Skip to main content
Log in

The Prognostic Utility of Anticholinergic Burden Scales: An Integrative Review and Gap Analysis

  • Systematic Review
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Background

Anticholinergic drugs are commonly prescribed, especially to older adults. Anticholinergic burden scales (ABS) have been used to evaluate the cumulative effects of multiple anticholinergics. However, studies have shown inconsistent results regarding the association between anticholinergic burden assessed with ABS and adverse clinical outcomes such as cognitive impairment, functional decline, and frailty. This review aims to identify gaps in research on the development, validation, and evaluation of ABS, and provide recommendations for future studies.

Method

A comprehensive search of five databases (MEDLINE, Embase, PsychInfo, CINAHL, CENTRAL) was conducted for relevant studies published from inception until 25 May 2023. Two reviewers screened for eligibility and assessed the quality of studies using different tools based on the study design and stage of the review framework. Research evidence was evaluated, and gaps were identified and grouped into evidence, knowledge, and methodological gaps, using evidence tables to summarize data.

Results

Several evidence, knowledge, and methodological gaps in existing development, validation, and evaluation studies of ABS were identified. There is no universally accepted scale, and there is a need to define a clinically relevant threshold for measuring total anticholinergic burden. The current evidence has limitations, underrepresenting low- and middle-income countries, younger individuals, and populations with cognitive disabilities. The impact of anticholinergic burden on frailty is also understudied. Existing evaluation studies provide limited evidence on the benefit of reducing anticholinergic burden on clinical outcomes or the safety of anticholinergic deprescribing. There is also uncertainty regarding optimal reduction, clinically significant anticholinergic burden thresholds, and cost effectiveness.

Conclusions

Future research recommendations to bridge knowledge gaps include developing a risk assessment framework, refining ABS scales, establishing a standardized consensus scale, and creating a longitudinal measure of cumulative anticholinergic risk. Strategies to minimize bias, consider frailty, and promote multidisciplinary and multinational collaborations are also necessary to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. López-Álvarez J, Sevilla-Llewellyn-Jones J, Agüera-Ortiz L. Anticholinergic drugs in geriatric psychopharmacology. Front Neurosci. 2019;13:1309.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grossi CM, Richardson K, Savva GM, Fox C, Arthur A, Loke YK, et al. Increasing prevalence of anticholinergic medication use in older people in England over 20 years: cognitive function and ageing study I and II. BMC Geriatr. 2020;20:1–8. https://doi.org/10.1186/s12877-020-01657-x.

  3. Fox C, Smith T, Maidment I, Chan W-Y, Bua N, Myint PK, et al. Effect of medications with anti-cholinergic properties on cognitive function, delirium, physical function and mortality: a systematic review. Age Ageing. 2014;43:604–15.

    Article  PubMed  Google Scholar 

  4. Wouters H, Meer H, Taxis K. Quantification of anticholinergic and sedative drug load with the Drug Burden Index: a review of outcomes and methodological quality of studies. Eur J Clin Pharmacol. 2017;73:257–66. https://doi.org/10.1007/s00228-016-2162-6.

  5. Summers WK. A clinical method of estimating risk of drug induced delirium. Life Sci. 1978;22:1511–6.

    Article  CAS  PubMed  Google Scholar 

  6. Mayer T, Haefeli WE, Seidling HM. Different methods, different results - How do available methods link a patient’s anticholinergic load with adverse outcomes? Eur J Clin Pharmacol. 2015;71:1299–314. https://doi.org/10.1007/s00228-015-1932-x.

  7. Quinn TJ, Myint PK, McCleery J, Taylor-Rowan M, Stewart C. Anticholinergic burden (prognostic factor) for prediction of dementia or cognitive decline in older adults with no known cognitive syndrome. Cochrane Database Syst Rev. 2020;2020:CD013540. https://doi.org/10.1002/14651858.CD013540.pub2.

  8. Lisibach A, Benelli V, Csajka C, Lutters M. Anticholinergic drug burden: A systematic review of scales and their impact on clinical outcomes. Int J Clin Pharm. 2020;42:292. https://doi.org/10.1007/s00228-020-02994-x.

  9. Villalba-Moreno Angela Maand Alfaro-Lara ER, Pérez-Guerrero M, Nieto-Martín M, Santos-Ramos B. Systematic review on the use of anticholinergic scales in poly pathological patients. Arch Gerontol Geriatr. 2016;62:1–8. https://doi.org/10.1016/j.archger.2015.10.002.

  10. Lozano-Ortega G, Johnston KM, Cheung A, Wagg A, Campbell NL, Dmochowski RR, et al. A review of published anticholinergic scales and measures and their applicability in database analyses. Arch Gerontol Geriatr. 2020 Mar-Apr;87:103885. https://doi.org/10.1016/j.archger.2019.05.010.

  11. Salahudeen MS, Duffull SB, Nishtala PS. Impact of anticholinergic discontinuation on cognitive outcomes in older people: a systematic review. Drugs Aging. 2014;31:185–92. https://doi.org/10.1007/s40266-014-0158-4.

  12. Villalba-Moreno AM, Alfaro-Lara ER, Pérez-Guerrero MC, Nieto-Martín MD, Santos-Ramos B. Systematic review on the use of anticholinergic scales in poly pathological patients. Arch Gerontol Geriatr. 2016;62:1–8. https://doi.org/10.1016/j.archger.2015.10.002.

  13. Cardwell K, Hughes CM, Ryan C. The association between anticholinergic medication burden and health related outcomes in the “oldest old”: a systematic review of the literature. Drugs Aging. 2015;32:835–48. https://doi.org/10.1007/s40266-015-0310-9.

  14. Welsh TJ, van der Wardt V, Ojo G, Gordon AL, Gladman JRF. Anticholinergic drug burden tools/scales and adverse outcomes in different clinical settings: a systematic review of reviews. Drugs Aging. 2018;35:523–38. https://doi.org/10.1007/s40266-018-0549-z.

  15. Graves-Morris K, Stewart C, Soiza RL, Taylor-Rowan M, Quinn TJ, Loke YK, et al. The prognostic value of anticholinergic burden measures in relation to mortality in older individuals: a systematic review and meta-analysis. Front Pharmacol. 2020;11:570. https://doi.org/10.3389/fphar.2020.00570.

  16. Ghezzi E, Chan M, Kalisch Ellett LM, Ross TJ, Richardson K, Ho JN, et al. The effects of anticholinergic medications on cognition in children: a systematic review and meta-analysis. Sci Rep. 2021;11:219. https://doi.org/10.1038/s41598-020-80211-6.

  17. Rubin LH, Radtke KK, Eum S, Tamraz B, Kumanan KN, Springer G, et al. Cognitive burden of common non-antiretroviral medications in HIV-infected women. J Acquir Immune Defic Syndr. 2018;79:83–91. https://doi.org/10.1097/QAI.0000000000001755.

  18. Taylor-Rowan M, Kraia O, Kolliopoulou C, Cross AJ, Stewart C, Myint PK, et al. Anticholinergic burden for prediction of cognitive decline or neuropsychiatric symptoms in older adults with mild cognitive impairment or dementia. Cochrane Database Syst Rev. 2021;2021:CD015196. https://doi.org/10.1002/14651858.CD015196.pub2.

  19. Rector TS, Taylor BC, Wilt TJ. Chapter 12: systematic review of prognostic tests. J Gen Intern Med. 2012;27(Suppl 1):S94-101.

    Article  PubMed  Google Scholar 

  20. Perel P, Edwards P, Wentz R, Roberts I. Systematic review of prognostic models in traumatic brain injury. BMC Med Inform Decis Mak. 2006;6:38. https://doi.org/10.1186/1472-6947-6-38.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McGinn TG, Guyatt GH, Wyer PC, Naylor CD, Stiell IG, Richardson WS. Users’ guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-Based Medicine Working Group. JAMA. 2000;284:79–84.

    Article  CAS  PubMed  Google Scholar 

  22. Whittemore R, Knafl K. The integrative review: updated methodology. J Adv Nurs. 2005;52:546–53.

    Article  PubMed  Google Scholar 

  23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71. https://doi.org/10.1136/bmj.n71.

  24. Godfrey CM, Harrison MB, Graham ID, Ross-White A. Utilisation of theoretical models and frameworks in the process of evidence synthesis. JBI Libr Syst Rev. 2010;8(18):730-751. https://doi.org/10.11124/01938924-201008180-00001.

  25. Riley RD, Moons KGM, Snell KIE, Ensor J, Hooft L, Altman DG, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ. 2019;364:k4597. https://doi.org/10.1136/bmj.k4597.

  26. Akpan A, Roberts C, Bandeen-Roche K, Batty B, Bausewein C, Bell D, et al. Standard set of health outcome measures for older persons. BMC Geriatr. 2018;18:36. https://doi.org/10.1186/s12877-017-0701-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geersing G-J, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons KGM. Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews. PLoS ONE. 2012;7: e32844. https://doi.org/10.1371/journal.pone.0032844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ingui BJ, Rogers MA. Searching for clinical prediction rules in MEDLINE. J Am Med Inform Assoc. 2001;8:391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLOS Med. 2014;11:e1001744. https://doi.org/10.1371/journal.pmed.1001744.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brouwers MC, Kerkvliet K, Spithoff K. The AGREE reporting checklist: a tool to improve reporting of clinical practice guidelines. BMJ. 2016;352:i1152. https://doi.org/10.1136/bmj.i1152.

  31. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280–6. https://doi.org/10.7326/0003-4819-158-4-201302190-00009.

    Article  PubMed  Google Scholar 

  32. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. https://doi.org/10.1136/bmj.l4898.

  33. Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.

  34. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. https://doi.org/10.1136/bmj.j4008.

  35. Miles MB, Huberman AM. Qualitative data analysis: an expanded sourcebook. 2nd ed. Thousand Oaks: Sage Publications, Inc; 1994.

    Google Scholar 

  36. Robinson KA, Akinyede O, Dutta T, Sawin VI, Li T, Spencer MR, et al. Framework for determining research gaps during systematic review: evaluation. Feb. Repor. Rockville: Agency for Healthcare Research and Quality (US); 2013.

  37. Robinson KA, Saldanha IJ, McKoy NA. Development of a framework to identify research gaps from systematic reviews. J Clin Epidemiol. 2011;64:1325–30. https://doi.org/10.1016/j.jclinepi.2011.06.009.

    Article  PubMed  Google Scholar 

  38. Carnahan RM, Lund BC, Perry PJ, Pollock BG, Culp KR. The Anticholinergic Drug Scale as a measure of drug-related anticholinergic burden: associations with serum anticholinergic activity. J Clin Pharmacol. 2006;46:1481–6.

    Article  CAS  PubMed  Google Scholar 

  39. Han L, McCusker J, Cole M, Abrahamowicz M, Primeau F, Elie M. Use of medications with anticholinergic effect predicts clinical severity of delirium symptoms in older medical inpatients. Arch Intern Med. 2001;161:1099–105.

    Article  CAS  PubMed  Google Scholar 

  40. Klamer TT, Wauters M, Azermai M, Durán C, Christiaens T, Elseviers M, et al. A novel scale linking potency and dosage to estimate anticholinergic exposure in older adults: the Muscarinic Acetylcholinergic Receptor ANTagonist Exposure Scale. Basic Clin Pharmacol Toxicol. 2017;120:582–90.

    Article  CAS  PubMed  Google Scholar 

  41. Campbell NL, Maidment I, Fox C, Khan B, Boustani M. The 2012 update to the anticholinergic cognitive burden scale. J Am Geriatr Soc. 2013;61:S142–3. https://doi.org/10.1111/jgs.2013.61.issue-s1

  42. Boustani M, Campbell N, Munger S, Maidment I, Fox C. Impact of anticholinergics on the aging brain: a review and practical application. Aging Health. 2008;4:311–20. https://doi.org/10.2217/1745509X.4.3.311.

    Article  CAS  Google Scholar 

  43. Minzenberg MJ, Poole JH, Benton C, Vinogradov S. Assocation of anticholinergic load with impairment of complex attention and memory in schizophrenia. Am J Psychiatry. 2004;161:116–24. https://doi.org/10.1176/appi.ajp.161.1.116.

  44. Rudolph JL, Salow MJ, Angelini MC, McGlinchey RE. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch Intern Med. 2008;168:508–13. https://doi.org/10.1001/archinternmed.2007.106.

    Article  PubMed  Google Scholar 

  45. Briet J, Javelot H, Heitzmann E, Weiner L, Lameira C, D’Athis P, et al. The anticholinergic impregnation scale: towards the elaboration of a scale adapted to prescriptions in French psychiatric settings. Therapie. 2017;72:427–37.

    Article  PubMed  Google Scholar 

  46. Ehrt U, Broich K, Larsen JP, Ballard C, Aarsland D, Ehrt U, et al. Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study. J Neurol Neurosurg Psychiatry. 2010;81:160–5. https://doi.org/10.1136/jnnp.2009.186239.

  47. Jakeman B, Scherrer A, Battegay M, Gunthard HF, Hachfeld A, Calmy A, et al. Anticholinergic medication use in elderly people living with HIV and self-reported neurocognitive impairment: a prospective cohort study. J Antimicrob Chemother. 2022;77:492–9. https://doi.org/10.1093/jac/dkab386.

  48. Kiesel EK, Hopf YM, Drey M. An anticholinergic burden score for German prescribers: score development. BMC Geriatr. 2018;18:239.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ancelin ML, Artero S, Portet F, Dupuy AM, Touchon J, Ritchie K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. Br Med J. 2006;332:455–8. https://doi.org/10.1136/bmj.38740.439664.DE.

  50. Jun K, Hwang S, Ah Y, Suh Y, Lee J. Development of an anticholinergic burden scale specific for Korean older adults. Geriatr Gerontol Int. 2019;19:628–34. https://doi.org/10.1111/ggi.13680.

  51. Nery RT, Reis AMM. Development of a Brazilian anticholinergic activity drug scale. Einstein (Sao Paulo). 2019;17:eAO4435.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chew ML, Mulsant BH, Pollock BG, Lehman ME, Greenspan A, Mahmoud RA, et al. Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc. 2008;56:1333–41.

    Article  PubMed  Google Scholar 

  53. Bishara D, Harwood D, Sauer J, Taylor DM. Anticholinergic effect on cognition (AEC) of drugs commonly used in older people. Int J Geriatr Psychiatry. 2017;32:650–6.

    Article  PubMed  Google Scholar 

  54. Al Rihani SB, Deodhar M, Darakjian LI, Dow P, Smith MK, Bikmetov R, et al. Quantifying anticholinergic burden and sedative load in older adults with polypharmacy: a systematic review of risk scales and models. Drugs Aging. 2021;38:977–94. https://doi.org/10.1007/s40266-021-00895-x.

  55. Durán C, Azermai M, Vander Stichele R. Systematic review of anticholinergic risk scales in older adults. Eur J Clin Pharmacol. 2013;69:1485–96. https://doi.org/10.1007/s00228-013-1499-3.

  56. Ramos H, Moreno L, Pérez-Tur J, Cháfer-Pericás C, García-Lluch G, Pardo J. CRIDECO anticholinergic load scale: an updated anticholinergic burden scale. Comparison with the ACB scale in Spanish individuals with subjective memory complaints. J Pers Med. 2022;12:207. https://doi.org/10.3390/jpm12020207

  57. Lavrador M, Cabral AC, Veríssimo MT, Fernandez-Llimos F, Figueiredo I V, Castel-Branco MM. A universal pharmacological-based list of drugs with anticholinergic activity. Pharmaceutics. 2023;15:230.https://doi.org/10.3390/pharmaceutics15010230.

  58. Salahudeen MS, Duffull SB, Nishtala PS. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: a systematic review. BMC Geriatr. 2015;15:31. https://doi.org/10.1186/s12877-015-0029-9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Faure R, Dauphinot V, Krolak-Salmon P, Mouchoux C. A standard international version of the Drug Burden Index for cross-national comparison of the functional burden of medications in older people. J Am Geriatr Soc. 2013;61:1227–8. https://doi.org/10.1111/jgs.12343.

  60. Hilmer SN, Mager DE, Simonsick EM, Cao Y, Ling SM, Windham BG, et al. A drug burden index to define the functional burden of medications in older people. Arch Intern Med. 2007;167:781–7.

    Article  PubMed  Google Scholar 

  61. Tune L, Coyle JT. Serum levels of anticholinergic drugs in treatment of acute extrapyramidal side effects. Arch Gen Psychiatry. 1980;37:293–7.

    Article  CAS  PubMed  Google Scholar 

  62. Xu D, Anderson HD, Tao A, Hannah KL, Linnebur SA, Valuck RJ, et al. Assessing and predicting drug-induced anticholinergic risks: an integrated computational approach. Ther Adv Drug Saf. 2017;8:361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagai J, Kagaya H, Uesawa Y. Analysis of physicochemical properties of drugs included in anticholinergic rating scales. Chem-Bio Informatics J. 2018;18:1–9.

    Article  CAS  Google Scholar 

  64. Schulthess-Lisibach AE, Gallucci G, Benelli V, Kälin R, Schulthess S, Cattaneo M, et al. Predicting delirium in older non-intensive care unit inpatients: development and validation of the DELIrium risK Tool (DELIKT). Int J Clin Pharm. 2023; https://doi.org/10.1007/s11096-023-01566-0.

  65. Kouladjian L, Gnjidic D, Chen TF, Mangoni AA, Hilmer SN. Drug Burden Index in older adults: theoretical and practical issues. Clin Interv Aging. 2014;9:1503–15.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kersten H, Wyller TB. Anticholinergic drug burden in older people’s brain—how well is it measured? Basic Clin Pharmacol Toxicol. 2014;114:151–9. https://doi.org/10.1111/bcpt.12140.

  67. Salahudeen M, Nishtala P. Examination and estimation of anticholinergic burden: current trends and implications for future research. Drugs Aging. 2016;33:305–13. https://doi.org/10.1007/s40266-016-0362-5.

  68. Nishtala PS, Salahudeen MS, Hilmer SN. Anticholinergics: theoretical and clinical overview. Expert Opin Drug Saf. 2016;15:753–68.

    Article  CAS  PubMed  Google Scholar 

  69. Szabo SM, Gooch K, Schermer C, Walker D, Lozano-Ortega G, Rogula B, Deighton A, Vonesh E, Campbell N. Association between cumulative anticholinergic burden and the occurrence of falls and fractures among patients with overactive bladder: a retrospective observational study. BMJ Open. 2019 May 5;9(5):e026391. https://doi.org/10.1136/bmjopen-2018-026391.

    Article  Google Scholar 

  70. Bostock C V, Soiza RL, Mangoni AA. Association between prescribing of antimuscarinic drugs and antimuscarinic adverse effects in older people. Expert Rev Clin Pharmacol. 2010;3:441–52.https://doi.org/10.1586/ecp.10.34.

  71. Kouladjian L, Gnjidic D, Chen TF, Hilmer SN. Development, validation and evaluation of an electronic pharmacological tool: the Drug Burden Index Calculator©. Res Soc Adm Pharm. 2016;12:865–75. https://doi.org/10.1016/j.sapharm.2015.11.002.

  72. Ah YM, Suh Y, Jun K, Hwang S, Lee JY. Effect of anticholinergic burden on treatment modification, delirium and mortality in newly diagnosed dementia patients starting a cholinesterase inhibitor: a population-based study. Basic Clin Pharmacol Toxicol. 2019;124:741–8. https://doi.org/10.1111/bcpt.13184.

    Article  CAS  PubMed  Google Scholar 

  73. Mayer T, Kopitz J, Plaschke K, Weiss J, Seidling HM, Haefeli WE. Limitations of the anticholinergic activity assay and assay-based anticholinergic drug scales. Am J Geriatr Psychiatry. 2016;24:1182–8.

    Article  PubMed  Google Scholar 

  74. Pieper NT, Grossi CM, Chan WY, Loke YK, Savva GM, Haroulis C, et al. Anticholinergic drugs and incident dementia, mild cognitive impairment and cognitive decline: a meta-analysis. Age Ageing. 2020;49:939–47. https://doi.org/10.1093/ageing/afaa090.

  75. Ruxton K, Woodman RJ, Mangoni AA. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults: a systematic review and meta-analysis. Br J Clin Pharmacol. 2015;80:209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Collamati A, Martone A, Poscia A, Brandi V, Celi M, Marzetti E, et al. Anticholinergic drugs and negative outcomes in the older population: from biological plausibility to clinical evidence. Aging Clin Exp Res. 2016;28:25–35. https://doi.org/10.1007/s40520-015-0359-7.

  77. Zheng YB, Shi L, Zhu XM, Bao YP, Bai LJ, Li JQ, et al. Anticholinergic drugs and the risk of dementia: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;127:296–306. https://doi.org/10.1016/j.neubiorev.2021.04.031.

  78. Tristancho-Pérez Á, Villalba-Moreno Á, López-Malo de Molina MD, Santos-Ramos B, Sánchez-Fidalgo S. The predictive value of anticholinergic burden measures in relation to cognitive impairment in older chronic complex patients. J Clin Med. 2022;11:3357. https://doi.org/10.3390/jcm11123357.

  79. Ziad A, Olekhnovitch R, Ruiz F, Berr C, Begaud B, Goldberg M, et al. Anticholinergic drug use and cognitive performances in middle age: findings from the CONSTANCES cohort. J Neurol Neurosurg Psychiatry. 2018;89:1107–15. https://doi.org/10.1136/jnnp-2018-318190.

  80. Moriarty F, Savva GM, Grossi CM, Bennett K, Fox C, Maidment I, et al. Cognitive decline associated with anticholinergics, benzodiazepines and Z-drugs: findings from The Irish Longitudinal Study on Ageing (TILDA). Br J Clin Pharmacol. 2021;87:2818–29.

    Article  CAS  PubMed  Google Scholar 

  81. Norling AM, Bennett A, Crowe M, Long DL, Nolin SA, Myers T, et al. Longitudinal associations of anticholinergic medications on cognition and possible mitigating role of physical activity. J Am Geriatr Soc. 2023 Jun;71(6):1937-1943. https://doi.org/10.1111/jgs.18279.

  82. Vinogradov S, Fisher M, Warm H, Holland C, Kirshner MA, Pollock BG, et al. The cognitive cost of anticholinergic burden: decreased response to cognitive training in schizophrenia. Am J Psychiatry. 2009;166:1055–62. https://doi.org/10.1176/appi.ajp.2009.09010017.

  83. Joshi YB, Thomas ML, Hochberger WC, Bismark AW, Treichler EBH, Molina J, et al. Verbal learning deficits associated with increased anticholinergic burden are attenuated with targeted cognitive training in treatment refractory schizophrenia patients. Schizophr Res. 2019;208:384–9.  https://doi.org/10.1016/j.schres.2019.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  84. O'Reilly K, O'Connell P, Donohoe G, Coyle C, O'Sullivan D, Azvee Z, et al. Anticholinergic burden in schizophrenia and ability to benefit from psychosocial treatment programmes: a 3-year prospective cohort study. Psychol Med. 2016;46:3199–211. https://doi.org/10.1017/S0033291716002154.

  85. Cooley SA, Paul RH, Strain JF, Boerwinkle A, Kilgore C, Ances BM. Effects of anticholinergic medication use on brain integrity in persons living with HIV and persons without HIV. AIDS. 2021;35:381–91. https://doi.org/10.1097/QAD.0000000000002768.

  86. Byrne C, Walsh C, Cahir C, Bennett K. Impact of Drug Burden Index on adverse health outcomes in Irish community dwelling older people: a cohort study. Pharmacoepidemiol Drug Saf. 2018;27:293–4. https://doi.org/10.1186/s12877-019-1138-7.

  87. Jamsen KM, Bell JS, Hilmer SN, Kirkpatrick CMJ, Ilomäki J, Le Couteur D, et al. Effects of changes in number of medications and drug burden index exposure on transitions between frailty states and death: the concord health and ageing in men project cohort study. J Am Geriatr Soc. 2016;64:89–95. https://doi.org/10.1111/jgs.13877.

    Article  PubMed  Google Scholar 

  88. Hilmer SN, Mager DE, Simonsick EM, Ling SM, Windham BG, Harris TB, et al. Drug burden index score and functional decline in older people. Am J Med. 2009;122:1142–9.e2. https://doi.org/10.1016/j.amjmed.2009.02.021.

  89. Hsu W, Lin C, Wen Y, Chen L, Hsiao F. A comparison of long-term anticholinergic burden derived from different risk scales with adverse clinical outcomes in the elderly. Value Health. 2016;19:A903.

  90. Chatterjee S, Bali V, Carnahan RM, Johnson ML, Hua C, Aparasu RR, et al. Anticholinergic medication use and risk of dementia among elderly nursing home residents with depression. Am J Geriatr Psychiatry. 2016;24:485–95. https://doi.org/10.1016/j.jagp.2015.12.011.

  91. Risacher SL, McDonald BC, Tallman EF, West JD, Farlow MR, Unverzagt FW, et al. Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurol. 2016;73:721–32. https://doi.org/10.1001/jamaneurol.2016.0580.

  92. Neelamegam M, Zgibor J, Chen H, O’Rourke K, Bakour C, Rajaram L, et al. The effect of cumulative anticholinergic use on the cognitive function of older adults: results from the Personality and Total Health (PATH) through life study. J Gerontol A Biol Sci Med Sci. 2020;75:1706–14. https://doi.org/10.1093/gerona/glaa145.

  93. Dyer AH, Murphy C, Segurado R, Lawlor B, Kennelly SP. Is ongoing anticholinergic burden associated with greater cognitive decline and dementia severity in mild to moderate alzheimer’s disease? J Gerontol A Biol Sci Med Sci. 2020;75:987–94. https://doi.org/10.1093/gerona/glz244.

  94. Gray SL, Anderson ML, Hanlon JT, Dublin S, Walker RL, Hubbard RA, et al. Exposure to strong anticholinergic medications and dementia-related neuropathology in a community-based autopsy cohort. J Alzheimers Dis. 2018;65:607–16. https://doi.org/10.3233/JAD-171174.

  95. Sheu JJ, Tsai MT, Erickson SR, Wu CH. Association between anticholinergic medication use and risk of dementia among patients with Parkinson’s disease. Pharmacotherapy. 2019;39:798–808. https://doi.org/10.1002/phar.2305.

    Article  CAS  PubMed  Google Scholar 

  96. Joung KI, Shin JY, Kim S, Cho SI. Anticholinergic use among the elderly with Alzheimer disease in South Korea: a population-based study. Alzheimer Dis Assoc Disord. 2020;34:238–43. https://doi.org/10.1097/WAD.0000000000000370.

  97. Remillard AJ. A pilot project to assess the association of anticholinergic symptoms with anticholinergic serum levels in the elderly. Pharmacotherapy. 1994;14:482–7.

  98. McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2020. https://doi.org/10.1002/jrsm.1411.

    Article  PubMed  Google Scholar 

  99. Joung K-I, Kim S, Cho YH, Cho S-I. Association of anticholinergic use with incidence of Alzheimer’s disease: population-based cohort study. Sci Rep. 2019;9:6802. https://doi.org/10.1038/s41598-019-43066-0.

  100. Hanlon P, Quinn TJ, Gallacher KI, Myint PK, Jani BD, Nicholl BI, et al. Assessing risks of polypharmacy involving medications with anticholinergic properties. Ann Fam Med. 2020;18:148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mur J, Russ TC, Cox SR, Marioni RE, Muniz‐Terrera G. Association between anticholinergic burden and dementia in UK Biobank. Alzheimers Dement Transl Res Clin Interv. 2022;8:e12290. https://doi.org/10.1002/trc2.12290.

  102. Fox C, Richardson K, Maidment ID, Savva GM, Matthews FE, Smithard D, et al. Anticholinergic medication use and cognitive impairment in the older population: the medical research council cognitive function and ageing study. J Am Geriatr Soc. 2011;59:1477–83.

    Article  PubMed  Google Scholar 

  103. Kashyap M, Belleville S, Mulsant BH, Hilmer SN, Paquette A, Tu LM, et al. Methodological challenges in determining longitudinal associations between anticholinergic drug use and incident cognitive decline. J Am Geriatr Soc. 2014;62:336–41.

    Article  PubMed  Google Scholar 

  104. Wilson NM, Hilmer SN, March LM, Cameron ID, Lord SR, Seibel MJ, et al. Associations between drug burden index and physical function in older people in residential aged care facilities. Age Ageing. 2010;39:503–7. https://doi.org/10.1093/ageing/afq053.

  105. Broder JC, Ryan J, Shah RC, Lockery JE, Orchard SG, Gilmartin‐Thomas JF ‐M., et al. Anticholinergic medication burden and cognitive function in participants of the ASPREE study. Pharmacother J Hum Pharmacol Drug Ther. 2022;42:134–44. https://doi.org/10.1002/phar.2652.

  106. Gnjidic D, Le Couteur DG, Abernethy DR, Hilmer SN. A pilot randomized clinical trial utilizing the drug burden index to reduce exposure to anticholinergic and sedative medications in older people. Ann Pharmacother. 2010;44:1725–32. https://doi.org/10.1345/aph.1P310.

    Article  PubMed  Google Scholar 

  107. van der Meer HG, Wouters H, Pont LG, Taxis K. Reducing the anticholinergic and sedative load in older patients on polypharmacy by pharmacist-led medication review: a randomised controlled trial. BMJ Open. 2018;8: e019042.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Martinez AI, Abner EL, Jicha GA, Rigsby DN, Eckmann LC, Huffmyer MJ, et al. One-year evaluation of a targeted medication therapy management intervention for older adults. J Manag care Spec Pharm. 2020;26:520–8.

    PubMed  Google Scholar 

  109. Tay HS, Soiza RL, Mangoni AA. Minimizing anticholinergic drug prescribing in older hospitalized patients: a full audit cycle. Ther Adv Drug Saf. 2014;5:121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Campbell NL, Pitts C, Corvari C, Kaehr E, Alamer K, Chand P, et al. Deprescribing anticholinergics in primary care older adults: Experience from two models and impact on a continuous measure of exposure. J Am Coll Clin Pharm. 2022;5:1039–47. https://doi.org/10.1002/jac5.1682.

  111. van der Meer HG, Wouters H, Teichert M, Griens F, Pavlovic J, Pont LG, et al. Feasibility, acceptability and potential effectiveness of an information technology-based, pharmacist-led intervention to prevent an increase in anticholinergic and sedative load among older community-dwelling. Ther Adv Drug Saf. 2018;10:2042098618805881. https://doi.org/10.1177/2042098618805881.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kersten H, Molden E, Tolo IK, Skovlund E, Engedal K, Wyller TB. Cognitive effects of reducing anticholinergic drug burden in a frail elderly population: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2013;68:271–8. https://doi.org/10.1093/gerona/gls176.

  113. Yeh YC, Liu CL, Peng LN, Lin MH, Chen LK. Potential benefits of reducing medication-related anticholinergic burden for demented older adults: a prospective cohort study. Geriatr Gerontol Int. 2013;13:694–700. https://doi.org/10.1111/ggi.12000.

    Article  PubMed  Google Scholar 

  114. Tollefson GD, Montague-Clouse J, Lancaster SP. The relationship of serum anticholinergic activity to mental status performance in an elderly nursing home population. J Neuropsychiatry Clin Neurosci. 1991;3:314–9.

    Article  CAS  PubMed  Google Scholar 

  115. Ailabouni N, Mangin D, Nishtala P. DEFEAT-polypharmacy: deprescribing anticholinergic and sedative medicines feasibility trial in residential aged care facilities. Int J Clin Pharm. 2019;41.

  116. Jaïdi Y, Guilloteau A, Nonnonhou V, Bertholon L-A, Badr S, Morrone I, et al. Threshold for a reduction in anticholinergic burden to decrease behavioral and psychological symptoms of dementia. J Am Med Dir Assoc. 2019;20:159-164.e3.

    Article  PubMed  Google Scholar 

  117. Lupu AM, Clinebell K, Gannon JM, Ellison JC, Chengappa KNR. Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry. 2017;78:e1270–5.

    Article  PubMed  Google Scholar 

  118. Nissan R, Brill S, Hershkovitz A. Association between anticholinergic drug prescription changes and rehabilitation outcome in post-acute hip fractured patients. Disabil Rehabil. 2020;42:2917–22.

    Article  PubMed  Google Scholar 

  119. Neilson V, Palmer S. The effectiveness of a multidisciplinary frailty team in reducing anticholinergic burden in frail older patients: a quantitative service evaluation. Geriatr Nurs. 2021;42:943–7. https://doi.org/10.1016/j.gerinurse.2021.04.029.

  120. Pink J, O’Brien J, Robinson L, Longson D. Dementia: assessment, management and support: summary of updated NICE guidance. BMJ. 2018;361:2438. https://doi.org/10.1136/bmj.k2438.

  121. Ghibelli S, Marengoni A, Djade CD, Nobili A, Tettamanti M, Franchi C, et al. Prevention of inappropriate prescribing in hospitalized older patients using a computerized prescription support system (INTERcheck(®)). Drugs Aging. 2013;30:821–8.

    Article  PubMed  Google Scholar 

  122. Stewart C, Gallacher K, Nakham A, Cruickshank M, Newlands R, Bond C, et al. Barriers and facilitators to reducing anticholinergic burden: a qualitative systematic review. Int J Clin Pharm. 2021;43:1451–60.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fowler NR, Campbell NL, Pohl GM, Munsie LM, Kirson NY, Desai U, et al. One‐year effect of the medicare annual wellness visit on detection of cognitive impairment: a cohort study. J Am Geriatr Soc. 2018;66:969–75. https://doi.org/10.1111/jgs.15330.

  124. Hanus RJ, Lisowe KS, Eickhoff JC, Kieser MA, Statz-Paynter JL, Zorek JA. Evaluation of a pharmacist-led pilot service based on the anticholinergic risk scale. J Am Pharm Assoc. 2003;2016(56):555–61.

    Google Scholar 

  125. Bishara D, Scott C, Stewart R, Taylor D, Harwood D, Codling D, et al. Safe prescribing in cognitively vulnerable patients: the use of the anticholinergic effect on cognition (AEC) tool in older adult mental health services. BJPsych Bull. 2020;44:26–30. https://doi.org/10.1192/bjb.2019.43.

  126. Wauters M, Elseviers M, Vander Stichele R, Dilles T, Thienpont G, Christiaens T. Efficacy, feasibility and acceptability of the OptiMEDs tool for multidisciplinary medication review in nursing homes. Arch Gerontol Geriatr. 2021 Jul-Aug;95:104391. https://doi.org/10.1016/j.archger.2021.104391.

  127. Moga DC, Abner EL, Rigsby DN, Eckmann L, Huffmyer M, Murphy RR, et al. Optimizing medication appropriateness in older adults: a randomized clinical interventional trial to decrease anticholinergic burden. Alzheimers Res Ther. 2017 May 23;9(1):36. https://doi.org/10.1186/s13195-017-0263-9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Meek MEB, Boobis AR, Crofton KM, Heinemeyer G, Van RM, Vickers C. Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharmacol. 2011;60:S1–14. https://doi.org/10.1016/j.yrtph.2011.03.010.

    Article  CAS  Google Scholar 

  129. Secchi A, Mamayusupova H, Sami S, Maidment I, Coulton S, Myint PK, et al. A novel Artificial Intelligence-based tool to assess anticholinergic burden: a survey. Age Ageing. 2022;51.

  130. Suh Y, Ah YM, Han E, Jun K, Hwang S, Choi KH, et al. Dose response relationship of cumulative anticholinergic exposure with incident dementia: validation study of Korean anticholinergic burden scale. BMC Geriatr. 2020;20:265. https://doi.org/10.1186/s12877-020-01671-z.

  131. Gray SL, Hanlon JT. Anticholinergic drugs and dementia in older adults. BMJ. 2018;361:k1722. https://doi.org/10.1136/bmj.k1722.

  132. Campbell NL, Lane KA, Gao S, Boustani MA, Unverzagt F. Anticholinergics influence transition from normal cognition to mild cognitive impairment in older adults in primary care. Pharmacotherapy. 2018;38:511–9. https://doi.org/10.1002/phar.2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Coupland CAC, Hill T, Dening T, Morriss R, Moore M, Hippisley-Cox J. Anticholinergic drug exposure and the risk of dementia: a nested case-control study. JAMA Intern Med. 2019;179:1084–93. https://doi.org/10.1001/jamainternmed.2019.0677.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wang YC, Chen YL, Huang CC, Ho CH, Huang YT, Wu MP, et al. Cumulative use of therapeutic bladder anticholinergics and the risk of dementia in patients with lower urinary tract symptoms: a nationwide 12-year cohort study. BMC Geriatr. 2019;19:380. https://doi.org/10.1186/s12877-019-1401-y.

  135. CDC. Calculating total daily dose of opiods for safer dosage. [cited 2022 Oct 29]. https://www.cdc.gov/drugoverdose/pdf/calculating_total_daily_dose-a.pdf.

  136. Yoshida K, Solomon DH, Kim SC. Active-comparator design and new-user design in observational studies. Nat Rev Rheumatol. 2015;11:437–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Han L, Agostini JV, Allore HG. Cumulative anticholinergic exposure is associated with poor memory and executive function in older men. J Am Geriatr Soc. 2008;56:2203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Phutietsile GO, Fotaki N, Jamieson HA, Nishtala PS. The association between anticholinergic burden and mobility: a systematic review and meta-analyses. BMC Geriatr. 2023;23:161. https://doi.org/10.1186/s12877-023-03820-6.

  139. Burke SL, Hu T, Naseh M, Fava NM, O’Driscoll J, Alvarez D, et al. Factors influencing attrition in 35 Alzheimer’s disease centers across the USA: a longitudinal examination of the National Alzheimer’s Coordinating Center’s uniform data set. Aging Clin Exp Res. 2019;31:1283–97.

    Article  PubMed  Google Scholar 

  140. De Vincentis A, Gallo P, Finamore P, Pedone C, Costanzo L, Pasina L, et al. Potentially inappropriate medications, drug–drug interactions, and anticholinergic burden in elderly hospitalized patients: does an association exist with post-discharge health outcomes? Drugs Aging. 2020;37:585–93. https://doi.org/10.1007/s40266-020-00767-w.

  141. Toh S. Pharmacoepidemiology in the era of real-world evidence. Curr Epidemiol Reports. 2017;4:262–5. https://doi.org/10.1007/s40471-017-0123-y.

    Article  Google Scholar 

  142. Castelino RL, Hilmer SN, Bajorek BV, Nishtala P, Chen TF. Drug Burden Index and potentially inappropriate medications in community-dwelling older people: the impact of Home Medicines Review. Drugs Aging. 2010;27:135–48.

    Article  PubMed  Google Scholar 

  143. Kouladjian O’Donnell L, Sawan M, Reeve E, Gnjidic D, Chen TF, Kelly PJ, et al. Implementation of the Goal-directed Medication review Electronic Decision Support System (G-MEDSS)© into home medicines review: a protocol for a cluster-randomised clinical trial in older adults. BMC Geriatr. 2020;20:1–12. https://doi.org/10.1186/s12877-020-1442-2

  144. Whalley LJ, Sharma S, Fox HC, Murray AD, Staff RT, Duthie AC, et al. Anticholinergic drugs in late life: adverse effects on cognition but not on progress to dementia. J Alzheimers Dis. 2012;28:253–61. https://doi.org/10.3233/JAD-2012-110935.

  145. Andre L, Gallini A, Montastruc F, Coley N, Montastruc JL, Vellas B, et al. Anticholinergic exposure and cognitive decline in older adults: effect of anticholinergic exposure definitions in a 3-year analysis of the multidomain Alzheimer preventive trial (MAPT) study. Br J Clin Pharmacol. 2018. https://doi.org/10.1111/bcp.13734.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Low L, Anstey KJ, Sachdev P. Use of medications with anticholinergic properties and cognitive function in a young-old community sample. Int J Geriatr Psychiatry. 2009;24:578–84. https://doi.org/10.1002/gps.2157.

  147. Yarnall AJ, Lawson RA, Duncan GW, Breen DP, Khoo TK, Brooks D, et al. Anticholinergic load: is there a cognitive cost in early Parkinson’s disease? J Parkinsons Dis. 2015;5:743–7.

    Article  CAS  PubMed  Google Scholar 

  148. Bishara D, Perera G, Harwood D, Taylor D, Sauer J, Funnell N, et al. Centrally acting anticholinergic drugs used for urinary conditions associated with worse outcomes in dementia. J Am Med Dir Assoc. 2021;22:2547–52. https://doi.org/10.1016/j.jamda.2021.08.011.

    Article  PubMed  Google Scholar 

  149. Bishara D, Perera G, Harwood D, Taylor D, Sauer J, Funnell N, et al. Centrally-acting anticholinergic drugs- associations with mortality, hospitalisation and cognitive decline following dementia diagnosis in people receiving antidepressant and antipsychotic drugs. Aging Ment Health. 2022;26:1747–55.

    Article  PubMed  Google Scholar 

  150. Fox C, Livingston G, Maidment ID, Coulton S, Smithard DG, Boustani M, et al. The impact of anticholinergic burden in Alzheimer’s dementia-the Laser-AD study. Age Ageing. 2011;40:730–5. https://doi.org/10.1093/ageing/afr102.

  151. Iyer S, Lozo S, Botros C, Wang C, Warren A, Sand P, et al. Cognitive changes in women starting anticholinergic medications for overactive bladder: a prospective study. Int Urogynecol J. 2020;31:2653–60.

    Article  PubMed  Google Scholar 

  152. Kolanowski A, Mogle J, Fick DM, Campbell N, Hill N, Mulhall P, et al. Anticholinergic exposure during rehabilitation: cognitive and physical function outcomes in patients with delirium superimposed on dementia. Am J Geriatr psychiatry. 2015;23:1250–8.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Koyama A, Steinman M, Ensrud K, Hillier TA, Yaffe K. Long-term cognitive and functional effects of potentially inappropriate medications in older women. J Gerontol A Biol Sci Med Sci. 2014;69:423–9. https://doi.org/10.1093/gerona/glt192.

  154. Shah RC, Janos AL, Kline JE, Yu L, Leurgans SE, Wilson RS, et al. Cognitive decline in older persons initiating anticholinergic medications. PLoS ONE. 2013;8:e64111–e64111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wu Y, Wang C, Hung C, Chen L, Lin M, Wang P, et al. Association between using medications with anticholinergic properties and short-term cognitive decline among older men: a retrospective cohort study in Taiwan. Geriatr Gerontol Int. 2017;17:57–64. https://doi.org/10.1111/ggi.13032.

  156. Arnautovska U, Vitangcol K, Kesby JP, Warren N, Rossell SL, Neill E, et al. Verbal and visual learning ability in patients with treatment-resistant schizophrenia: a 1-year follow-up study. Schizophr Res Cogn. 2023;33:100283. https://doi.org/10.1016/j.scog.2023

  157. Limback-Stokin MM, Krell-Roesch J, Roesler K, Hansen A, Stonnington CM, Temkit M, et al. Anticholinergic medications and cognitive function in late midlife. Alzheimer Dis Assoc Disord. 2018;32:262–4. https://doi.org/10.1097/WAD.0000000000000251.

  158. Dyer AH, Murphy C, Segurado R, Lawlor B, Kennelly SP, Group for the NS. Is ongoing anticholinergic burden associated with greater cognitive decline and dementia severity in mild to moderate Alzheimer’s disease? J Gerontol A Biol Sci Med Sci. 2020;75:987–94. https://doi.org/10.1093/gerona/glz244.

  159. Brombo G, Bianchi L, Maietti E, Malacarne F, Corsonello A, Cherubini A, et al. Association of anticholinergic drug burden with cognitive and functional decline over time in older inpatients: results from the CRIME Project. Drugs Aging. 2018;35:917–24. https://doi.org/10.1007/s40266-018-0584-9.

  160. Collin BG, Raju D, Katsikas S. The cognitive effects of anticholinergic drugs on apolipoprotein ε4 carriers and noncarriers in the Wisconsin Registry for Alzheimer’s prevention study. Neuropsychology. 2021;35:220–31.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Landi F, Dell’Aquila G, Collamati A, Martone AM, Zuliani G, Gasperini B, et al. Anticholinergic drug use and negative outcomes among the frail elderly population living in a nursing home. J Am Med Dir Assoc. 2014;15:825–9.

    Article  PubMed  Google Scholar 

  162. Jamsen KM, Gnjidic D, Hilmer SN, Ilomäki J, Le Couteur DG, Blyth FM, et al. Drug Burden Index and change in cognition over time in community-dwelling older men: the CHAMP study. Ann Med. 2017;49:157–64.

    Article  PubMed  Google Scholar 

  163. Wouters H, Hilmer SN, Gnjidic D, Campen JP Van, Teichert M, Meer HG Van Der, et al. Long-term exposure to anticholinergic and sedative medications and cognitive and physical function in later life. J Gerontol A Biol Sci Med Sci. 2020;75:357–65. https://doi.org/10.1093/gerona/glz019.

  164. Ziad A, Berr C, Ruiz F, Bégaud B, Lemogne C, Goldberg M, et al. Anticholinergic activity of psychotropic drugs and cognitive impairment among participants aged 45 and over: the CONSTANCES study. Drug Saf. 2021;44:565–79. https://doi.org/10.1007/s40264-021-01043-5.

    Article  CAS  PubMed  Google Scholar 

  165. Plaschke K, Hauth S, Jansen C, Bruckner T, Schramm C, Karck M, et al. The influence of preoperative serum anticholinergic activity and other risk factors for the development of postoperative cognitive dysfunction after cardiac surgery. J Thorac Cardiovasc Surg. 2013;145:805–11.

    Article  CAS  PubMed  Google Scholar 

  166. Chatterjee S, Bali V, Carnahan RM, Chen H, Johnson ML, Aparasu RR. Anticholinergic burden and risk of cognitive impairment in elderly nursing home residents with depression. Res Soc Adm Pharm. 2020;16:329–35.

    Article  Google Scholar 

  167. Cai X, Campbell N, Khan B, Callahan C, Boustani M. Long-term anticholinergic use and the aging brain. Alzheimers Dement. 2013;9:377–85.

    Article  PubMed  Google Scholar 

  168. Chuang Y-F, Elango P, Gonzalez CE, Thambisetty M. Midlife anticholinergic drug use, risk of Alzheimer’s disease, and brain atrophy in community-dwelling older adults. Alzheimers Dement. 2017;3:471–9.

    Article  Google Scholar 

  169. Weigand AJ, Bondi MW, Thomas KR, Campbell NL, Galasko DR, Salmon DP, et al. Association of anticholinergic medications and AD biomarkers with incidence of MCI among cognitively normal older adults. Neurology. 2020;95:e2295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kashyap M, Mulsant BH, Tannenbaum C. Small longitudinal study of serum anticholinergic activity and cognitive change in community-dwelling older adults. Am J Geriatr Psychiatry. 2015;23:326–9.

    Article  PubMed  Google Scholar 

  171. Campbell NL, Perkins AJ, Bradt P, Perk S, Wielage RC, Boustani MA, et al. Association of anticholinergic burden with cognitive impairment and health care utilization among a diverse ambulatory older adult population. Pharmacotherapy. 2016;36:1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hafdi M, Hoevenaar-Blom MP, Beishuizen CRL, Moll van Charante EP, Richard E, van Gool WA. Association of benzodiazepine and anticholinergic drug usage with incident dementia: a prospective cohort study of community-dwelling older adults. J Am Med Dir Assoc. 2020;21:188–193.e3.

  173. Koyama A, Steinman M, Ensrud K, Hillier TA, Yaffe K. Ten-year trajectory of potentially inappropriate medications in very old women: importance of cognitive status. J Am Geriatr Soc. 2013;61:258–63.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Liu Y-P, Chien W-C, Chung C-H, Chang H-A, Kao Y-C, Tzeng N-S. Are anticholinergic medications associated with increased risk of dementia and behavioral and psychological symptoms of dementia? A nationwide 15-year follow-up cohort study in Taiwan. Front Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.00030.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lockery JE, Broder JC, Ryan J, Stewart AC, Woods RL, Chong TTJ, et al. A cohort study of anticholinergic medication burden and incident dementia and stroke in older adults. JGIM J Gen Intern Med. 2021;36:1629–37. https://doi.org/10.1007/s11606-020-06550-2.

  176. Naharci MI, Cintosun U, Ozturk A, Oztin H, Turker T, Bozoglu E, et al. Effect of anticholinergic burden on the development of dementia in older adults with subjective cognitive decline. Psychiatry Clin Psychopharmacol. 2017;27:263–70. https://doi.org/10.1080/24750573.2017.1358130.

    Article  CAS  Google Scholar 

  177. Trevisan C, Limongi F, Siviero P, Noale M, Cignarella A, Manzato E, et al. Mild polypharmacy and MCI progression in older adults: the mediation effect of drug–drug interactions. Aging Clin Exp Res. 2021;33:49–56. https://doi.org/10.1007/s40520-019-01420-2.

  178. Chi D, Wu W, Zhao Q, Xiao Z, Luo J, Wang B, et al. Apolipoprotein E ε4 modifies the effect of possible anticholinergic drugs on incident dementia: the Shanghai Aging Study. J Am Med Dir Assoc. 2023;24:526–32. https://doi.org/10.1016/j.jamda.2023.01.018.

  179. Richardson K, Fox C, Maidment I, Steel N, Loke YK, Arthur A, et al. Anticholinergic drugs and risk of dementia: Case-control study. BMJ Br Med J. 2018;361. https://doi.org/10.1136/bmj.k1315.

  180. Malcher MF, Droupy S, Berr C, Ziad A, Huguet H, Faillie J-L, et al. Dementia associated with anticholinergic drugs used for overactive bladder: a nested case-control study using the French National Medical-Administrative Database. J Urol. 2022;208:863–71. https://doi.org/10.1097/JU.0000000000002804.

  181. Hershkovitz A, Angel C, Brill S, Nissan R. The association between anticholinergic drug use and rehabilitation outcome in post-acute hip fractured patients: a retrospective cohort study. Drugs Aging. 2018;35:333–41.

    Article  CAS  PubMed  Google Scholar 

  182. Sakel M, Boukouvalas A, Buono R, Moten M, Mirza F, Chan W-Y, et al. Does anticholinergics drug burden relate to global neuro-disability outcome measures and length of hospital stay? Brain Inj. 2015;29:1426–30.

    Article  CAS  PubMed  Google Scholar 

  183. Yrjana KR, Keevil VL, Soiza RL, Luben RN, Wareham NJ, Khaw K-T, et al. Anticholinergic medication exposure predicts poor physical capability: findings from a large prospective cohort study in England. Maturitas. 2020;142:55–63. https://doi.org/10.1016/j.maturitas.2020.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Clarke CL, Sniehotta FF, Vadiveloo T, Donnan PT, Witham MD. Association between objectively measured physical activity and opioid, hypnotic, or anticholinergic medication use in older people: data from the Physical Activity Cohort Scotland Study. Drugs Aging. 2018;35:835–42.

    Article  PubMed  Google Scholar 

  185. Kose E, Hirai T, Seki T, Hidaka S, Hamamoto T. Anticholinergic load negatively correlates with recovery of cognitive activities of daily living for geriatric patients after stroke in the convalescent stage. J Clin Pharm Ther. 2018;43:799–806. https://doi.org/10.1111/jcpt.12706.

  186. Koshoedo S, Soiza RL, Purkayastha R, Mangoni AA. Anticholinergic drugs and functional outcomes in older patients undergoing orthopaedic rehabilitation. Am J Geriatr Pharmacother. 2012;10:251–7.

    Article  PubMed  Google Scholar 

  187. Kröger E, Simard M, Sirois M-J, Giroux M, Sirois C, Kouladjian-O’Donnell L, et al. Is the drug burden index related to declining functional status at follow-up in community-dwelling seniors consulting for minor injuries? Results from the Canadian Emergency Team Initiative Cohort Study. Drugs Aging. 2019;36:73–83.

  188. Ogawa Y, Nibe F, Ogawa R, Sakoh M. Anticholinergic and sedative drug burden and functional recovery after cerebrovascular accident: a retrospective descriptive study. Prog Rehabil Med. 2020;5:20200010.

    PubMed  PubMed Central  Google Scholar 

  189. Lim R, Dumuid D, Parfitt G, Stanford T, Post D, Bilton R, et al. Using wrist-worn accelerometers to identify the impact of medicines with anticholinergic or sedative properties on sedentary time: a 12-month prospective analysis. Maturitas. 2023;172:9–14. https://doi.org/10.1016/j.maturitas.2023.03.006.

  190. Lampela P, Taipale H, Lavikainen P, Hartikainen S. The effect of comprehensive geriatric assessment on anticholinergic exposure assessed by four ranked anticholinergic lists. Arch Gerontol Geriatr. 2017;68:195–201. https://doi.org/10.1016/j.archger.2016.10.014.

  191. Keine D, Zelek M, Walker JQ, Sabbagh MN. Polypharmacy in an elderly population: enhancing medication management through the use of clinical decision support software platforms. Neurol Ther. 2019;8:79–94.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Moga DC, Wu Q, Doshi P. Patterns in bladder antimuscarinics use in medicare nursing homes. Pharmacoepidemiol Drug Saf. 2017;26(Suppl. 2): 3–636. https://doi.org/10.1002/pds.4275

  193. McLarin PE, Peterson GM, Curtain CM, Nishtala PS, Hannan PJ, Castelino RL. Impact of residential medication management reviews on anticholinergic burden in aged care residents. Curr Med Res Opin. 2016;32:123–31.

    Article  CAS  PubMed  Google Scholar 

  194. Balasundaram B, Ang WST, Stewart R, Bishara D, Ooi CH, Li F, et al. Improving quantification of anticholinergic burden using the Anticholinergic Effect on Cognition Scale—a healthcare improvement study in a geriatric ward setting. Australas Psychiatry. 2022;30:535–40. https://doi.org/10.1177/10398562221103117.

  195. Foubert K, Mehuys E, Maesschalck J, De Wulf I, Wuyts J, Foulon V, et al. Pharmacist-led medication review in community-dwelling older patients using the GheOP3 S-tool: general practitioners’ acceptance and implementation of pharmacists’ recommendations. J Eval Clin Pract. 2020;26:962–72. https://doi.org/10.1111/jep.13241.

  196. Sawan M, O’Donnell LK, Reeve E, Gnjidic D, Chen TF, Kelly PJ, et al. The utility of a computerised clinical decision support system intervention in home medicines review: A mixed-methods process evaluation. Res Soc Adm Pharm. 2021;17:715–22. https://doi.org/10.1016/j.sapharm.2020.06.010.

  197. van der Meer HG, Taxis K, Teichert M, Griens F, Pont LG, Wouters H. Anticholinergic and sedative medication use in older community-dwelling people: a national population study in the Netherlands. Pharmacoepidemiol Drug Saf. 2019;28:315–21. https://doi.org/10.1002/pds.4698.

  198. Molist-Brunet N, Sevilla-Sánchez D, Puigoriol-Juvanteny E, Barneto-Soto M, González-Bueno J, Espaulella-Panicot J. Improving individualized prescription in patients with multimorbidity through medication review. BMC Geriatr. 2022;22:417. https://doi.org/10.1186/s12877-022-03107-2.

  199. Nishtala PS, Fois RA, McLachlan AJ, Bell JS, Kelly PJ, Chen TF. Anticholinergic activity of commonly prescribed medications and neuropsychiatric adverse events in older people. J Clin Pharmacol. 2009;49:1176–84. https://doi.org/10.1177/0091270009345690.

  200. Jamieson H, Nishtala PS, Bergler HU, Weaver SK, Pickering JW, Ailabouni NJ, et al. Deprescribing anticholinergic and sedative drugs to reduce polypharmacy in frail older adults living in the community: a randomized controlled trial. J Gerontol A. 2023; https://doi.org/10.1093/gerona/glac249.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Ukachukwu Michael.

Ethics declarations

Funding

This project was supported by grants from the Canadian Institutes of Health Research (LKF, MJB, NEM, TCO-125272), the CIHR Canadian HIV Trials Network (CTN 273), and tuition support from the Department of Medicine, Division of Experimental Medicine, McGill University (HUM). None of these funding agencies played any role in the study’s design, data collection, analysis, or interpretation.

Conflict of interest

The authors declare that there are no conflicts of interest.

Availability of data and material

Data sharing not applicable to this article as no new datasets were generated or analyzed during the current study.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Authors contributions

HUM was responsible for conceiving the study, data extraction, data synthesis and writing the manuscript. OE carried out data extraction. MJB, LKF, and RT provided guidance throughout the research and revised the manuscript. NEM supervised all aspects of the project and revised the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1436 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michael, H.U., Enechukwu, O., Brouillette, MJ. et al. The Prognostic Utility of Anticholinergic Burden Scales: An Integrative Review and Gap Analysis. Drugs Aging 40, 763–783 (2023). https://doi.org/10.1007/s40266-023-01050-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-023-01050-4

Navigation