Skip to main content
Log in

Management of the Older Patient with Myelodysplastic Syndrome

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

No two diagnoses of myelodysplastic syndrome are genuinely alike, owing to differing and dynamic mutational topography and epigenetic aberrancy. Consequently, no two patients with myelodysplastic syndrome are identical and disease-specific and patient-specific factors are considered in formulating the optimal treatment, which includes few that are disease modifying. Age itself should not be an absolute contraindication to therapy, including intensive therapy such as allogeneic hematopoietic stem cell transplantation, which is the only curative therapy. However, age associates with an increased prevalence of frailty and comorbidities that must be considered and may preclude a path to cure. Palliative therapies are the mainstay for many patients with myelodysplastic syndrome, which is a disease of older adults with the majority of patients diagnosed at age ≥ 75 years. The older patient requires heightened attention to end organ function/reserve and drug–drug interactions as well as insurance, income, cost, and socioeconomic and psychosocial issues that influence management. Many prior studies have included relatively younger populations or have not specifically performed high-quality subgroup analyses of older patients. In this review, we discuss the available standard-of-care therapies for myelodysplastic syndrome as they specifically relate to the older population and assess the emerging therapeutics that may further the pursuit for personalized treatment and improve both the outcomes and quality of life of the older patient with myelodysplastic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol. 2018;101:260–71.

    Article  CAS  PubMed  Google Scholar 

  2. Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361:1872–85.

    Article  CAS  PubMed  Google Scholar 

  3. Ades L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet. 2014;383:2239–52.

    Article  PubMed  Google Scholar 

  4. Jansen AJ, Essink-Bot ML, Beckers EA, Hop WC, Schipperus MR, Van Rhenen DJ. Quality of life measurement in patients with transfusion-dependent myelodysplastic syndromes. Br J Haematol. 2003;121:270–4.

    Article  CAS  PubMed  Google Scholar 

  5. Abel GA, Klaassen R, Lee SJ, Young NL, Cannella L, Steensma DP, et al. Patient-reported outcomes for the myelodysplastic syndromes: a new MDS-specific measure of quality of life. Blood. 2014;123:451–2.

    Article  CAS  PubMed  Google Scholar 

  6. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    Article  CAS  PubMed  Google Scholar 

  8. Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25:3503–10.

    Article  PubMed  Google Scholar 

  9. Greenberg PL, Stone RM, Al-Kali A, Bennett JM, Brunner AM, De Castro CM, et al. Myelodysplastic syndromes, Version 3. 2021. In: NCCN clinical practice guidelines in oncology. PA: National Comprehensive Cancer Network; 2021.

  10. Repetto L, Fratino L, Audisio RA, Venturino A, Gianni W, Vercelli M, et al. Comprehensive geriatric assessment adds information to Eastern Cooperative Oncology Group performance status in elderly cancer patients: an Italian Group for Geriatric Oncology Study. J Clin Oncol. 2002;20:494–502.

    Article  PubMed  Google Scholar 

  11. Hamaker ME, Stauder R, van Munster BC. Exclusion of older patients from ongoing clinical trials for hematological malignancies: an evaluation of the National Institutes of Health Clinical Trial Registry. Oncologist. 2014;19:1069–75.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeidan AM, Shallis RM, Wang R, Davidoff A, Ma X. Epidemiology of myelodysplastic syndromes: why characterizing the beast is a prerequisite to taming it. Blood Rev. 2019;34:1–15.

    Article  PubMed  Google Scholar 

  13. Lindquist KJ, Danese MD, Mikhael J, Knopf KB, Griffiths RI. Health care utilization and mortality among elderly patients with myelodysplastic syndromes. Ann Oncol. 2011;22:1181–8.

    Article  CAS  PubMed  Google Scholar 

  14. Moreno Berggren D, Folkvaljon Y, Engvall M, Sundberg J, Lambe M, Antunovic P, et al. Prognostic scoring systems for myelodysplastic syndromes (MDS) in a population-based setting: a report from the Swedish MDS register. Br J Haematol. 2018;181:614–27.

    Article  PubMed  Google Scholar 

  15. Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108:419–25.

    Article  CAS  PubMed  Google Scholar 

  16. Zakai NA, Katz R, Hirsch C, Shlipak MG, Chaves PH, Newman AB, et al. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch Intern Med. 2005;165:2214–20.

    Article  PubMed  Google Scholar 

  17. Riva E, Tettamanti M, Mosconi P, Apolone G, Gandini F, Nobili A, et al. Association of mild anemia with hospitalization and mortality in the elderly: the Health and Anemia population-based study. Haematologica. 2009;94:22–8.

    Article  PubMed  Google Scholar 

  18. Ryden J, Edgren G, Karimi M, Walldin G, Tobiasson M, Wikman A, et al. Male sex and the pattern of recurrent myeloid mutations are strong independent predictors of blood transfusion intensity in patients with myelodysplastic syndromes. Leukemia. 2019;33:522–7.

    Article  PubMed  Google Scholar 

  19. Benton CB, Khan M, Sallman D, Nazha A, Nogueras Gonzalez GM, Piao J, et al. Prognosis of patients with intermediate risk IPSS-R myelodysplastic syndrome indicates variable outcomes and need for models beyond IPSS-R. Am J Hematol. 2018;93:1245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wood EM, McQuilten ZK. Outpatient transfusions for myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program. 2020;2020:167–74.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abel GA, Klepin HD, Magnavita ES, Jaung T, Shallis RM, Bahl NE, et al. Feasibility of peri-transfusion quality of life assessment for patients with myelodysplastic syndromes. Blood. 2020;136:25–6.

    Article  Google Scholar 

  22. Tanasijevic AM, Revette A, Klepin HD, Zeidan A, Townsley D, DiNardo CD, et al. Consensus minimum hemoglobin level above which patients with myelodysplastic syndromes can safely forgo transfusions. Leuk Lymphoma. 2020;61:2900–4.

    Article  CAS  PubMed  Google Scholar 

  23. Caocci G, La Nasa G, Efficace F. Health-related quality of life and symptom assessment in patients with myelodysplastic syndromes. Expert Rev Hematol. 2009;2:69–80.

    Article  PubMed  Google Scholar 

  24. St Lezin E, Karafin MS, Bruhn R, Chowdhury D, Qu L, Bialkowski W, et al. Therapeutic impact of red blood cell transfusion on anemic outpatients: the RETRO study. Transfusion. 2019;59:1934–43.

    CAS  PubMed  Google Scholar 

  25. Chan KLL, Mak WMV, Tam YH, Lee KKH. Factors affecting patient-reported outcomes after red blood cell transfusion in medical patients. Transfusion. 2018;58:158–67.

    Article  CAS  PubMed  Google Scholar 

  26. Bruhn R, Karafin MS, Hilton JF, Kaidarova Z, Spencer BR, Qu L, et al. Early and sustained improvement in fatigue-related quality of life following red blood cell transfusion in outpatients. Qual Life Res. 2020;29:2737–44.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stanworth SJ, Killick S, McQuilten ZK, Karakantza M, Weinkove R, Smethurst H, et al. Red cell transfusion in outpatients with myelodysplastic syndromes: a feasibility and exploratory randomised trial. Br J Haematol. 2020;189:279–90.

    Article  PubMed  Google Scholar 

  28. Trudeau JJ, He J, Rose E, Panter C, Randhawa S, Gater A. Content validity of patient-reported outcomes for use in lower-risk myelodysplastic syndromes. J Patient Rep Outcomes. 2020;4:69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abel GA, Efficace F, Buckstein RJ, Tinsley S, Jurcic JG, Martins Y, et al. Prospective international validation of the Quality of Life in Myelodysplasia Scale (QUALMS). Haematologica. 2016;101:781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dayyani F, Conley AP, Strom SS, Stevenson W, Cortes JE, Borthakur G, et al. Cause of death in patients with lower-risk myelodysplastic syndrome. Cancer. 2010;116:2174–9.

    PubMed  Google Scholar 

  31. Fedeli U, Schievano E, Saugo M, Rodeghiero F. Mortality from myelodysplastic syndromes: a multiple causes of death approach. Am J Hematol. 2014;89:450–1.

    Article  PubMed  Google Scholar 

  32. Nachtkamp K, Stark R, Strupp C, Kundgen A, Giagounidis A, Aul C, et al. Causes of death in 2877 patients with myelodysplastic syndromes. Ann Hematol. 2016;95:937–44.

    Article  PubMed  Google Scholar 

  33. Stalfelt AM, Brodin H, Pettersson S, Eklof A. The final phase in acute myeloid leukaemia (AML): a study of cause of death, place of death and type of care during the last week of life. Leuk Res. 2001;25:673–80.

    Article  CAS  PubMed  Google Scholar 

  34. Franchini M, Frattini F, Crestani S, Bonfanti C. Bleeding complications in patients with hematologic malignancies. Semin Thromb Hemost. 2013;39:94–100.

    PubMed  Google Scholar 

  35. Webert K, Cook RJ, Sigouin CS, Rebulla P, Heddle NM. The risk of bleeding in thrombocytopenic patients with acute myeloid leukemia. Haematologica. 2006;91:1530–7.

    PubMed  Google Scholar 

  36. Slichter SJ, Kaufman RM, Assmann SF, McCullough J, Triulzi DJ, Strauss RG, et al. Dose of prophylactic platelet transfusions and prevention of hemorrhage. N Engl J Med. 2010;362:600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Estcourt LJ, Stanworth SJ, Murphy MF. Platelet transfusions for patients with haematological malignancies: who needs them? Br J Haematol. 2011;154:425–40.

    Article  PubMed  Google Scholar 

  38. Estcourt LJ, Stanworth SJ, Murphy MF. Different platelet count thresholds to guide use of prophylactic platelet transfusions for patients with hematological disorders after myelosuppressive chemotherapy or stem cell transplantation. JAMA Oncol. 2016;2:1091–2.

    Article  PubMed  Google Scholar 

  39. Psaila B, Bussel JB, Frelinger AL, Babula B, Linden MD, Li Y, et al. Differences in platelet function in patients with acute myeloid leukemia and myelodysplasia compared to equally thrombocytopenic patients with immune thrombocytopenia. J Thromb Haemost. 2011;9:2302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Just Vinholt P, Hojrup Knudsen G, Sperling S, Frederiksen H, Nielsen C. Platelet function tests predict bleeding in patients with acute myeloid leukemia and thrombocytopenia. Am J Hematol. 2019;94:891–901.

    Article  CAS  PubMed  Google Scholar 

  41. Schiffer CA, Bohlke K, Delaney M, Hume H, Magdalinski AJ, McCullough JJ, et al. Platelet transfusion for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2018;36:283–99.

    Article  PubMed  Google Scholar 

  42. Kaufman RM, Djulbegovic B, Gernsheimer T, Kleinman S, Tinmouth AT, Capocelli KE, et al. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2015;162:205–13.

    Article  PubMed  Google Scholar 

  43. Savage WJ. Transfusion reactions. Hematol Oncol Clin North Am. 2016;30:619–34.

    Article  PubMed  Google Scholar 

  44. Menis M, Izurieta HS, Anderson SA, Kropp G, Holness L, Gibbs J, et al. Outpatient transfusions and occurrence of serious noninfectious transfusion-related complications among US elderly, 2007–2008: utility of large administrative databases in blood safety research. Transfusion. 2012;52:1968–76.

    Article  PubMed  Google Scholar 

  45. Menis M, Anderson SA, Forshee RA, McKean S, Johnson C, Holness L, et al. Transfusion-associated circulatory overload (TACO) and potential risk factors among the inpatient US elderly as recorded in Medicare administrative databases during 2011. Vox Sang. 2014;106:144–52.

    Article  CAS  PubMed  Google Scholar 

  46. O’Meara E, Murphy C, McMurray JJ. Anemia and heart failure. Curr Heart Fail Rep. 2004;1:176–82.

    Article  PubMed  Google Scholar 

  47. Silverberg DS, Wexler D, Iaina A. The role of anemia in congestive heart failure and chronic kidney insufficiency: the cardio renal anemia syndrome. Perspect Biol Med. 2004;47:575–89.

    Article  PubMed  Google Scholar 

  48. Porter JB. Practical management of iron overload. Br J Haematol. 2001;115:239–52.

    Article  CAS  PubMed  Google Scholar 

  49. Jabbour E, Kantarjian HM, Koller C, Taher A. Red blood cell transfusions and iron overload in the treatment of patients with myelodysplastic syndromes. Cancer. 2008;112:1089–95.

    Article  PubMed  Google Scholar 

  50. Roy NB, Myerson S, Schuh AH, Bignell P, Patel R, Wainscoat JS, et al. Cardiac iron overload in transfusion-dependent patients with myelodysplastic syndromes. Br J Haematol. 2011;154:521–4.

    Article  CAS  PubMed  Google Scholar 

  51. Zeidan AM, Pullarkat VA, Komrokji RS. Overcoming barriers to treating iron overload in patients with lower-risk myelodysplastic syndrome. Crit Rev Oncol Hematol. 2017;117:57–66.

    Article  PubMed  Google Scholar 

  52. Fung EB, Harmatz PR, Lee PD, Milet M, Bellevue R, Jeng MR, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135:574–82.

    Article  PubMed  Google Scholar 

  53. Bodey GP, Buckley M, Sathe YS, Freireich EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med. 1966;64:328–40.

    Article  CAS  PubMed  Google Scholar 

  54. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52:427–31.

    Article  PubMed  Google Scholar 

  55. Mikulska M, Averbuch D, Tissot F, Cordonnier C, Akova M, Calandra T, et al. Fluoroquinolone prophylaxis in haematological cancer patients with neutropenia: ECIL critical appraisal of previous guidelines. J Infect. 2018;76:20–37.

    Article  PubMed  Google Scholar 

  56. Chung SJ, Miller RA, Permpalung N, Baker AW, Diehl LF, Rizzieri DA, et al. Fluoroquinolone prophylaxis reduces febrile neutropenia, bloodstream infections from mucosal translocations, and intensive care admissions in high risk hematological patients, a single center experience. Leuk Lymphoma. 2019;60:488–92.

    Article  PubMed  Google Scholar 

  57. Bainschab A, Quehenberger F, Greinix HT, Krause R, Wolfler A, Sill H, et al. Infections in patients with acute myeloid leukemia treated with low-intensity therapeutic regimens: risk factors and efficacy of antibiotic prophylaxis. Leuk Res. 2016;42:47–51.

    Article  CAS  PubMed  Google Scholar 

  58. Gafter-Gvili A, Fraser A, Paul M, Vidal L, Lawrie TA, van de Wetering MD, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012;1:CD004386.

    PubMed  Google Scholar 

  59. Ruping MJ, Vehreschild JJ, Cornely OA. Primary antifungal prophylaxis in acute myeloblastic leukemia and myelodysplastic syndrome: still an open question? Leuk Lymphoma. 2010;51:20–6.

    Article  PubMed  CAS  Google Scholar 

  60. Halpern AB, Lyman GH, Walsh TJ, Kontoyiannis DP, Walter RB. Primary antifungal prophylaxis during curative-intent therapy for acute myeloid leukemia. Blood. 2015;126:2790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ryblom H, Hast R, Hellstrom-Lindberg E, Winterling J, Johansson E. Self-perception of symptoms of anemia and fatigue before and after blood transfusions in patients with myelodysplastic syndromes. Eur J Oncol Nurs. 2015;19:99–106.

    Article  PubMed  Google Scholar 

  62. Germing U, Oliva EN, Hiwase D, Almeida A. Treatment of anemia in transfusion-dependent and non-transfusion-dependent lower-risk MDS: current and emerging strategies. Hemasphere. 2019;3:e314.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Efficace F, Cottone F, Abel G, Niscola P, Gaidano G, Bonnetain F, et al. Patient-reported outcomes enhance the survival prediction of traditional disease risk classifications: an international study in patients with myelodysplastic syndromes. Cancer. 2018;124:1251–9.

    Article  PubMed  Google Scholar 

  64. Fletcher SA, Cronin AM, Zeidan AM, Odejide OO, Gore SD, Davidoff AJ, et al. Intensity of end-of-life care for patients with myelodysplastic syndromes: findings from a large national database. Cancer. 2016;122:1209–15.

    Article  PubMed  Google Scholar 

  65. American Society of Hematology. Access to blood transfusions for cancer patients receiving Medicare hospice benefit. Fact sheet. https://www.hematology.org/-/media/hematology/files/advocacy/ash-palliative-care-factsheet.pdf?la=en&hash=06BD3DF46F1507C24C1D0A5BEEF77986. Accessed 7 Jun 2021.

  66. American Society of Hematology. ASH statement in support of palliative blood transfusions in hospice setting. 2019. https://www.hematology.org/advocacy/policy-statements/2019/palliative-blood-transfusions-in-hospice#. Accessed 7 Jun 2021.

  67. Platzbecker U. Treatment of MDS. Blood. 2019;133:1096–107.

    Article  CAS  PubMed  Google Scholar 

  68. Carraway HE, Saygin C. Therapy for lower-risk MDS. Hematology Am Soc Hematol Educ Program. 2020;2020:426–33.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hellstrom-Lindberg E, Negrin R, Stein R, Krantz S, Lindberg G, Vardiman J, et al. Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol. 1997;99:344–51.

    Article  CAS  PubMed  Google Scholar 

  70. Greenberg PL, Sun Z, Miller KB, Bennett JM, Tallman MS, Dewald G, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood. 2009;114:2393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Westers TM, Alhan C, Chamuleau ME, van der Vorst MJ, Eeltink C, Ossenkoppele GJ, et al. Aberrant immunophenotype of blasts in myelodysplastic syndromes is a clinically relevant biomarker in predicting response to growth factor treatment. Blood. 2010;115:1779–84.

    Article  CAS  PubMed  Google Scholar 

  72. Park S, Hamel JF, Toma A, Kelaidi C, Thepot S, Campelo MD, et al. Outcome of lower-risk patients with myelodysplastic syndromes without 5q deletion after failure of erythropoiesis-stimulating agents. J Clin Oncol. 2017;35:1591–7.

    Article  PubMed  Google Scholar 

  73. Park S, Greenberg P, Yucel A, Farmer C, O’Neill F, De Oliveira BC, et al. Clinical effectiveness and safety of erythropoietin-stimulating agents for the treatment of low- and intermediate-1-risk myelodysplastic syndrome: a systematic literature review. Br J Haematol. 2019;184:134–60.

    Article  CAS  PubMed  Google Scholar 

  74. Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G, Ahlgren T, Dahl IM, Dybedal I, et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol. 2003;120:1037–46.

    Article  CAS  PubMed  Google Scholar 

  75. Jadersten M, Montgomery SM, Dybedal I, Porwit-MacDonald A, Hellstrom-Lindberg E. Long-term outcome of treatment of anemia in MDS with erythropoietin and G-CSF. Blood. 2005;106:803–11.

    Article  PubMed  CAS  Google Scholar 

  76. Davidoff AJ, Weiss SR, Baer MR, Ke X, Hendrick F, Zeidan A, et al. Patterns of erythropoiesis-stimulating agent use among Medicare beneficiaries with myelodysplastic syndromes and consistency with clinical guidelines. Leuk Res. 2013;37:675–80.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hendrick F, Davidoff AJ, Zeidan AM, Gore SD, Baer MR. Effect of erythropoiesis-stimulating agent policy decisions on off-label use in myelodysplastic syndromes. Med Med Res Rev. 2014. https://doi.org/10.5600/mmrr.004.04.a02.

    Article  Google Scholar 

  78. Duong VH, Baer MR, Hendrick F, Weiss SR, Sato M, Zeidan AM, et al. Variations in erythropoiesis-stimulating agent administration in transfusion-dependent myelodysplastic syndromes impact response. Leuk Res. 2015;39:586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Davidoff AJ, Hendrick FB, Zeidan AM, Baer MR, Stuart BC, Shenolikar RA, et al. Patient cost sharing and receipt of erythropoiesis-stimulating agents through Medicare part D. J Oncol Pract. 2015;11:e190–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lindquist DE, Cruz JL, Brown JN. Use of erythropoiesis-stimulating agents in the treatment of anemia in patients with systolic heart failure. J Cardiovasc Pharmacol Ther. 2015;20:59–65.

    Article  CAS  PubMed  Google Scholar 

  81. Kang J, Park J, Lee JM, Park JJ, Choi DJ. The effects of erythropoiesis stimulating therapy for anemia in chronic heart failure: a meta-analysis of randomized clinical trials. Int J Cardiol. 2016;218:12–22.

    Article  PubMed  Google Scholar 

  82. Vadhan-Raj S, Keating M, LeMaistre A, Hittelman WN, McCredie K, Trujillo JM, et al. Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl J Med. 1987;317:1545–52.

    Article  CAS  PubMed  Google Scholar 

  83. Antin JH, Smith BR, Holmes W, Rosenthal DS. Phase I/II study of recombinant human granulocyte-macrophage colony-stimulating factor in aplastic anemia and myelodysplastic syndrome. Blood. 1988;72:705–13.

    Article  CAS  PubMed  Google Scholar 

  84. Negrin RS, Haeuber DH, Nagler A, Olds LC, Donlon T, Souza LM, et al. Treatment of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor: a phase I-II trial. Ann Intern Med. 1989;110:976–84.

    Article  CAS  PubMed  Google Scholar 

  85. Willemze R, van der Lely N, Zwierzina H, Suciu S, Solbu G, Gerhartz H, et al. A randomized phase-I/II multicenter study of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy for patients with myelodysplastic syndromes and a relatively low risk of acute leukemia. EORTC Leukemia Cooperative Group. Ann Hematol. 1992;64:173–80.

    Article  CAS  PubMed  Google Scholar 

  86. Negrin RS, Stein R, Vardiman J, Doherty K, Cornwell J, Krantz S, et al. Treatment of the anemia of myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor in combination with erythropoietin. Blood. 1993;82:737–43.

    Article  CAS  PubMed  Google Scholar 

  87. Casadevall N, Durieux P, Dubois S, Hemery F, Lepage E, Quarre MC, et al. Health, economic, and quality-of-life effects of erythropoietin and granulocyte colony-stimulating factor for the treatment of myelodysplastic syndromes: a randomized, controlled trial. Blood. 2004;104:321–7.

    Article  CAS  PubMed  Google Scholar 

  88. Gotlib J, Lavori P, Quesada S, Stein RS, Shahnia S, Greenberg PL. A phase II intra-patient dose-escalation trial of weight-based darbepoetin alfa with or without granulocyte-colony stimulating factor in myelodysplastic syndromes. Am J Hematol. 2009;84:15–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bussel JB, Cheng G, Saleh MN, Psaila B, Kovaleva L, Meddeb B, et al. Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N Engl J Med. 2007;357:2237–47.

    Article  CAS  PubMed  Google Scholar 

  90. Townsley DM, Scheinberg P, Winkler T, Desmond R, Dumitriu B, Rios O, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017;376:1540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuter DJ, Bussel JB, Newland A, Baker RI, Lyons RM, Wasser J, et al. Long-term treatment with romiplostim in patients with chronic immune thrombocytopenia: safety and efficacy. Br J Haematol. 2013;161:411–23.

    Article  CAS  PubMed  Google Scholar 

  92. Will B, Kawahara M, Luciano JP, Bruns I, Parekh S, Erickson-Miller CL, et al. Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome. Blood. 2009;114:3899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mavroudi I, Pyrovolaki K, Pavlaki K, Kozana A, Psyllaki M, Kalpadakis C, et al. Effect of the nonpeptide thrombopoietin receptor agonist eltrombopag on megakaryopoiesis of patients with lower risk myelodysplastic syndrome. Leuk Res. 2011;35:323–8.

    Article  CAS  PubMed  Google Scholar 

  94. Kantarjian H, Fenaux P, Sekeres MA, Becker PS, Boruchov A, Bowen D, et al. Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol. 2010;28:437–44.

    Article  CAS  PubMed  Google Scholar 

  95. Oliva EN, Alati C, Santini V, Poloni A, Molteni A, Niscola P, et al. Eltrombopag versus placebo for low-risk myelodysplastic syndromes with thrombocytopenia (EQoL-MDS): phase 1 results of a single-blind, randomised, controlled, phase 2 superiority trial. Lancet Haematol. 2017;4:e127–36.

    Article  PubMed  Google Scholar 

  96. Giagounidis A, Mufti GJ, Fenaux P, Sekeres MA, Szer J, Platzbecker U, et al. Results of a randomized, double-blind study of romiplostim versus placebo in patients with low/intermediate-1-risk myelodysplastic syndrome and thrombocytopenia. Cancer. 2014;120:1838–46.

    Article  CAS  PubMed  Google Scholar 

  97. Kantarjian HM, Fenaux P, Sekeres MA, Szer J, Platzbecker U, Kuendgen A, et al. Long-term follow-up for up to 5 years on the risk of leukaemic progression in thrombocytopenic patients with lower-risk myelodysplastic syndromes treated with romiplostim or placebo in a randomised double-blind trial. Lancet Haematol. 2018;5:e117–26.

    Article  PubMed  Google Scholar 

  98. Fenaux P, Muus P, Kantarjian H, Lyons RM, Larson RA, Sekeres MA, et al. Romiplostim monotherapy in thrombocytopenic patients with myelodysplastic syndromes: long-term safety and efficacy. Br J Haematol. 2017;178:906–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zeidan AM, Griffiths EA. To chelate or not to chelate in MDS: that is the question! Blood Rev. 2018;32:368–77.

    Article  CAS  PubMed  Google Scholar 

  100. Zeidan AM, Giri S, DeVeaux M, Ballas SK, Duong VH. Systematic review and meta-analysis of the effect of iron chelation therapy on overall survival and disease progression in patients with lower-risk myelodysplastic syndromes. Ann Hematol. 2019;98:339–50.

    Article  CAS  PubMed  Google Scholar 

  101. Mainous AG 3rd, Tanner RJ, Hulihan MM, Amaya M, Coates TD. The impact of chelation therapy on survival in transfusional iron overload: a meta-analysis of myelodysplastic syndrome. Br J Haematol. 2014;167:720–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zeidan AM, Hendrick F, Friedmann E, Baer MR, Gore SD, Sasane M, et al. Deferasirox therapy is associated with reduced mortality risk in a medicare population with myelodysplastic syndromes. J Comp Eff Res. 2015;4:327–40.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Angelucci E, Li J, Greenberg PL, et al. Safety and efficacy, including event-free survival, of deferasirox versus placebo in iron-overloaded patients with low- and int-1-risk myelodysplastic syndromes (MDS): outcomes from the randomized, double-blind Telesto study [abstract no. 234]. In: Presented at the 2018 ASH Annual Meeting; 1 December 2018; San Diego (CA).

  104. Alessandrino EP, Della Porta MG, Bacigalupo A, Malcovati L, Angelucci E, Van Lint MT, et al. Prognostic impact of pre-transplantation transfusion history and secondary iron overload in patients with myelodysplastic syndrome undergoing allogeneic stem cell transplantation: a GITMO study. Haematologica. 2010;95:476–84.

    Article  CAS  PubMed  Google Scholar 

  105. Armand P, Kim HT, Virtanen JM, Parkkola RK, Itala-Remes MA, Majhail NS, et al. Iron overload in allogeneic hematopoietic cell transplantation outcome: a meta-analysis. Biol Blood Marrow Transplant. 2014;20:1248–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Armand P, Sainvil MM, Kim HT, Rhodes J, Cutler C, Ho VT, et al. Does iron overload really matter in stem cell transplantation? Am J Hematol. 2012;87:569–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lim ZY, Fiaccadori V, Gandhi S, Hayden J, Kenyon M, Ireland R, et al. Impact of pre-transplant serum ferritin on outcomes of patients with myelodysplastic syndromes or secondary acute myeloid leukaemia receiving reduced intensity conditioning allogeneic haematopoietic stem cell transplantation. Leuk Res. 2010;34:723–7.

    Article  CAS  PubMed  Google Scholar 

  108. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease: a s ystematic review and meta-analysis. PLoS ONE. 2016;11:e0158765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zeidan AM, Davidoff AJ, Long JB, Hu X, Wang R, Ma X, et al. Comparative clinical effectiveness of azacitidine versus decitabine in older patients with myelodysplastic syndromes. Br J Haematol. 2016;175:829–40.

    Article  CAS  PubMed  Google Scholar 

  110. Davidoff AJ, Hu X, Bewersdorf JP, Wang R, Podoltsev NA, Huntington SF, et al. Hypomethylating agent (HMA) therapy use and survival in older adults with refractory anemia with excess blasts (RAEB) in the United States (USA): a large propensity score-matched population-based study(dagger). Leuk Lymphoma. 2020;61:1178–87.

    Article  CAS  PubMed  Google Scholar 

  111. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zeidan AM, Stahl M, Hu X, Wang R, Huntington SF, Podoltsev NA, et al. Long-term survival of older patients with MDS treated with HMA therapy without subsequent stem cell transplantation. Blood. 2018;131:818–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zeidan AM, Wang R, Davidoff AJ, Ma S, Zhao Y, Gore SD, et al. Disease-related costs of care and survival among Medicare-enrolled patients with myelodysplastic syndromes. Cancer. 2016;122:1598–607.

    Article  PubMed  Google Scholar 

  114. Mahfouz RZ, Jankowska A, Ebrahem Q, Gu X, Visconte V, Tabarroki A, et al. Increased CDA expression/activity in males contributes to decreased cytidine analog half-life and likely contributes to worse outcomes with 5-azacytidine or decitabine therapy. Clin Cancer Res. 2013;19:938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Savona MR, Odenike O, Amrein PC, Steensma DP, DeZern AE, Michaelis LC, et al. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes: a multicentre, open-label, dose-escalation, phase 1 study. Lancet Haematol. 2019;6:e194-203.

    Article  PubMed  Google Scholar 

  116. List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 2005;352:549–57.

    Article  CAS  PubMed  Google Scholar 

  117. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355:1456–65.

    Article  CAS  PubMed  Google Scholar 

  118. Raza A, Reeves JA, Feldman EJ, Dewald GW, Bennett JM, Deeg HJ, et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood. 2008;111:86–93.

    Article  CAS  PubMed  Google Scholar 

  119. Santini V, Fenaux P, Giagounidis A, Platzbecker U, List AF, Haferlach T, et al. Impact of somatic mutations on response to lenalidomide in lower-risk non-del(5q) myelodysplastic syndromes patients. Leukemia. 2021;35(3):897–900.

    Article  PubMed  Google Scholar 

  120. Santini V, Almeida A, Giagounidis A, Gropper S, Jonasova A, Vey N, et al. Randomized phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with lower-risk non-del(5q) myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents. J Clin Oncol. 2016;34:2988–96.

    Article  CAS  PubMed  Google Scholar 

  121. Zeidan AM, Gore SD, McNally DL, Baer MR, Hendrick F, Mahmoud D, et al. Lenalidomide performance in the real world: patterns of use and effectiveness in a Medicare population with myelodysplastic syndromes. Cancer. 2013;119:3870–8.

    Article  CAS  PubMed  Google Scholar 

  122. Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011;118:3765–76.

    Article  CAS  PubMed  Google Scholar 

  123. Zeidan AM, Knaus HA, Robinson TM, Towlerton AMH, Warren EH, Zeidner JF, et al. A multi-center phase I trial of ipilimumab in patients with myelodysplastic syndromes following hypomethylating agent failure. Clin Cancer Res. 2018;24:3519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Durrani J, Maciejewski JP. Idiopathic aplastic anemia vs hypocellular myelodysplastic syndrome. Hematol Am Soc Hematol Educ Program. 2019;2019:97–104.

    Article  Google Scholar 

  125. Shallis RM, Chokr N, Stahl M, Pine AB, Zeidan AM. Immunosuppressive therapy in myelodysplastic syndromes: a borrowed therapy in search of the right place. Expert Rev Hematol. 2018;11:715–26.

    Article  CAS  PubMed  Google Scholar 

  126. Tichelli A, Gratwohl A, Wuersch A, Nissen C, Speck B. Antilymphocyte globulin for myelodysplastic syndrome. Br J Haematol. 1988;68:139–40.

    Article  CAS  PubMed  Google Scholar 

  127. Molldrem JJ, Caples M, Mavroudis D, Plante M, Young NS, Barrett AJ. Antithymocyte globulin for patients with myelodysplastic syndrome. Br J Haematol. 1997;99:699–705.

    Article  CAS  PubMed  Google Scholar 

  128. Molldrem JJ, Leifer E, Bahceci E, Saunthararajah Y, Rivera M, Dunbar C, et al. Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. Ann Intern Med. 2002;137:156–63.

    Article  PubMed  Google Scholar 

  129. Komrokji RS, Mailloux AW, Chen DT, Sekeres MA, Paquette R, Fulp WJ, et al. A phase II multicenter rabbit anti-thymocyte globulin trial in patients with myelodysplastic syndromes identifying a novel model for response prediction. Haematologica. 2014;99:1176–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Sloand EM, Wu CO, Greenberg P, Young N, Barrett J. Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol. 2008;26:2505–11.

    Article  PubMed  Google Scholar 

  131. Haider M, Al Ali N, Padron E, Epling-Burnette P, Lancet J, List A, et al. Immunosuppressive therapy: exploring an underutilized treatment option for myelodysplastic syndrome. Clin Lymphoma Myeloma Leuk. 2016;16(Suppl.):S44–8.

    Article  PubMed  Google Scholar 

  132. Stahl M, Bewersdorf JP, Giri S, Wang R, Zeidan AM. Use of immunosuppressive therapy for management of myelodysplastic syndromes: a systematic review and meta-analysis. Haematologica. 2020;105:102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Stahl M, DeVeaux M, de Witte T, Neukirchen J, Sekeres MA, Brunner AM, et al. The use of immunosuppressive therapy in MDS: clinical outcomes and their predictors in a large international patient cohort. Blood Adv. 2018;2:1765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382:140–51.

    Article  CAS  PubMed  Google Scholar 

  135. Platzbecker U, Germing U, Gotze KS, Kiewe P, Mayer K, Chromik J, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18:1338–47.

    Article  CAS  PubMed  Google Scholar 

  136. Bewersdorf JP, Zeidan AM. Transforming growth factor (TGF)-beta pathway as a therapeutic target in lower risk myelodysplastic syndromes. Leukemia. 2019;33:1303–12.

    Article  CAS  PubMed  Google Scholar 

  137. Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Perez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104:579–85.

    Article  CAS  PubMed  Google Scholar 

  138. Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35:1154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Koreth J, Pidala J, Perez WS, Deeg HJ, Garcia-Manero G, Malcovati L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013;31:2662–70.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Potter VT, Iacobelli S, van Biezen A, Maertens J, Bourhis JH, Passweg JR, et al. Comparison of intensive chemotherapy and hypomethylating agents before allogeneic stem cell transplantation for advanced myelodysplastic syndromes: a study of the Myelodysplastic Syndrome Subcommittee of the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2016;22:1615–20.

    Article  CAS  PubMed  Google Scholar 

  141. Yahng SA, Kim M, Kim TM, Jeon YW, Yoon JH, Shin SH, et al. Better transplant outcome with pre-transplant marrow response after hypomethylating treatment in higher-risk MDS with excess blasts. Oncotarget. 2017;8:12342–54.

    Article  PubMed  Google Scholar 

  142. Festuccia M, Deeg HJ, Gooley TA, Baker K, Wood BL, Fang M, et al. Minimal identifiable disease and the role of conditioning intensity in hematopoietic cell transplantation for myelodysplastic syndrome and acute myelogenous leukemia evolving from myelodysplastic syndrome. Biol Blood Marrow Transplant. 2016;22:1227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Robin M, Porcher R, Zinke-Cerwenka W, van Biezen A, Volin L, Mufti G, et al. Allogeneic haematopoietic stem cell transplant in patients with lower risk myelodysplastic syndrome: a retrospective analysis on behalf of the Chronic Malignancy Working Party of the EBMT. Bone Marrow Transplant. 2017;52:1081.

    Article  CAS  PubMed  Google Scholar 

  144. Kroger N, Iacobelli S, Franke GN, Platzbecker U, Uddin R, Hubel K, et al. Dose-reduced versus standard conditioning followed by allogeneic stem-cell transplantation for patients with myelodysplastic syndrome: a prospective randomized phase III study of the EBMT (RICMAC Trial). J Clin Oncol. 2017;35:2157–64.

    Article  PubMed  Google Scholar 

  145. Robin M, Porcher R, Ades L, Raffoux E, Michallet M, Francois S, et al. HLA-matched allogeneic stem cell transplantation improves outcome of higher risk myelodysplastic syndrome: a prospective study on behalf of SFGM-TC and GFM. Leukemia. 2015;29:1496–501.

    Article  CAS  PubMed  Google Scholar 

  146. Abel GA, Kim HT, Hantel A, Steensma DP, Stone R, Habib A, et al. Fit older adults with advanced myelodysplastic syndromes: who is most likely to benefit from transplant? Leukemia. 2021;35:1166–75.

    Article  CAS  PubMed  Google Scholar 

  147. Nakamura R, Saber W, Martens MJ, Ramirez A, Scott BL, Oran B, et al. A multi-center biologic assignment trial comparing reduced intensity allogeneic hematopoietic cell transplantation to hypomethylating therapy or best supportive care in patients aged 50–75 with advanced myelodysplastic syndrome: blood and marrow transplant clinical trials network study 1102. Blood. 2020;136:19–21.

    Article  Google Scholar 

  148. Shallis RM, Podoltsev NA, Gowda L, Zeidan AM, Gore SD. Cui bono? Finding the value of allogeneic stem cell transplantation for lower-risk myelodysplastic syndromes. Expert Rev Hematol. 2020;13:447–60.

    Article  CAS  PubMed  Google Scholar 

  149. Prebet T, Cluzeau T, Park S, Sekeres MA, Germing U, Ades L, et al. Outcome of patients treated for myelodysplastic syndromes with 5q deletion after failure of lenalidomide therapy. Oncotarget. 2017;8:81926–35.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Prebet T, Toma A, Cluzeau T, Sekeres MA, Vey N, Park S, et al. Outcome of patients treated for myelodysplastic syndromes without deletion 5q after failure of lenalidomide therapy. Oncotarget. 2017;8:37866–74.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tsao T, Shi Y, Kornblau S, Lu H, Konoplev S, Antony A, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91:1861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bogenberger JM, Delman D, Hansen N, Valdez R, Fauble V, Mesa RA, et al. Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma. 2015;56:226–9.

    Article  PubMed  Google Scholar 

  153. Jilg S, Reidel V, Muller-Thomas C, Konig J, Schauwecker J, Hockendorf U, et al. Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients. Leukemia. 2016;30:112–23.

    Article  CAS  PubMed  Google Scholar 

  154. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29.

    Article  CAS  PubMed  Google Scholar 

  155. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Azizi A, Ediriwickrema A, Dutta R, Patel SA, Shomali W, Medeiros B, et al. Venetoclax and hypomethylating agent therapy in high risk myelodysplastic syndromes: a retrospective evaluation of a real-world experience. Leuk Lymphoma. 2020;61:2700–7.

    Article  CAS  PubMed  Google Scholar 

  157. Ball BJ, Famulare CA, Stein EM, Tallman MS, Derkach A, Roshal M, et al. Venetoclax and hypomethylating agents (HMAs) induce high response rates in MDS, including patients after HMA therapy failure. Blood Adv. 2020;4:2866–70.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Cortes J, Garcia-Manero G, Sasaki K, Naqvi K, Alvarado Y, Kadia TM, et al. Activity of venetoclax-based therapy in myelodysplastic syndrome (MDS). Blood. 2019;134:1726.

    Article  Google Scholar 

  159. Wei AH, Garcia JS, Borate U, Fong CY, Baer MR, Nolte F, et al. A phase 1b study evaluating the safety and efficacy of venetoclax in combination with azacitidine in treatment-naïve patients with higher-risk myelodysplastic syndrome. Blood. 2019;134:568.

    Article  Google Scholar 

  160. Zeidan AM, Pollyea DA, Garcia JS, Brunner A, Roncolato F, Borate U, et al. A phase 1b study evaluating the safety and efficacy of venetoclax as monotherapy or in combination with azacitidine for the treatment of relapsed/refractory myelodysplastic syndrome. Blood. 2019;134:565.

    Article  Google Scholar 

  161. Bains A, Luthra R, Medeiros LJ, Zuo Z. FLT3 and NPM1 mutations in myelodysplastic syndromes: frequency and potential value for predicting progression to acute myeloid leukemia. Am J Clin Pathol. 2011;135:62–9.

    Article  PubMed  Google Scholar 

  162. Daver N, Strati P, Jabbour E, Kadia T, Luthra R, Wang S, et al. FLT3 mutations in myelodysplastic syndrome and chronic myelomonocytic leukemia. Am J Hematol. 2013;88:56–9.

    Article  CAS  PubMed  Google Scholar 

  163. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017;31:272–81.

    Article  CAS  PubMed  Google Scholar 

  165. Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J, et al. A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. Leuk Lymphoma. 2010;51:252–60.

    Article  CAS  PubMed  Google Scholar 

  166. Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Macdonald DA, Assouline SE, Brandwein J, Kamel-Reid S, Eisenhauer EA, Couban S, et al. A phase I/II study of sorafenib in combination with low dose cytarabine in elderly patients with acute myeloid leukemia or high-risk myelodysplastic syndrome from the National Cancer Institute of Canada Clinical Trials Group: trial IND.186. Leuk Lymphoma. 2013;54:760–6.

    Article  CAS  PubMed  Google Scholar 

  168. Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90:276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Foran JM, DiNardo CD, Watts JM, Stein EM, De Botton S, Fathi AT, et al. Ivosidenib (AG-120) in patients with IDH1-mutant relapsed/refractory myelodysplastic syndrome: updated enrollment of a phase 1 dose escalation and expansion study. Blood. 2019;134:4254.

    Article  Google Scholar 

  170. Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Roboz GJ, Collins R, et al. Enasidenib in patients with mutant IDH2 myelodysplastic syndromes: a phase 1 subgroup analysis of the multicentre, AG221-C-001 trial. Lancet Haematol. 2020;7:e309–19.

    Article  PubMed  Google Scholar 

  171. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26:1549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cluzeau T, Sebert M, Rahme R, Cuzzubbo S, Lehmann-Che J, Madelaine I, et al. Eprenetapopt plus azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia: a phase II study by the Groupe Francophone des Myelodysplasies (GFM). J Clin Oncol. 2021;39:1575–83.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J Clin Oncol. 2021;39:1584–94.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Steensma DP, Fenaux P, Van Eygen K, Raza A, Santini V, Germing U, et al. Imetelstat achieves meaningful and durable transfusion independence in high transfusion-burden patients with lower-risk myelodysplastic syndromes in a phase II study. J Clin Oncol. 2021;39:48–56.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer M. Zeidan.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflicts of Interest/Competing Interests

Amer M. Zeidan received research funding (institutional) from Celgene/BMS, Abbvie, Astex, Pfizer, Medimmune/AstraZeneca, Boehringer-Ingelheim, Trovagene/Cardiff oncology, Incyte, Takeda, Novartis, Amgen, Aprea, and ADC Therapeutics. Amer M. Zeidan participated in advisory boards, and/or had a consultancy with and received honoraria from AbbVie, Otsuka, Pfizer, Celgene/BMS, Jazz, Incyte, Agios, Boehringer-Ingelheim, Novartis, Acceleron, Astellas, Daiichi Sankyo, Taiho, Seattle Genetics, BeyondSpring, Cardiff Oncology, Takeda, Ionis, Amgen, Janssen, Epizyme, Syndax, Gilead, Kura, Aprea, Janssen, Lox Oncology, Genentech, Servier, Jasper, and Tyme. Amer M. Zeidan served on clinical trial committees for Novartis, Abbvie, Geron, Gilead, Kura, Lox Oncology, BioCryst, and Celgene/BMS. Amer M. Zeidan received travel support for meetings from Pfizer, Novartis, and Cardiff Oncology. Rory M. Shallis owned stock in Curis.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

Rory M. Shallis and Amer M. Zeidan conceptualized and wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shallis, R.M., Zeidan, A.M. Management of the Older Patient with Myelodysplastic Syndrome. Drugs Aging 38, 751–767 (2021). https://doi.org/10.1007/s40266-021-00881-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-021-00881-3

Navigation