Skip to main content

Advertisement

Log in

The Prevalence and Factors Associated with Antiepileptic Drug Use in US Nursing Home Residents

  • Original Research Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Background

Antiepileptic drugs (AEDs) are commonly used by nursing home residents, both on- and off-label. The landscape of AED use has changed over the past two decades; however, despite this, contemporaneous research on AED use in US nursing home residents is scant.

Objective

The aim of this study was to estimate the prevalence of AED use, describe prescribing patterns, identify factors associated with AED use, and assess whether these factors differ among AEDs with expanded indications in older adults (i.e. gabapentin, pregabalin, topiramate, and lamotrigine).

Methods

We conducted a cross-sectional study among 549,240 long-stay older residents who enrolled in fee-for-service Medicare and lived in 15,111 US nursing homes on 1 September 2016. Demographics and conditions associated with AED indications, epilepsy comorbidities, and safety data came from the Minimum Data Set Version 3.0 (MDS 3.0). Medicare Part D claims were used to identify AED use. Robust Poisson models and multinomial logistic models for clustered data estimated adjusted prevalence ratios (aPR), adjusted odds ratios (aOR), and 95% confidence intervals (CIs).

Results

Overall, 24.0% used AEDs (gabapentin [13.3%], levetiracetam [4.7%], phenytoin [1.9%], pregabalin [1.8%], and lamotrigine [1.2%]). AED use was associated with epilepsy (aPR 3.73, 95% CI 3.69–3.77), bipolar disorder (aPR 1.20, 95% CI 1.18–1.22), pain (aPRmoderate/severe vs. no pain 1.42, 95% CI 1.40–1.44), diabetes (aPR 1.27, 95% CI 1.26–1.28), anxiety (aPR 1.12, 95% CI 1.11–1.13), depression (aPR 1.17, 95% CI 1.15–1.18), or stroke (aPR 1.08, 95% CI 1.06–1.09). Residents with advancing age (aPR85+ vs. 65–74 years 0.73, 95% CI 0.73–0.74), Alzheimer’s disease/dementia (aPR 0.87, 95% CI 0.86–0.88), or cognitive impairment (aPRsevere vs. no impairment 0.62, 95% CI 0.61–0.63) had decreased AED use. Gabapentinoid use was highly associated with pain (aORmoderate/severe vs. no pain 2.07, 95% CI 2.01–2.12) and diabetes (aOR 1.79, 95% CI 1.76–1.82), but not with an epilepsy indication.

Conclusions

AED use was common in nursing homes, with gabapentin most commonly used (presumably for pain). That multiple comorbidities were associated with AED use underscores the need for future studies to investigate the safety and effectiveness of AED use in nursing home residents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kanner AM, Ashman E, Gloss D, et al. Practice guideline update summary: efficacy and tolerability of the new antiepileptic drugs I: treatment of new-onset epilepsy: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2018;91(2):74–81. https://doi.org/10.1212/WNL.0000000000005755.

    Article  CAS  PubMed  Google Scholar 

  2. Kanner AM, Ashman E, Gloss D, et al. Practice guideline update summary: efficacy and tolerability of the new antiepileptic drugs II: treatment-resistant epilepsy: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2018;91(2):82–90. https://doi.org/10.1212/WNL.0000000000005756.

    Article  CAS  PubMed  Google Scholar 

  3. Patel H, Toe DC, Burke S, Rasu RS. Anticonvulsant use after formulary status change for brand-name second-generation anticonvulsants. Am J Manag Care. 2010;16(8):e197–204.

    PubMed  Google Scholar 

  4. Drug Label: Pregabalin. US Food and Drug Administration; 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021446s035,022488s013lbl.pdf. Accessed 17 Nov 2019.

  5. Garrard J, Harms S, Hardie N, et al. Antiepileptic drug use in nursing home admissions. Ann Neurol. 2003;54(1):75–85. https://doi.org/10.1002/ana.10593.

    Article  PubMed  Google Scholar 

  6. Cloyd JC, Lackner TE, Leppik IE. Antiepileptics in the elderly. Pharmacoepidemiology and pharmacokinetics. Arch Fam Med. 1994;3(7):589–98.

    Article  CAS  Google Scholar 

  7. Lackner TE, Cloyd JC, Thomas LW, Leppik IE. Antiepileptic drug use in nursing home residents: effect of age, gender, and comedication on patterns of use. Epilepsia. 1998;39(10):1083–7.

    Article  CAS  Google Scholar 

  8. Bathena SPR, Leppik IE, Kanner AM, Birnbaum AK. Antiseizure, antidepressant, and antipsychotic medication prescribing in elderly nursing home residents. Epilepsy Behav. 2017;69:116–20. https://doi.org/10.1016/j.yebeh.2017.01.027.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Callegari C, Ielmini M, Bianchi L, Lucano M, Bertù L, Vender S. Antiepileptic drug use in a nursing home setting: a retrospective study in older adults. Funct Neurol. 2016;31(2):87–93. https://doi.org/10.11138/FNeur/2016.31.2.087.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garrard J, Cloyd J, Gross C, et al. Factors associated with antiepileptic drug use among elderly nursing home residents. J Gerontol A Biol Sci Med Sci. 2000;55(7):M384–M392392. https://doi.org/10.1093/gerona/55.7.M384.

    Article  CAS  PubMed  Google Scholar 

  11. Johnell K, Fastbom J. Antiepileptic drug use in community-dwelling and institutionalized elderly: a nationwide study of over 1,300,000 older people. Eur J Clin Pharmacol. 2011;67(10):1069–75. https://doi.org/10.1007/s00228-011-1051-2.

    Article  PubMed  Google Scholar 

  12. Halvorsen KH, Johannessen Landmark C, Granas AG. Prevalence of different combinations of antiepileptic drugs and CNS drugs in elderly home care service and nursing home patients in Norway. Epilepsy Res Treat. 2016. https://doi.org/10.1155/2016/5153093.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Perucca E, Berlowitz D, Birnbaum A, et al. Pharmacological and clinical aspects of antiepileptic drug use in the elderly. Epilepsy Res. 2006;68:49–63. https://doi.org/10.1016/j.eplepsyres.2005.07.017.

    Article  CAS  Google Scholar 

  14. Martin RC, Griffith HR, Faught E, Gilliam F, Mackey M, Vogtle L. Cognitive functioning in community dwelling older adults with chronic partial epilepsy. Epilepsia. 2005;46(2):298–303. https://doi.org/10.1111/j.0013-9580.2005.02104.x.

    Article  PubMed  Google Scholar 

  15. Maximos M, Chang F, Patel T. Risk of falls associated with antiepileptic drug use in ambulatory elderly populations. Can Pharm J (Ott). 2017;150(2):101–11. https://doi.org/10.1177/1715163517690744.

    Article  PubMed Central  Google Scholar 

  16. Bergey GK. Initial treatment of epilepsy: special issues in treating the elderly. Neurology. 2004;63(10 Suppl 4):S40–48. https://doi.org/10.1212/wnl.63.10_suppl_4.s40.

    Article  PubMed  Google Scholar 

  17. Leppik IE, Birnbaum AK. Epilepsy in the elderly. Ann N Y Acad Sci. 2010;1184(1):208–24. https://doi.org/10.1111/j.1749-6632.2009.05113.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord. 2011;4(6):385–407. https://doi.org/10.1177/1756285611417920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Long-Term Care Facility Resident Assessment Instrument 3.0 User’s Manual: Version 1.16. Centers for Medicare & Medicaid Services; 2018. https://downloads.cms.gov/files/1-MDS-30-RAI-Manual-v1-16-October-1-2018.pdf. Accessed 17 Nov 2019.

  20. Saliba D, Buchanan J. Making the investment count: revision of the minimum data set for nursing homes, MDS 3.0. J Am Med Dir Assoc. 2012;13(7):602–10. https://doi.org/10.1016/j.jamda.2012.06.002.

    Article  PubMed  Google Scholar 

  21. Saliba D, Jones M, Streim J, Ouslander J, Berlowitz D, Buchanan J. Overview of significant changes in the minimum data set for nursing homes version 3.0. J Am Med Dir Assoc. 2012;13(7):595–601. https://doi.org/10.1016/j.jamda.2012.06.001.

    Article  PubMed  Google Scholar 

  22. Marvanova M. Pharmacokinetic characteristics of antiepileptic drugs (AEDs). Mental Health Clinician. 2016;6(1):8–20. https://doi.org/10.9740/mhc.2015.01.00.

    Article  PubMed  Google Scholar 

  23. Statistical Abstract of the United States 1995. Bureau of the Census; 1995. https://www.census.gov/prod/1/gen/95statab/preface.pdf. Accessed 17 Nov 2019.

  24. Correspondence of verbal descriptor and numeric rating scales for pain intensity: an item response theory calibration. The Journals of Gerontology: Series A. Oxford; Academic. https://academic.oup.com/biomedgerontology/article/65A/7/778/558819. Accessed 27 May 2019.

  25. Nursing Home Data Compendium 2015. 2015:251.

  26. Hunnicutt JN, Tjia J, Lapane KL. Hospice use and pain management in elderly nursing home residents with cancer. J Pain Symptom Manag. 2017;53(3):561–70. https://doi.org/10.1016/j.jpainsymman.2016.10.369.

    Article  Google Scholar 

  27. Liu S-H, Hunnicutt JN, Ulbricht CM, Dubé CE, Hume AL, Lapane KL. Adjuvant use and the intensification of pharmacologic management for pain in nursing home residents with cancer: data from a US National Database. Drugs Aging. 2019;36(6):549–57. https://doi.org/10.1007/s40266-019-00650-3.

    Article  PubMed  Google Scholar 

  28. Seidenberg M, Pulsipher DT, Hermann B. Association of epilepsy and comorbid conditions. Future Neurol. 2009;4(5):663–8. https://doi.org/10.2217/fnl.09.32.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dubé CE, Mack DS, Hunnicutt JN, Lapane KL. Cognitive impairment and pain among nursing home residents with cancer. J Pain Symptom Manag. 2018;55(6):1509–18. https://doi.org/10.1016/j.jpainsymman.2018.02.012.

    Article  Google Scholar 

  30. Wysocki A, Thomas KS, Mor V. Functional improvement among short-stay nursing home residents in the MDS 3.0. J Am Med Dir Assoc. 2015;16(6):470–4. https://doi.org/10.1016/j.jamda.2014.11.018.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rowan AJ. Common morbidities influence development, treatment strategies, and expected outcomes. Geriatrics. 2005;60:30–4 (PubMed: 16343034).

    PubMed  Google Scholar 

  32. Jones CP, Papadopoulos C, Randhawa G. Who’s opting-in? A demographic analysis of the U.K. NHS Organ Donor Register. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0209161.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–6. https://doi.org/10.1093/aje/kwh090.

    Article  PubMed  Google Scholar 

  34. Zou G, Donner A. Extension of the modified Poisson regression model to prospective studies with correlated binary data. Stat Methods Med Res. 2013;22(6):661–70. https://doi.org/10.1177/0962280211427759.

    Article  CAS  PubMed  Google Scholar 

  35. Hines RJO. Analysis of clustered polytomous data using generalized estimating equations and working covariance structures. Biometrics. 1997;53(4):1552–6. https://doi.org/10.2307/2533523.

    Article  Google Scholar 

  36. Moore T, White A. Drug utilization and MDS-based outcomes for elderly nursing home residents—briefing paper. Cambridge: Abt Associates; 1998.

    Google Scholar 

  37. Anderson GD, Hakimian S. Pharmacokinetic factors to consider in the selection of antiseizure drugs for older patients with epilepsy. Drugs Aging. 2018;35(8):687–98. https://doi.org/10.1007/s40266-018-0562-2.

    Article  CAS  PubMed  Google Scholar 

  38. Goodman CW, Brett AS. Gabapentin and pregabalin for pain—is increased prescribing a cause for concern? N Engl J Med. 2017;377(5):411–4. https://doi.org/10.1056/NEJMp1704633.

    Article  PubMed  Google Scholar 

  39. Hamer AM, Haxby DG, McFarland BH, Ketchum K. Gabapentin use in a managed Medicaid population. JMCP. 2002;8(4):266–71. https://doi.org/10.18553/jmcp.2002.8.4.266.

    Article  PubMed  Google Scholar 

  40. Radley DC, Finkelstein SN, Stafford RS. Off-label prescribing among office-based physicians. Arch Intern Med. 2006;166(9):1021–6. https://doi.org/10.1001/archinte.166.9.1021.

    Article  PubMed  Google Scholar 

  41. Gostin LO, Hodge JG, Noe SA. Reframing the opioid epidemic as a national emergency. JAMA. 2017;318(16):1539–40. https://doi.org/10.1001/jama.2017.13358.

    Article  PubMed  Google Scholar 

  42. Peckham AM, Fairman KA, Sclar DA. All-cause and drug-related medical events associated with overuse of gabapentin and/or opioid medications: a retrospective cohort analysis of a commercially insured US population. Drug Saf. 2018;41(2):213–28. https://doi.org/10.1007/s40264-017-0595-1.

    Article  CAS  PubMed  Google Scholar 

  43. Ip Q, Malone DC, Chong J, Harris RB, Labiner DM. An update on the prevalence and incidence of epilepsy among older adults. Epilepsy Res. 2018;139:107–12. https://doi.org/10.1016/j.eplepsyres.2017.11.022.

    Article  PubMed  Google Scholar 

  44. Galimberti CA, Tartara E, Dispenza S, Marchese D, Bonizzoni E, Perucca E. Antiepileptic drug use and epileptic seizures in nursing home residents in the Province of Pavia, Italy: a reappraisal 12 years after a first survey. Epilepsy Res. 2016;119:41–8. https://doi.org/10.1016/j.eplepsyres.2015.11.009.

    Article  PubMed  Google Scholar 

  45. Baranzini F, Poloni N, Diurni M, et al. Polypharmacy and psychotropic drugs as risk factors for falls in long-term care setting for elderly patients in Lombardy [in Italian]. Recenti Prog Med. 2009;100(1):9–16.

    PubMed  Google Scholar 

  46. Baranzini F, Diurni M, Ceccon F, et al. Fall-related injuries in a nursing home setting: is polypharmacy a risk factor? BMC Health Serv Res. 2009;9(1):228. https://doi.org/10.1186/1472-6963-9-228.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DZ had full access to all data in the study and is responsible for the data integrity and accuracy of the data analysis. Study concept and design: DZ, DS, and KLL. Acquisition of data: KLL. Analysis and interpretation of data: DZ, YY, JB, KLL. Statistical analysis: DZ, KLL. Preparation of the manuscript: DZ, KLL. Critical revision of the manuscript for important intellectual content: DZ, MJA, APN, ALH, and KLL. Obtained funding: KLL. Study supervision: KLL. The final manuscript submitted for publication was read and approved by all authors.

Corresponding author

Correspondence to Danni Zhao.

Ethics declarations

Funding

This study was funded by a grant from the National Institute for Nursing Research (R01NR016977; Principal Investigator: Kate L. Lapane).

Conflict of interest

Danni Zhao, Divya Shridharmurthy, Matthew J. Alcusky, Yiyang Yuan, Anthony P. Nunes, Anne L. Hume, Jonggyu Baek, and Kate L. Lapane declare they have no conflicts of interest.

Ethical approval

This study used a routinely collected administrative and claims dataset and was approved by the University of Massachusetts Medical School Institutional Review Board (protocol number H00011964).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Shridharmurthy, D., Alcusky, M.J. et al. The Prevalence and Factors Associated with Antiepileptic Drug Use in US Nursing Home Residents. Drugs Aging 37, 137–145 (2020). https://doi.org/10.1007/s40266-019-00732-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-019-00732-2

Navigation