Skip to main content
Log in

Management of Secondary Hyperparathyroidism in Chronic Kidney Disease: A Focus on the Elderly

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Secondary hyperparathyroidism (SHPT) is a major complication of chronic kidney disease (CKD), responsible for skeletal and vascular damage with increased risk of bone fractures, cardiovascular events, and mortality. However, the optimal serum parathormone (PTH) levels for improving clinical outcomes remain uncertain. Treatment of SHPT is based on nutritional therapy, phosphate binders, vitamin D, and calcimimetics, but none of these interventions has ever been tested against placebo in randomized controlled trials. Treatment of SHPT in the elderly should consider the many peculiarities of aging in terms of physiopathology, quality of life, symptoms, subjective perception of disease, drug load, and the modifying effect of treatment on disease-related outcomes. Unfortunately, peculiarities of SHPT among elderly CKD patients are mainly unexplored. The present review aims to provide a reasonable merging of evidence regarding the management of SHPT in CKD, with more actual concepts on how to care for older patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification for renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    CAS  PubMed  Google Scholar 

  2. Danese MD, Kim J, Doan QV, et al. PTH and the risk for hip, vertebral and pelvic fractures among patients on dialysis. Am J Kidnei Dis. 2006;47(1):149–56.

    Google Scholar 

  3. Fernandez-Martìn JL, Carrero JJ, Benedik M, et al. COSMOS: the dialysis scenario of CKD–MBD in Europe. Nephrol Dial Transplant. 2013;28(7):1922–35.

    PubMed  Google Scholar 

  4. Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol. 2015;10:98–109.

    CAS  PubMed  Google Scholar 

  5. Fouque D, Roth H, Pelletier S, et al. Control of mineral metabolism and bone disease in haemodialsysis patients: which optimal targets? Nephrol Dial Transplant. 2011;26:1948–55.

    Google Scholar 

  6. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention and treatment of chronic kidney disease-mineral and bone disorder (CKD–MBD). Kidney Int Suppl. 2009;Suppl 13:S1–130.

    Google Scholar 

  7. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Uptodate Work Group. KDIGO 2017. Clinical practice guideline update for the diagnosis, evaluation, prevention and treatment of CKD–MBD. Kidney Int Suppl (2011). 2017;7(Suppl 1):1–59.

    Google Scholar 

  8. Fissell R, Karaboyas A, Bieber BA, et al. Phosphate binder pill burden, patient-reported non-adherence, and mineral bone disorder markers: findings from the DOPPS. Hemodial Int. 2016;20(1):38–49.

    PubMed  Google Scholar 

  9. Chiu YW, Teitelbaum I, Misra M, et al. Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol. 2009;4:1089–96.

    PubMed  PubMed Central  Google Scholar 

  10. United States Renal Data System. 2015 USRDS annual data report: Epidemiology of kidney disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2015.

    Google Scholar 

  11. Boyd CM, Darer J, Boult C, et al. Clinical practice guidelines and quality of care for older patients with multiple comorbid disease. JAMA. 2005;294:716–24.

    CAS  PubMed  Google Scholar 

  12. Tinetti ME, Bogardus S, Agostini JV. Potential pitfalls of disease-specific guidelines for patients with multiple conditions. N Engl J Med. 2004;351(27):2870–4.

    CAS  PubMed  Google Scholar 

  13. Carroll C, Hassain A. Polypharmacy in the elderly-when good drugs lead to bad outcomes. JAMA Intern Med. 2017;177(6):871.

    PubMed  Google Scholar 

  14. Couchoud CG, Beuscart JB, Aldigier JC, et al. Development of a risk stratification algorithm to improve patient-centered care and decision making for incident elderly patients with end-stage renal disease. Kidney Int. 2015;88(5):1178–86.

    PubMed  Google Scholar 

  15. Galassi A, Cupisti A, Santoro A, et al. Phosphate handling in ESRD: diet, dialysis and binders against the low evident masked pool. J Nephrol. 2014;28(4):415–29.

    PubMed  Google Scholar 

  16. Uribarri J. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin Dial. 2007;20(4):295–301.

    PubMed  Google Scholar 

  17. Tenenhouse HS. Regulation of phosphate homeostasis by the type IIaNa/phosphate cotransporter. Ann Rev Nutr. 2005;25:197–214.

    CAS  Google Scholar 

  18. Torres PU, Prie’ D, Molina Bletry V, et al. Klotho: an antiaging protein involved in mineral and vitamin D metabolism. Kidney Int. 2007;71:730–7.

    PubMed  Google Scholar 

  19. Cianciolo G, Galassi A, Capelli I, et al. Klotho-FGF23, cardiovascular disease, and vascular calcification: black or white? Curr Vac Pharmacol. 2018;16(2):143–56.

    CAS  Google Scholar 

  20. Rodriguez M, Almaden Y, Hernandez A, Torres A. Effect of phosphate on the parathyroid gland: direct and indirect? Curr Opin Nephrol Hypertens. 1996;5:321–8.

    CAS  PubMed  Google Scholar 

  21. Portale AA, Halloran BP, Morris RC Jr. Physiologic regulation of the serum concentration of 1,25-dihydroxy vitamin D by phosphorus in normal men. J Clin Investig. 1989;83:1494–9.

    CAS  PubMed  Google Scholar 

  22. Drueke TB, Massy ZA. Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016;89:289–302.

    PubMed  Google Scholar 

  23. Fernandez-Martìn JL, Martinez-Camblor P, Dionisi MP, et al. Improvement of mineral and bone metabolis markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrol Dial Transplant. 2015;30:1542–51.

    PubMed  Google Scholar 

  24. Barreto FC, Barreto DV, Moyses RMA, et al. Osteoporosis in hemodialysis patientes revisited by bone histomorphometry: a new insight into an old problem. Kidney Int. 2006;69:1852–7.

    CAS  PubMed  Google Scholar 

  25. Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis. 2016;67(4):559–66.

    PubMed  Google Scholar 

  26. Andress DL. Adynamic bone in patients with chronic kidney disease. Kidney Int. 2008;73:1345–54.

    CAS  PubMed  Google Scholar 

  27. Iwasaki Y, Kazama JJ, Yamato H, et al. Accumulated ureic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone. 2013;57(2):477–83.

    CAS  PubMed  Google Scholar 

  28. Akiyama Y, Yakeuchi Y, Kikuchi K, et al. A metabolomic approach to clarifying the effect of AST-120 on 5/6 nephrectomized rats by capillary electrophoresis with mass spectrometry (CE-MS). Toxins (Basel). 2012;4:1309–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka H, Iwasaki Y, Yamato H, et al. P-Cresyl sulfate induces osteobast dysfunction through activating JNK and p38 MPAK pathways. Bone. 2013;56:347–54.

    CAS  PubMed  Google Scholar 

  30. Kazama JJ, Iwasaki Y, Fukagawa M. Uremic osteoporosis. Kidney Int. 2013;3:446–50.

    CAS  Google Scholar 

  31. Pelletier S, Roth H, Bouchet JL, et al. Mineral and bone disease pattern in elderly haemodialysis patients. Nephrol Dial transplant. 2010;25:3062–70.

    CAS  PubMed  Google Scholar 

  32. Pei Y, Hercz G, Greenwood C, et al. Risk factors for renal osteodystrophy: a multivariant analysis. J Bone Miner Res. 1995;10:149–56.

    CAS  PubMed  Google Scholar 

  33. Kiss I, Kiss Z, Ambrus C, et al. Age-dependent parathormone levels and different CKD–MBD treatment practices of dialysis patients in Hungary—results from a nationwide clinical audit. BMC Nephrol. 2013;14:155. https://doi.org/10.1186/1471-2369-14-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stehman-Breen CO, Sherrard DJ, Alem AM, et al. Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58(5):2200–5.

    CAS  PubMed  Google Scholar 

  35. Wagner J, Jhaveri KD, Rosen L, et al. Increased bone fractures among elderly United States hemodialysis patients. Nephrol Dial Transplant. 2014;29:146–51.

    PubMed  Google Scholar 

  36. Stevens JA, Anne RuddR. Declining hip fracture rates in the United States. Age Ageing. 2010;39:500–3.

    PubMed  Google Scholar 

  37. Wright NC, Saag KG, Curtis JR, et al. Recent trends in hip fracture rates by race/ethnicity among older US adults. J Bone Miner Res. 2012;27:2325–32.

    PubMed  Google Scholar 

  38. Tentori F, McCullough K, Kilpatrick RD, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2013;85:166–73.

    PubMed  PubMed Central  Google Scholar 

  39. Swift O, Ayub A, Mathavakkannan S, et al. Outcomes following surgery for fractured neck of femur in dialysis patients: a 5-year review from a district general hospital in the United Kingdom. BMC Nephrol. 2016;17:26. https://doi.org/10.1186/s12882-016-0234-6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Puvanesarajah V, Amin R, Qureshi R, et al. Outcomes following surgical management of femoral neck fractures in elderly dialysis-dependent patients. Arch Orthop Trauma Surg. 2018;138(6):757–64.

    PubMed  Google Scholar 

  41. Cunningham J, Danese M, Oloson K. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68:1793–800.

    CAS  PubMed  Google Scholar 

  42. Moe S, Abdala S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol. 2015;26:1466–75.

    CAS  PubMed  Google Scholar 

  43. Komaba H, Nakamura M, Fukagawa M. Resurgence of parathyroidectomy: evidence and outcomes. Curr Opin Nephrol Hypertens. 2017;26:243–9.

    PubMed  Google Scholar 

  44. Rudser KD, de Boer IH, Dooley A, et al. Fracture risk after parathyroidectomy among chronic hemodialysis patients. J Am Soc Nephrol. 2007;18:2401–7.

    PubMed  Google Scholar 

  45. Isaksson E, Ivarsson K, Akaberi S, et al. The effect of parathyroidectomy on risk of hip fracture in secondary hyperparathyroidism. World J Sur. 2017;41:2304–11.

    Google Scholar 

  46. Foley RN, Murray AM, Li S, et al. Chronic kidney disease and the risk of cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16:489–95.

    PubMed  Google Scholar 

  47. Jamal SA, Vandermeer B, Raggi P, et al. Effect of calcium based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268–77.

    CAS  PubMed  Google Scholar 

  48. Patel L, Bernard LM, Elder GJ, et al. Sevelamer versus calcium-based binders for treatment of hyperphosphatemia in CKD: a meta-analysis of randomized controlled trials. Clin J Am Soc Nephrol CJASN. 2016;11(2):232–44.

    CAS  PubMed  Google Scholar 

  49. Ruospo M, Palmer SC, Natale P, et al. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD–MBD). Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suki WN, Zbaneh R, Cangiano JL, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72:1130–7.

    CAS  PubMed  Google Scholar 

  51. Wilson R, Zhang P, Smyth M, et al. Assessment survival in a 2-year comparative study of lanthanum carbonate versus standard therapy. Curr Med Opin. 2009;25:3021–8.

    CAS  Google Scholar 

  52. Cannata-Andìa JB, Fernandez-martìin JL, Locatelli F, et al. Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney Int. 2013;84:998–1008.

    PubMed  Google Scholar 

  53. Liu L, Wang Y, Chen H, et al. The effects of non-calcium-based phosphate binders versus calcium-based phosphate binders on cardiovascular calcification and bone remodeling among dialysis patients: a meta-analysis of randomized trials. Renal Fail. 2014;36(8):1244–52.

    CAS  Google Scholar 

  54. Cozzolino M, Mazzaferro S, Brandenburg V. The treatment of hyperphosphataemia in CKD: calcium-based or calcium-free phosphate binders? Nephrol Dial Transplant. 2011;26(2):402–7.

    CAS  PubMed  Google Scholar 

  55. Galassi A, Bellasi A, Auricchio S, et al. Which vitamin D in CKD–MBD? The time of burning questions. Biomed Res Int. 2013. https://doi.org/10.1155/2013/864012.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cozzolino M, Brancaccio D, Cannella G, et al. VDRA therapy is associated with improved survival in dialysis patients with serum intact PTH ≤ 150 pg/ml : results of the Italian FARO survey. Nephrol Dial Transplant. 2012;27(9):3588–94.

    CAS  PubMed  Google Scholar 

  57. Thadhani R, Appelbaum E, Pritchett Y, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012;307(7):674–84.

    CAS  PubMed  Google Scholar 

  58. Wang AY, Fang F, Chan J, et al. Effect of paricalcitol on left ventricular mass and function in CKD—the OPERA trial. J Am Soc Nephrol. 2014;25(1):175–86.

    CAS  PubMed  Google Scholar 

  59. Shoji T, Inaba M, Fukagawa M, et al. Effect of oral alfacalcidol on clinical outcomes in patients without secondary hyperparathyroidism receiving hemodialysis. The J-DAVID randomized trial. JAMA. 2018;320(22):2325–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Raggi P, Chertow GM, Torres PU, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial transplant. 2011;26(4):1327–39.

    CAS  PubMed  Google Scholar 

  61. Moe SM, Chertow GM, Parfrey PS, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation. 2015;132:27–39.

    CAS  PubMed  Google Scholar 

  62. Parfrey PS, Drueke TB, Block GA, et al. The effect of cinacalcet in older and younger patients on hemodialysis: the evaluation of cinacalcet Hcl therapy to loower cardiovascular events (EVOLVE) trial. Clin J Am Soc Nephrol. 2015;10:791–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Floege J, Kubo Y, Floege A. The effect of cinacalcet on calcific uremic arteriolopathy events in patients receiving hemodialysis: the EVOLVE trial. Clin J am soc Nephrol. 2015;10(5):800–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Briggs AH, Parfrey PS, Khan N, et al. Analyzing health-related quality of life in the EVOLVE trial: the joint impact of treatment and clinical events. Med Decis making. 2016;36(8):965–72.

    PubMed  Google Scholar 

  65. Komaba H, Taniguchi M, Wada A, et al. Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;88:350–9.

    PubMed  Google Scholar 

  66. Apetril M, Goldsmith D, Nistor I, et al. Impact of surgical parathyroidectomy on chronic kidney disease-mineral bone disorder (CKD–MBD)—a systematic review and meta-analysis. PLoS One. 2017;12(11):e0187025.

    Google Scholar 

  67. Ivarsson KM, Akaberi S, Isaksson E, et al. The effect of parathyroidectomy on patient survival in secondary hyperparathyroidism. Nephrol Dial Transplant. 2015;30:2027–33.

    PubMed  PubMed Central  Google Scholar 

  68. Ishani A, Liu J, Wetmore JB, et al. Clinical outcomes after parathyroidectomy in a nationwide cohort of patients on hemodialysis. Clin J Am Soc Nephrol. 2015;10:90–7.

    CAS  PubMed  Google Scholar 

  69. Wan J, Li W, Zhong Y. Parathyroidectomy decreases serum intact parathyroid hormone and calcium levels and prolongs overall survival in elderly hemodialysis patients with severe secondary hyperparathyroidism. J Clin Lab Anal. 2019;33(3):e22696.

    PubMed  Google Scholar 

  70. Reuben DB, Tinetti ME. Goal-oriented patient care—an alternative health outcomes paradigm. N Engl J Med. 2012;366:777–9.

    CAS  PubMed  Google Scholar 

  71. Hauber B, Caloyeras J, Posner J, et al. Hemodialysis patients’ preferences for the management of secondary hyperparathyroidism. BMC Nephrol. 2017;18:254. https://doi.org/10.1186/s12882-017-0665-8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tamura MK, Tan JC, O’Hare AM. Optimizing renal replacement therapy in older adults: a framework for making individualized decision. Kidney Int. 2012;82:261–9.

    PubMed  Google Scholar 

  73. Moss AH. Shared decision making in dialysis: the new RPA/ASN guideline on appropriate initiation and withdrawal of treatment. Am J Kidney Dis. 2001;37:1081–91.

    CAS  PubMed  Google Scholar 

  74. Daugirdas JT, Finn WF, Emmett M, et al. Frequent hemodialysis network trial group. The phosphate binder equivalent dose. Semin Dial. 2011;24(1):41–9.

    PubMed  Google Scholar 

  75. Hutchinson A, Laville M. Switching to lanthanum carbonate monotherapy provides effective phosphate control with a low tablet burden. Nephrol Dial Transplant. 2008;23:3677–84.

    Google Scholar 

  76. Cozzolino M, Galassi A, Conte F, et al. Treatment of secondary hyperparathyroidism: the clinical utility of etelcalcetide. Ther Clin Risk Manag. 2017. https://doi.org/10.2147/tcrm.s108490.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Block GA, Blushinsky DA, Cunningham J, et al. Effect of etelcalcetide vs placebo on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: two randomized clinical trials. JAMA. 2017;317(2):146–55.

    CAS  PubMed  Google Scholar 

  78. Block GA, Blushinsky DA, Cheng S, et al. Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA. 2017;317(2):156–64.

    CAS  PubMed  Google Scholar 

  79. Cupisti A, D’Alessandro C, Di Iorio B, et al. Nutritional support in the tertiary care of patients affected by chronic renal insufficiency: report of a step-wise, personalized, pragmatic approach. BMC Nephrol. 2016;17(1):124. https://doi.org/10.1186/s12882-016-0342-3.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Milanova L, Fomin V, Moiseev S, et al. Effect of essential amino acid ketoanalogues and protein restriction diet on morphogenetic proteins (FGF-23 and Klotho) in 3b-4 stages chronic kidney disease patients: a randomized pilot study. Clin Exp Nephrol. 2018;22(6):1351–9.

    Google Scholar 

  81. Moe SM, Zidehsarai MP, Chambers MA, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(2):257–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Galassi A, Bellasi A, Ciceri P, et al. Calcifediol to treat secondary hyperparathyroidism in patients with chronic kidney disease. Expert Rev Clin Pharmacol. 2017;10(10):1073–84.

    CAS  PubMed  Google Scholar 

  83. Block GA, Zeig S, Sugihara J, et al. Combined therapy with cinacalcet and low dose of vitamin D sterols in patients with moderate to severe secondary hyperparathyroidism. Nephrol Dial Transplant. 2008;23(7):2311–8.

    CAS  PubMed  Google Scholar 

  84. Hansen D, Rasmussen K, Pedersen SM, Rasmussen LM, Brandi L. Changes in fibroblast growth factor 23 during treatment of secondary hyperparathyroidism with alfacalcidol or paricalcitol. Nephrol Dial Transplant. 2012;27(6):2263–9.

    CAS  PubMed  Google Scholar 

  85. Ketteler M, Martin KJ, Wolf M, et al. Paricalcitol versus cinacalcet plus low dose vitamin D therapy for the treatment of secondary hyperparathyroidism in patients receiving haemodialysis: results of the IMPACT SHPT study. Nephrol Dial Transplant. 2012;27(8):3270–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rodrigues M, Munoz-Castaneda JR, Almaden Y. Therapeutic use of calcitriol. Curr Vasc Pharmacol. 2014;12(2):294–9.

    Google Scholar 

  87. Cozzolino M, Ketteler M, Martin KJ, et al. Paricalcitol or cinacalcet centred therapy affects marker of bone mineral disease in patients with secondary hyperparathyroidism receiving haemodialysis: results of the IMPACT-SHPT. Nephrol Dial Transplant. 2014;29(4):899–905.

    CAS  PubMed  Google Scholar 

  88. Mazzaferro S, Goldsmith D, Larsson TE, et al. Vitamin D metabolites and/or analogs: which D for which patient? Curr Vasc Pharmacol. 2014;12(2):339–49.

    CAS  PubMed  Google Scholar 

  89. Coyne DW, Goldberg S, Faber M, et al. A randomized multi center trial of paricalcitol versus calcitriol for secondary hyperparathyroidism in stages 3–4 CKD. Clin J Am Soc Nephrol. 2014;9(9):1620–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wetmore JB, Gurevich K, Sprague S, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism (PARADIGM). Clin J Am Soc Nephrol. 2015;10(6):1031–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chertow GM, Block GA, Correa-Rotter CA, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367(26):2482–94.

    CAS  PubMed  Google Scholar 

  92. Tsuruya K, Shimazaki R, Fukagawa M, et al. Efficacy and safety of evocalcet in Japanese peritoneal dialysis patients. Clin Exp Nephrol. 2019;23(6):739–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Galassi A, Spiegel DM, Bellasi A, et al. Accelerated vascular calcification and relative hypoparathyroidism in incident haemodialsysis diabetic patients receving calcium binders. Nephrol Dial Transplant. 2006;21(11):3215–22.

    CAS  PubMed  Google Scholar 

  94. Gonzalez-Parra E, Gonzalez-Causuas ML, Gàlan A, et al. Lanthanum carbonate reduces FGF-23 in chronic kidney disease stage 3 patients. Nephrol Dial Transplant. 2011;26(8):2567–71.

    CAS  PubMed  Google Scholar 

  95. Chang YM, Tsai SC, Shiao CC, et al. Effects of lanthanum carbonate and calcium carbonate on fibroblast growth factor 23 qnd hepcidin levels in chronic hemodialysis patients. Clin Exp Nephrol. 2017;21(5):908–16.

    CAS  PubMed  Google Scholar 

  96. Shima H, Miya K, Okada K, et al. Sucroferric oxyhydroxide decreases serum phosphorus level and fibroblast growth factor 23 and improbe renal anemia in hemodialysis patients. BMC Res Notes. 2018;11(1):363. https://doi.org/10.1186/s13104-018-3483-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cozzolino.

Ethics declarations

Conflict of interest

All authors (AG, PC, EF, SC, GC and MC) declare no conflicts of interest for this article.

Funding

No funding to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galassi, A., Ciceri, P., Fasulo, E. et al. Management of Secondary Hyperparathyroidism in Chronic Kidney Disease: A Focus on the Elderly. Drugs Aging 36, 885–895 (2019). https://doi.org/10.1007/s40266-019-00696-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-019-00696-3

Navigation