Skip to main content

Advertisement

Log in

Optimizing Reversal of Neuromuscular Block in Older Adults: Sugammadex or Neostigmine

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Residual neuromuscular paralysis, the presence of clinically significant weakness after administration of pharmacologic neuromuscular blockade reversal, is associated with postoperative pulmonary complications and is more common in older patients. In contemporary anesthesia practice, reversal of neuromuscular blockade is accomplished with neostigmine or sugammadex. Neostigmine, an acetylcholinesterase inhibitor, increases the concentration of acetylcholine at the neuromuscular junction, providing competitive antagonism of neuromuscular blocking drug and facilitating muscle contraction. Sugammadex, a modified gamma-cyclodextrin, antagonizes neuromuscular blockade by encapsulating rocuronium and vecuronium in a one-to-one ratio for renal clearance, a pharmacokinetic property that led to the recommendation that sugammadex not be administered to those with end-stage renal disease. While data are limited, reports suggest sugammadex is efficacious and well tolerated in individuals with reduced renal function. Sugammadex provides a more rapid and complete reversal of neuromuscular blockade than neostigmine. There is also accumulating evidence that sugammadex may provide a protective effect against the development of postoperative pulmonary complications, nausea, and vomiting, and that it may have beneficial effects on the rate of bowel and bladder recovery after surgery. Accordingly, sugammadex administration is beneficial for most older patients undergoing surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet. 2015;385(Suppl 2):S11.

    Article  PubMed  Google Scholar 

  2. Das S, Forrest K, Howell S. General anaesthesia in elderly patients with cardiovascular disorders: choice of anaesthetic agent. Drugs Aging. 2010;27(4):265–82.

    Article  CAS  PubMed  Google Scholar 

  3. Bates AT, Divino C. Laparoscopic surgery in the elderly: a review of the literature. Aging Dis. 2015;6(2):149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fowler AJ, Abbott TEF, Prowle J, Pearse RM. Age of patients undergoing surgery. Br J Surg. 2019;106(8):1012–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sukharamwala P, Thoens J, Szuchmacher M, Smith J, DeVito P. Advanced age is a risk factor for post-operative complications and mortality after a pancreaticoduodenectomy: a meta-analysis and systematic review. HPB (Oxford). 2012;14(10):649–57.

    Article  Google Scholar 

  6. Sury MR, Palmer JH, Cook TM, Pandit JJ. The state of UK anaesthesia: a survey of National Health Service activity in 2013. Br J Anaesth. 2014;113(4):575–84.

    Article  CAS  PubMed  Google Scholar 

  7. Fortier LP, McKeen D, Turner K, de Medicis E, Warriner B, Jones PM, et al. The RECITE Study: a Canadian Prospective, Multicenter Study of the Incidence and Severity of Residual Neuromuscular Blockade. Anesth Analg. 2015;121(2):366–72.

    Article  PubMed  Google Scholar 

  8. Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear TD, Vender JS, et al. Residual neuromuscular block in the elderly: incidence and clinical implications. Anesthesiology. 2015;123(6):1322–36.

    Article  PubMed  Google Scholar 

  9. Pietraszewski P, Gaszynski T. Residual neuromuscular block in elderly patients after surgical procedures under general anaesthesia with rocuronium. Anaesthesiol Intensive Ther. 2013;45(2):77–81.

    Article  PubMed  Google Scholar 

  10. Brull SJ, Kopman AF. Current status of neuromuscular reversal and monitoring: challenges and opportunities. Anesthesiology. 2017;126(1):173–90.

    Article  PubMed  Google Scholar 

  11. Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111(1):110–9.

    Article  PubMed  Google Scholar 

  12. Blobner M, Hunter JM, Meistelman C, Hoeft A, Hollmann MW, Kirmeier E, et al. Use of a train-of-four ratio of 0.95 versus 0.9 for tracheal extubation: an exploratory analysis of POPULAR data. Br J Anaesth. 2020;124:63–72.

    Article  PubMed  Google Scholar 

  13. Herbstreit F, Peters J, Eikermann M. Impaired upper airway integrity by residual neuromuscular blockade: increased airway collapsibility and blunted genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2009;110(6):1253–60.

    Article  PubMed  Google Scholar 

  14. Eikermann M, Vogt FM, Herbstreit F, Vahid-Dastgerdi M, Zenge MO, Ochterbeck C, et al. The predisposition to inspiratory upper airway collapse during partial neuromuscular blockade. Am J Respir Crit Care Med. 2007;175(1):9–15.

    Article  PubMed  Google Scholar 

  15. Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology. 2000;92(4):977–84.

    Article  CAS  PubMed  Google Scholar 

  16. Eriksson LI, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology. 1997;87(5):1035–43.

    Article  CAS  PubMed  Google Scholar 

  17. Togioka BM, Xu X, Banner-Goodspeed V, Eikermann M. Does sugammadex reduce postoperative airway failure? Anesth Analg. 2020;131(1):137–40.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cedborg AI, Sundman E, Boden K, Hedstrom HW, Kuylenstierna R, Ekberg O, et al. Pharyngeal function and breathing pattern during partial neuromuscular block in the elderly: effects on airway protection. Anesthesiology. 2014;120(2):312–25.

    Article  CAS  PubMed  Google Scholar 

  19. Raju M, Pandit JJ. Re-awakening the carotid bodies after anaesthesia: managing hypnotic and neuromuscular blocking agents. Anaesthesia. 2020;75(3):301–4.

    Article  CAS  PubMed  Google Scholar 

  20. Broens SJL, Boon M, Martini CH, Niesters M, van Velzen M, Aarts L, et al. Reversal of partial neuromuscular block and the ventilatory response to hypoxia: a randomized controlled trial in healthy volunteers. Anesthesiology. 2019;131(3):467–76.

    Article  PubMed  Google Scholar 

  21. Pandit JJ, Eriksson LI. Reversing neuromuscular blockade: not just the diaphragm, but carotid body function too. Anesthesiology. 2019;131(3):453–5.

    Article  PubMed  Google Scholar 

  22. Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107(1):130–7.

    Article  PubMed  Google Scholar 

  23. Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS, et al. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit. Anesthesiology. 2008;109(3):389–98.

    Article  PubMed  Google Scholar 

  24. Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbaek J, Skovgaard LT, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997;41(9):1095–103.

    Article  CAS  PubMed  Google Scholar 

  25. Martinez-Ubieto J, Ortega-Lucea S, Pascual-Bellosta A, Arazo-Iglesias I, Gil-Bona J, Jimenez-Bernardo T, et al. Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reversed with neostigmine versus sugammadex. Minerva Anestesiol. 2016;82(7):735–42.

    PubMed  Google Scholar 

  26. Bulka CM, Terekhov MA, Martin BJ, Dmochowski RR, Hayes RM, Ehrenfeld JM. Nondepolarizing neuromuscular blocking agents, reversal, and risk of postoperative pneumonia. Anesthesiology. 2016;125(4):647–55.

    Article  CAS  PubMed  Google Scholar 

  27. Thevathasan T, Shih SL, Safavi KC, Berger DL, Burns SM, Grabitz SD, et al. Association between intraoperative non-depolarising neuromuscular blocking agent dose and 30-day readmission after abdominal surgery. Br J Anaesth. 2017;119(4):595–605.

    Article  CAS  PubMed  Google Scholar 

  28. Grabitz SD, Rajaratnam N, Chhagani K, Thevathasan T, Teja BJ, Deng H, et al. The effects of postoperative residual neuromuscular blockade on hospital costs and intensive care unit admission: a population-based cohort study. Anesth Analg. 2019;128(6):1129–36.

    Article  PubMed  Google Scholar 

  29. Ramachandran SK, Thompson A, Pandit JJ, Devine S, Shanks AM. Retrospective observational evaluation of postoperative oxygen saturation levels and associated postoperative respiratory complications and hospital resource utilization. PLoS ONE. 2017;12(5): e0175408.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pandit JJ, Andrade J, Bogod DG, Hitchman JM, Jonker WR, Lucas N, et al. The 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: protocol, methods and analysis of data. Anaesthesia. 2014;69(10):1078–88.

    Article  CAS  PubMed  Google Scholar 

  31. Bash LD, Black W, Turzhitsky V, Urman RD. Neuromuscular blockade and reversal practice variability in the outpatient setting: insights from US Utilization Patterns. Anesth Analg. 2021;133(6):1437–50.

    Article  CAS  PubMed  Google Scholar 

  32. Luo J, Chen S, Min S, Peng L. Reevaluation and update on efficacy and safety of neostigmine for reversal of neuromuscular blockade. Ther Clin Risk Manag. 2018;14:2397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baraka A. Depolarizing block is an endplate-muscular block, not a neuromuscular block. Anesthesiology. 2007;106(2):399–400 (author reply).

    Article  PubMed  Google Scholar 

  34. Nair PV, Hunter JM. Anticholinesterases and anticholinergic drugs. Continuing Education in Anaesthesia. Crit Care Pain. 2004;4(5):164–8.

    Google Scholar 

  35. USA FK. Neostigmine Methylsulfate injection [package insert[In: Administration UFaD, editor. accessdata.fda.gov2015.

  36. Hristovska AM, Duch P, Allingstrup M, Afshari A. The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. A Cochrane systematic review with meta-analysis and trial sequential analysis. Anaesthesia. 2018;73(5):631–41.

    Article  CAS  PubMed  Google Scholar 

  37. Herbstreit F, Zigrahn D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010;113(6):1280–8.

    Article  CAS  PubMed  Google Scholar 

  38. Eikermann M, Fassbender P, Malhotra A, Takahashi M, Kubo S, Jordan AS, et al. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007;107(4):621–9.

    Article  CAS  PubMed  Google Scholar 

  39. Koscielniak-Nielsen ZJ, Law-Min JC, Donati F, Bevan DR, Clement P, Wise R. Dose-response relations of doxacurium and its reversal with neostigmine in young adults and healthy elderly patients. Anesth Analg. 1992;74(6):845–50.

    Article  CAS  PubMed  Google Scholar 

  40. Song IA, Seo KS, Oh AY, No HJ, Hwang JW, Jeon YT, et al. Timing of reversal with respect to three nerve stimulator end-points from cisatracurium-induced neuromuscular block. Anaesthesia. 2015;70(7):797–802.

    Article  CAS  PubMed  Google Scholar 

  41. Thompson CA. Sugammadex approved to reverse NMBA effects. Am J Health Syst Pharm. 2016;73(3):100.

    Article  PubMed  Google Scholar 

  42. Nag K, Singh DR, Shetti AN, Kumar H, Sivashanmugam T, Parthasarathy S. Sugammadex: a revolutionary drug in neuromuscular pharmacology. Anesth Essays Res. 2013;7(3):302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bash LD, Turzhitsky V, Black W, Urman RD. Neuromuscular blockade and reversal agent practice variability in the us inpatient surgical settings. Adv Ther. 2021;38(9):4736–55.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stankiewicz-Rudnicki M. Neuromuscular blockade in the elderly. Anaesthesiol Intensive Ther. 2016;48(4):257–60.

    Article  PubMed  Google Scholar 

  45. Dubovoy TZ, Saager L, Shah NJ, Colquhoun DA, Mathis MR, Kapeles S, et al. Utilization patterns of perioperative neuromuscular blockade reversal in the United States: a retrospective observational study from the multicenter perioperative outcomes group. Anesth Analg. 2020;131(5):1510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chandrasekhar K, Togioka BM, Jeffers JL. Sugammadex. Treasure Island: StatPearls; 2022.

    Google Scholar 

  47. Togioka BM, Yanez D, Aziz MF, Higgins JR, Tekkali P, Treggiari MM. Randomised controlled trial of sugammadex or neostigmine for reversal of neuromuscular block on the incidence of pulmonary complications in older adults undergoing prolonged surgery. Br J Anaesth. 2020;124:533–61.

    Article  Google Scholar 

  48. Flockton EA, Mastronardi P, Hunter JM, Gomar C, Mirakhur RK, Aguilera L, et al. Reversal of rocuronium-induced neuromuscular block with sugammadex is faster than reversal of cisatracurium-induced block with neostigmine. Br J Anaesth. 2008;100(5):622–30.

    Article  CAS  PubMed  Google Scholar 

  49. Merck & Co. I. Bridion Package Insert. Whitehouse Station: Merck Sharp & Dohme Corp.; 2015-2018.

  50. Min KC, Bondiskey P, Schulz V, Woo T, Assaid C, Yu W, et al. Hypersensitivity incidence after sugammadex administration in healthy subjects: a randomised controlled trial. Br J Anaesth. 2018;121(4):749–57.

    Article  CAS  PubMed  Google Scholar 

  51. de Kam PJ, Nolte H, Good S, Yunan M, Williams-Herman DE, Burggraaf J, et al. Sugammadex hypersensitivity and underlying mechanisms: a randomised study of healthy non-anaesthetised volunteers. Br J Anaesth. 2018;121(4):758–67.

    Article  PubMed  Google Scholar 

  52. Miyazaki Y, Sunaga H, Kida K, Hobo S, Inoue N, Muto M, et al. Incidence of anaphylaxis associated with sugammadex. Anesth Analg. 2018;126(5):1505–8.

    Article  CAS  PubMed  Google Scholar 

  53. Dirkmann D, Britten MW, Pauling H, Weidle J, Volbracht L, Gorlinger K, et al. Anticoagulant effect of sugammadex: just an in vitro artifact. Anesthesiology. 2016;124(6):1277–85.

    Article  CAS  PubMed  Google Scholar 

  54. Staals LM, Snoeck MM, Driessen JJ, van Hamersvelt HW, Flockton EA, van den Heuvel MW, et al. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010;104(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017;8:CD012763.

    PubMed  Google Scholar 

  56. Carron M, Veronese S, Foletto M, Ori C. Sugammadex allows fast-track bariatric surgery. Obes Surg. 2013;23(10):1558–63.

    Article  PubMed  Google Scholar 

  57. Jones RK, Caldwell JE, Brull SJ, Soto RG. Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology. 2008;109(5):816–24.

    Article  CAS  PubMed  Google Scholar 

  58. Alvis BD, Hughes CG. Physiology considerations in geriatric patients. Anesthesiol Clin. 2015;33(3):447–56.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Proakis AG, Harris GB. Comparative penetration of glycopyrrolate and atropine across the blood–brain and placental barriers in anesthetized dogs. Anesthesiology. 1978;48(5):339–44.

    Article  CAS  PubMed  Google Scholar 

  60. Atri A, Sherman S, Norman KA, Kirchhoff BA, Nicolas MM, Greicius MD, et al. Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav Neurosci. 2004;118(1):223–36.

    Article  CAS  PubMed  Google Scholar 

  61. By the American Geriatrics Society Beers Criteria Update Expert P. American Geriatrics Society 2019 Updated AGS Beers Criteria(R) for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc. 2019;67(4):674–94.

    Google Scholar 

  62. Hughes CG, Boncyk CS, Culley DJ, Fleisher LA, Leung JM, McDonagh DL, et al. American society for enhanced recovery and perioperative quality initiative joint consensus statement on postoperative delirium prevention. Anesth Analg. 2020;130(6):1572–90.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Berger M, Schenning KJ, Brown CHt, Deiner SG, Whittington RA, Eckenhoff RG, et al. Best practices for postoperative brain health: recommendations from the fifth international perioperative neurotoxicity working group. Anesth Analg. 2018;127(6):1406–13.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Burfeind KG, Tirado Navales AA, Togioka BM, Schenning K. Prevention of postoperative delirium through the avoidance of potentially inappropriate medications in a geriatric surgical patient. BMJ Case Rep. 2021;14(4):e240403.

    Article  PubMed  Google Scholar 

  65. Muedra V, Rodilla V, Llansola M, Agusti A, Pla C, Canto A, et al. Potential neuroprotective role of sugammadex: a clinical study on cognitive function assessment in an enhanced recovery after cardiac surgery approach and an experimental study. Front Cell Neurosci. 2022;16: 789796.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kheterpal S, O’Reilly M, Englesbe MJ, Rosenberg AL, Shanks AM, Zhang L, et al. Preoperative and intraoperative predictors of cardiac adverse events after general, vascular, and urological surgery. Anesthesiology. 2009;110(1):58–66.

    Article  PubMed  Google Scholar 

  67. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123(3):515–23.

    Article  PubMed  Google Scholar 

  68. Shorten GD, Uppington J, Comunale ME. Changes in plasma catecholamine concentrations and haemodynamic effects of rocuronium and vecuronium in elderly patients. Eur J Anaesthesiol. 1998;15(3):335–41.

    Article  CAS  PubMed  Google Scholar 

  69. Muravchick S, Owens WD, Felts JA. Glycopyrrolate and cardiac dysrhythmias in geriatric patients after reversal of neuromuscular blockade. Can Anaesth Soc J. 1979;26(1):22–5.

    Article  CAS  PubMed  Google Scholar 

  70. Eldor J, Hoffman B, Davidson JT. Prolonged bradycardia and hypotension after neostigmine administration in a patient receiving atenolol. Anaesthesia. 1987;42(12):1294–7.

    Article  CAS  PubMed  Google Scholar 

  71. Naguib M. Sugammadex: another milestone in clinical neuromuscular pharmacology. Anesth Analg. 2007;104(3):575–81.

    Article  CAS  PubMed  Google Scholar 

  72. Kizilay D, Dal D, Saracoglu KT, Eti Z, Gogus FY. Comparison of neostigmine and sugammadex for hemodynamic parameters in cardiac patients undergoing noncardiac surgery. J Clin Anesth. 2016;28:30–5.

    Article  CAS  PubMed  Google Scholar 

  73. Smetana GW, Conde MV. Preoperative pulmonary update. Clin Geriatr Med. 2008;24(4):607–24 (vii).

    Article  PubMed  Google Scholar 

  74. Qaseem A, Snow V, Fitterman N, Hornbake ER, Lawrence VA, Smetana GW, et al. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: a guideline from the American College of Physicians. Ann Intern Med. 2006;144(8):575–80.

    Article  PubMed  Google Scholar 

  75. Manku K, Bacchetti P, Leung JM. Prognostic significance of postoperative in-hospital complications in elderly patients. I. Long-term survival. Anesth Analg. 2003;96(2):583–9 (table of contents).

    Article  PubMed  Google Scholar 

  76. Pandit JJ, Buckler KJ. Differential effects of halothane and sevoflurane on hypoxia-induced intracellular calcium transients of neonatal rat carotid body type I cells. Br J Anaesth. 2009;103(5):701–10.

    Article  CAS  PubMed  Google Scholar 

  77. Cammu GV, Smet V, De Jongh K, Vandeput D. A prospective, observational study comparing postoperative residual curarisation and early adverse respiratory events in patients reversed with neostigmine or sugammadex or after apparent spontaneous recovery. Anaesth Intensive Care. 2012;40(6):999–1006.

    Article  CAS  PubMed  Google Scholar 

  78. Kheterpal S, Vaughn MT, Dubovoy TZ, Shah NJ, Bash LD, Colquhoun DA, et al. Sugammadex versus Neostigmine For Reversal Of Neuromuscular Blockade And Postoperative Pulmonary Complications (STRONGER): a multicenter matched cohort analysis. Anesthesiology. 2020;132(6):1371–81.

    Article  PubMed  Google Scholar 

  79. Krause M, McWilliams SK, Bullard KJ, Mayes LM, Jameson LC, Mikulich-Gilbertson SK, et al. Neostigmine versus sugammadex for reversal of neuromuscular blockade and effects on reintubation for respiratory failure or newly initiated noninvasive ventilation: an interrupted time series design. Anesth Analg. 2020;131(1):141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li G, Freundlich RE, Gupta RK, Hayhurst CJ, Le CH, Martin BJ, et al. Postoperative pulmonary complications’ association with sugammadex versus neostigmine: a retrospective registry analysis. Anesthesiology. 2021;134(6):862–73.

    Article  CAS  PubMed  Google Scholar 

  81. Yu J, Park JY, Lee Y, Hwang JH, Kim YK. Sugammadex versus neostigmine on postoperative pulmonary complications after robot-assisted laparoscopic prostatectomy: a propensity score-matched analysis. J Anesth. 2021;35(2):262–9.

    Article  PubMed  Google Scholar 

  82. Alday E, Munoz M, Planas A, Mata E, Alvarez C. Effects of neuromuscular block reversal with sugammadex versus neostigmine on postoperative respiratory outcomes after major abdominal surgery: a randomized-controlled trial. Can J Anaesth. 2019;66(11):1328–37.

    Article  CAS  PubMed  Google Scholar 

  83. Evron S, Abelansky Y, Ezri T, Izakson A. Respiratory events with sugammadex vs. neostigmine following laparoscopic sleeve gastrectomy: a prospective pilot study assessing neuromuscular reversal strategies. Rom J Anaesth Intensive Care. 2017;24(2):111–4.

    PubMed  PubMed Central  Google Scholar 

  84. Ledowski T, Szabo-Maak Z, Loh PS, Turlach BA, Yang HS, de Boer HD, et al. Reversal of residual neuromuscular block with neostigmine or sugammadex and postoperative pulmonary complications: a prospective, randomised, double-blind trial in high-risk older patients. Br J Anaesth. 2021;127(2):316–23.

    Article  CAS  PubMed  Google Scholar 

  85. Lee TY, Jeong SY, Jeong JH, Kim JH, Choi SR. Comparison of postoperative pulmonary complications between sugammadex and neostigmine in lung cancer patients undergoing video-assisted thoracoscopic lobectomy: a prospective double-blinded randomized trial. Anesth Pain Med (Seoul). 2021;16(1):60–7.

    Article  PubMed  Google Scholar 

  86. Leslie K, Chan MTV, Darvall JN, De Silva AP, Braat S, Devlin NJ, et al. Sugammadex, neostigmine and postoperative pulmonary complications: an international randomised feasibility and pilot trial. Pilot Feasibil Stud. 2021;7(1):200.

    Article  Google Scholar 

  87. Unal DY, Baran I, Mutlu M, Ural G, Akkaya T, Ozlu O. Comparison of sugammadex versus neostigmine costs and respiratory complications in patients with obstructive sleep apnoea. Turk J Anaesthesiol Reanim. 2015;43(6):387–95.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cowen LE, Hodak SP, Verbalis JG. Age-associated abnormalities of water homeostasis. Endocrinol Metab Clin North Am. 2013;42(2):349–70.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Veering BT, Burm AG, Souverijn JH, Serree JM, Spierdijk J. The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1990;29(2):201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salive ME, Cornoni-Huntley J, Phillips CL, Guralnik JM, Cohen HJ, Ostfeld AM, et al. Serum albumin in older persons: relationship with age and health status. J Clin Epidemiol. 1992;45(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  91. Rupp SM, Castagnoli KP, Fisher DM, Miller RD. Pancuronium and vecuronium pharmacokinetics and pharmacodynamics in younger and elderly adults. Anesthesiology. 1987;67(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  92. Bell PF, Mirakhur RK, Clarke RS. Dose-response studies of atracurium, vecuronium and pancuronium in the elderly. Anaesthesia. 1989;44(11):925–7.

    Article  CAS  PubMed  Google Scholar 

  93. Parker CJ, Hunter JM, Snowdon SL. Effect of age, gender and anaesthetic technique on the pharmacodynamics of atracurium. Br J Anaesth. 1993;70(1):38–41.

    Article  CAS  PubMed  Google Scholar 

  94. McCarthy G, Elliott P, Mirakhur RK, Cooper R, Sharpe TD, Clarke RS. Onset and duration of action of vecuronium in the elderly: comparison with adults. Acta Anaesthesiol Scand. 1992;36(4):383–6.

    Article  CAS  PubMed  Google Scholar 

  95. Matteo RS, Ornstein E, Schwartz AE, Ostapkovich N, Stone JG. Pharmacokinetics and pharmacodynamics of rocuronium (Org 9426) in elderly surgical patients. Anesth Analg. 1993;77(6):1193–7.

    Article  CAS  PubMed  Google Scholar 

  96. Evers BM, Townsend CM Jr, Thompson JC. Organ physiology of aging. Surg Clin N Am. 1994;74(1):23–39.

    Article  CAS  PubMed  Google Scholar 

  97. Lee LA, Athanassoglou V, Pandit JJ. Neuromuscular blockade in the elderly patient. J Pain Res. 2016;9:437–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Slavov V, Khalil M, Merle JC, Agostini MM, Ruggier R, Duvaldestin P. Comparison of duration of neuromuscular blocking effect of atracurium and vecuronium in young and elderly patients. Br J Anaesth. 1995;74(6):709–11.

    Article  CAS  PubMed  Google Scholar 

  99. Yamamoto H, Uchida T, Yamamoto Y, Ito Y, Makita K. Retrospective analysis of spontaneous recovery from neuromuscular blockade produced by empirical use of rocuronium. J Anesth. 2011;25(6):845–9.

    Article  PubMed  Google Scholar 

  100. Furuya T, Suzuki T, Kashiwai A, Konishi J, Aono M, Hirose N, et al. The effects of age on maintenance of intense neuromuscular block with rocuronium. Acta Anaesthesiol Scand. 2012;56(2):236–9.

    Article  CAS  PubMed  Google Scholar 

  101. Arain SR, Kern S, Ficke DJ, Ebert TJ. Variability of duration of action of neuromuscular-blocking drugs in elderly patients. Acta Anaesthesiol Scand. 2005;49(3):312–5.

    Article  CAS  PubMed  Google Scholar 

  102. McDonagh DL, Benedict PE, Kovac AL, Drover DR, Brister NW, Morte JB, et al. Efficacy, safety, and pharmacokinetics of sugammadex for the reversal of rocuronium-induced neuromuscular blockade in elderly patients. Anesthesiology. 2011;114(2):318–29.

    Article  CAS  PubMed  Google Scholar 

  103. Marsh RH, Chmielewski AT, Goat VA. Recovery from pancuronium. A comparison between old and young patients. Anaesthesia. 1980;35(12):1193–6.

    Article  CAS  PubMed  Google Scholar 

  104. Paredes S, Porter SB, Porter IE 2nd, Renew JR. Sugammadex use in patients with end-stage renal disease: a historical cohort study. Can J Anaesth. 2020;67(12):1789–97.

    Article  PubMed  Google Scholar 

  105. Adams DR, Tollinche LE, Yeoh CB, Artman J, Mehta M, Phillips D, et al. Short-term safety and effectiveness of sugammadex for surgical patients with end-stage renal disease: a two-centre retrospective study. Anaesthesia. 2020;75(3):348–52.

    Article  CAS  PubMed  Google Scholar 

  106. Staals LM, Snoeck MM, Driessen JJ, Flockton EA, Heeringa M, Hunter JM. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth. 2008;101(4):492–7.

    Article  CAS  PubMed  Google Scholar 

  107. Lobaz S, Sammut M, Damodaran A. Sugammadex rescue following prolonged rocuronium neuromuscular blockade with 'recurarisation' in a patient with severe renal failure. BMJ Case Rep. 2013;2013:bcr2012007603.

  108. Navare SR, Garcia Medina O, Prielipp RC, Weinkauf JL. Sugammadex reversal of a large subcutaneous depot of rocuronium in a dialysis patient: a case report. A A Pract. 2019;12(10):375–7.

    Article  PubMed  Google Scholar 

  109. Madsen JL, Graff J. Effects of ageing on gastrointestinal motor function. Age Ageing. 2004;33(2):154–9.

    Article  PubMed  Google Scholar 

  110. Shimamoto C, Hirata I, Hiraike Y, Takeuchi N, Nomura T, Katsu K. Evaluation of gastric motor activity in the elderly by electrogastrography and the (13)C-acetate breath test. Gerontology. 2002;48(6):381–6.

    Article  PubMed  Google Scholar 

  111. Gomes OA, de Souza RR, Liberti EA. A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontology. 1997;43(4):210–7.

    Article  CAS  PubMed  Google Scholar 

  112. Leon AD. The aging digestive tract: what should anesthesiologists know about it? Minerva Anestesiol. 2016;82(12):1336–42.

    Google Scholar 

  113. An J, Noh H, Kim E, Lee J, Woo K, Kim H. Neuromuscular blockade reversal with sugammadex versus pyridostigmine/glycopyrrolate in laparoscopic cholecystectomy: a randomized trial of effects on postoperative gastrointestinal motility. Korean J Anesthesiol. 2020;73(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  114. Sen A, Erdivanli B, Tomak Y, Pergel A. Reversal of neuromuscular blockade with sugammadex or neostigmine/atropine: Effect on postoperative gastrointestinal motility. J Clin Anesth. 2016;32:208–13.

    Article  CAS  PubMed  Google Scholar 

  115. Deljou A, Soleimani J, Sprung J, Schroeder DR, Weingarten TN. Effects of reversal technique for neuromuscular paralysis on time to recovery of bowel function after craniotomy. Am Surg. 2022. https://doi.org/10.1177/00031348211058631.

    Article  PubMed  Google Scholar 

  116. Hunt ME, Yates JR, Vega H, Heidel RE, Buehler JM. Effects on postoperative gastrointestinal motility after neuromuscular blockade reversal with sugammadex versus neostigmine/glycopyrrolate in colorectal surgery patients. Ann Pharmacother. 2020;54(12):1165–74.

    Article  CAS  PubMed  Google Scholar 

  117. Cohen MM, Duncan PG, DeBoer DP, Tweed WA. The postoperative interview: assessing risk factors for nausea and vomiting. Anesth Analg. 1994;78(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  118. Apfel CC, Heidrich FM, Jukar-Rao S, Jalota L, Hornuss C, Whelan RP, et al. Evidence-based analysis of risk factors for postoperative nausea and vomiting. Br J Anaesth. 2012;109(5):742–53.

    Article  CAS  PubMed  Google Scholar 

  119. Apfel CC, Philip BK, Cakmakkaya OS, Shilling A, Shi YY, Leslie JB, et al. Who is at risk for postdischarge nausea and vomiting after ambulatory surgery? Anesthesiology. 2012;117(3):475–86.

    Article  PubMed  Google Scholar 

  120. Paech MJ, Kaye R, Baber C, Nathan EA. Recovery characteristics of patients receiving either sugammadex or neostigmine and glycopyrrolate for reversal of neuromuscular block: a randomised controlled trial. Anaesthesia. 2018;73(3):340–7.

    Article  CAS  PubMed  Google Scholar 

  121. Tuna A, Palabiyik O, Orhan M, Sonbahar T, Sayhan H, Tomak Y, et al. Does sugammadex administration affect postoperative nausea and vomiting after laparoscopic cholecystectomy: a prospective, double-blind, randomized study. Surg Laparosc Endosc Percutan Tech. 2017;27:237–40.

    Article  Google Scholar 

  122. Woo T, Kim KS, Shim YH, Kim MK, Yoon SM, Lim YJ, et al. Sugammadex versus neostigmine reversal of moderate rocuronium-induced neuromuscular blockade in Korean patients. Korean J Anesthesiol. 2013;65(6):501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yagan O, Tas N, Mutlu T, Hanci V. Comparison of the effects of sugammadex and neostigmine on postoperative nausea and vomiting. Braz J Anesthesiol. 2017;67(2):147–52.

    PubMed  Google Scholar 

  124. Keita H, Diouf E, Tubach F, Brouwer T, Dahmani S, Mantz J, et al. Predictive factors of early postoperative urinary retention in the postanesthesia care unit. Anesth Analg. 2005;101(2):592–6.

    Article  PubMed  Google Scholar 

  125. Han J, Oh AY, Jeon YT, Koo BW, Kim BY, Kim D, et al. Quality of Recovery after Laparoscopic Cholecystectomy Following Neuromuscular Blockade Reversal with Neostigmine or Sugammadex: A Prospective, Randomized, Controlled Trial. J Clin Med. 2021;10(5):938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Valencia Morales DJ, Stewart BR, Heller SF, Sprung J, Schroeder DR, Ghanem OM, et al. Urinary retention following inguinal herniorrhaphy: role of neuromuscular blockade reversal. Surg Laparosc Endosc Percutan Tech. 2021;31(5):613–7.

    Article  PubMed  Google Scholar 

  127. Klein AA, Meek T, Allcock E, Cook TM, Mincher N, Morris C, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2021: guideline from the Association of Anaesthetists. Anaesthesia. 2021;76(9):1212–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ngoc Wasson (funded by the Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University) for her support with formatting, revising, and reference management during manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon M. Togioka.

Ethics declarations

Funding

Support provided in part by department sources within Oregon Health & Science University.

Conflict of interest

Brandon Togioka has received two investigator-initiated research grants from Merck & Co., the company that owns and sells ugammadex. The opinions expressed in this article are those of the authors and do not necessarily reflect those of Merck & Co. Katie Schenning declares no conflicts of interest.

Ethics approval

Not applicable.

Consent (to participate & for publication)

Not applicable.

Data & code availability statements

Not applicable.

Author contributions

BT: This author helped with manuscript design, literature review, summary of data, drafting and critically revising the manuscript. KS: This author helped with manuscript design, literature review, summary of data, drafting and critically revising the manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Togioka, B.M., Schenning, K.J. Optimizing Reversal of Neuromuscular Block in Older Adults: Sugammadex or Neostigmine. Drugs Aging 39, 749–761 (2022). https://doi.org/10.1007/s40266-022-00969-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-022-00969-4

Navigation