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am J Transplant. 2008;8(2):338–47. https://doi.org/10.1111/j.1600-6143.2007.02078.x.

    Article  PubMed  CAS  Google Scholar 

  149. Issa NC, Fishman JA. Infectious complications of antilymphocyte therapies in solid organ transplantation. Clin Infect Dis. 2009;48(6):772–86. https://doi.org/10.1086/597089.

    Article  PubMed  CAS  Google Scholar 

  150. Hardinger KL. Rabbit antithymocyte globulin induction therapy in adult renal transplantation. Pharmacotherapy. 2006;26(12):1771–83. https://doi.org/10.1592/phco.26.12.1771.

    Article  PubMed  CAS  Google Scholar 

  151. Wang L, Motter J, Bae S, Ahn JB, Kanakry JA, Jackson J, et al. Induction immunosuppression and the risk of incident malignancies among older and younger kidney transplant recipients: a prospective cohort study. Clin Transplant. 2020;34(12): e14121. https://doi.org/10.1111/ctr.14121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation. 2012;93(12):1179–88. https://doi.org/10.1097/TP.0b013e318257ad41.

    Article  PubMed  CAS  Google Scholar 

  153. Alloway RR, Woodle ES, Abramowicz D, Segev DL, Castan R, Ilsley JN, et al. Rabbit anti-thymocyte globulin for the prevention of acute rejection in kidney transplantation. Am J Transplant. 2019;19(8):2252–61. https://doi.org/10.1111/ajt.15342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Kidney Disease: Improving Global Outcomes Transplant Work G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;93:S1–155. https://doi.org/10.1111/j.1600-6143.2009.02834.x.

    Article  Google Scholar 

  155. Lebranchu Y, Baan C, Biancone L, Legendre C, Morales JM, Naesens M, et al. Pretransplant identification of acute rejection risk following kidney transplantation. Transpl Int. 2014;27(2):129–38. https://doi.org/10.1111/tri.12205.

    Article  PubMed  CAS  Google Scholar 

  156. Tullius SG, Tran H, Guleria I, Malek SK, Tilney NL, Milford E. The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann Surg. 2010;252(4):662–74. https://doi.org/10.1097/SLA.0b013e3181f65c7d.

    Article  PubMed  Google Scholar 

  157. Fijter JW, Mallat MJK, Doxiadis IIN, Ringers J, Rosendaal FR, Claas FHJ, et al. Increased immunogenicity and cause of graft loss of old donor kidneys. J Am Soc Nephrol. 2001;12(7):1538–46. https://doi.org/10.1681/ASN.V1271538.

    Article  PubMed  Google Scholar 

  158. Ojo AO, Hanson JA, Wolfe RA, Leichtman AB, Agodoa LY, Port FK. Long-term survival in renal transplant recipients with graft function. Kidney Int. 2000;57(1):307–13. https://doi.org/10.1046/j.1523-1755.2000.00816.x.

    Article  PubMed  CAS  Google Scholar 

  159. Corsonello A, Pedone C, Incalzi RA. Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions. Curr Med Chem. 2010;17(6):571–84. https://doi.org/10.2174/092986710790416326.

    Article  PubMed  CAS  Google Scholar 

  160. Delafuente JC. Pharmacokinetic and pharmacodynamic alterations in the geriatric patient. Consult Pharm. 2008;23(4):324–34. https://doi.org/10.4140/tcp.n.2008.324.

    Article  PubMed  Google Scholar 

  161. Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011;12(7):601–10. https://doi.org/10.2174/138920011796504527.

    Article  PubMed  CAS  Google Scholar 

  162. Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209. https://doi.org/10.1016/j.taap.2004.01.010.

    Article  PubMed  CAS  Google Scholar 

  163. Warrington JS, Greenblatt DJ, von Moltke LL. Age-related differences in CYP3A expression and activity in the rat liver, intestine, and kidney. J Pharmacol Exp Ther. 2004;309(2):720–9. https://doi.org/10.1124/jpet.103.061077.

    Article  PubMed  CAS  Google Scholar 

  164. Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ, et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am J Transplant. 2012;12(12):3326–36. https://doi.org/10.1111/j.1600-6143.2012.04232.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Blosser CD, Huverserian A, Bloom RD, Abt PD, Goral S, Thomasson A, et al. Age, exclusion criteria, and generalizability of randomized trials enrolling kidney transplant recipients. Transplantation. 2011;91(8):858–63. https://doi.org/10.1097/TP.0b013e31820f42d9.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zulman DM, Sussman JB, Chen X, Cigolle CT, Blaum CS, Hayward RA. Examining the evidence: a systematic review of the inclusion and analysis of older adults in randomized controlled trials. J Gen Intern Med. 2011;26(7):783–90. https://doi.org/10.1007/s11606-010-1629-x.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Betjes MG, Meijers RW, de Wit EA, Weimar W, Litjens NH. Terminally differentiated CD8+ Temra cells are associated with the risk for acute kidney allograft rejection. Transplantation. 2012;94(1):63–9. https://doi.org/10.1097/TP.0b013e31825306ff.

    Article  PubMed  CAS  Google Scholar 

  168. Shabir S, Smith H, Kaul B, Pachnio A, Jham S, Kuravi S, et al. Cytomegalovirus-associated CD4(+) CD28(null) cells in NKG2D-dependent glomerular endothelial injury and kidney allograft dysfunction. Am J Transplant. 2016;16(4):1113–28. https://doi.org/10.1111/ajt.13614.

    Article  PubMed  CAS  Google Scholar 

  169. Dedeoglu B, Meijers RW, Klepper M, Hesselink DA, Baan CC, Litjens NH, et al. Loss of CD28 on peripheral T cells decreases the risk for early acute rejection after kidney transplantation. PLoS One. 2016;11(3): e0150826. https://doi.org/10.1371/journal.pone.0150826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Jacquemont L, Tilly G, Yap M, Doan-Ngoc TM, Danger R, Guerif P, et al. Terminally differentiated effector memory CD8(+) T cells identify kidney transplant recipients at high risk of graft failure. J Am Soc Nephrol. 2020;31(4):876–91. https://doi.org/10.1681/ASN.2019080847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Heine GH, Ulrich C, Seibert E, Seiler S, Marell J, Reichart B, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008;73(5):622–9. https://doi.org/10.1038/sj.ki.5002744.

    Article  PubMed  CAS  Google Scholar 

  172. Bottomley MJ, Harden PN, Wood KJ. CD8+ immunosenescence predicts post-transplant cutaneous squamous cell carcinoma in high-risk patients. J Am Soc Nephrol. 2016;27(5):1505–15. https://doi.org/10.1681/ASN.2015030250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk R. J. Kuypers.

Ethics declarations

Funding

No funding.

Conflicts of Interest

The authors have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

B.P Jallah conducted the literature review and drafted the manuscript. D. Kuypers performed additional literature review, provided ideas for the drafting process and edited the drafted manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jallah, B.P., Kuypers, D.R.J. Impact of Immunosenescence in Older Kidney Transplant Recipients: Associated Clinical Outcomes and Possible Risk Stratification for Immunosuppression Reduction. Drugs Aging 41, 219–238 (2024). https://doi.org/10.1007/s40266-024-01100-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-024-01100-5

Navigation