Skip to main content

Advertisement

Log in

Alpha-1 Antitrypsin Deficiency and Accelerated Aging: A New Model for an Old Disease?

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Alpha-1 antitrypsin (AAT) protects the lung by inhibiting neutrophil proteinases, but AAT has many other non-proteolytic functions that are anti-inflammatory, antiviral and homeostatic. Approximately 1 in 1600 to 1 in 5000 people have the homozygous Z mutation, which causes AAT misfolding, accumulation in (predominantly) liver cells and low circulating levels of AAT, leading to AAT deficiency (AATD). AATD is classically a disease of neutrophilic inflammation, with an aggressive and damaging innate immune response contributing to emphysema and other pathologies. AATD is one of the most common genetic disorders but considerably under-recognised. Most patients are diagnosed later in life, by which time they may have accumulated significant lung, liver and multisystem damage. Disease presentation is heterogeneous and not fully explained by deficiency levels alone or exposure to cigarette smoking. This suggests other factors influence AATD-associated pathological processes. Aging itself is associated with organ dysfunction, including emphysema and airflow obstruction, inflammation, altered immune cell responses (termed immunosenescence) and a loss of proteostasis. Many of these processes are present in AATD but at an earlier age and more advanced stage compared with chronological aging alone. Augmentation therapy does not completely abrogate the manifold disease processes present in AATD. New approaches are needed. There is emerging evidence that both age- and AATD-related disease processes are amenable to correction by targeting proteostasis, autophagy, immunosenescence and epigenetic factors. This review explores the impact of the aging process on AATD presentation and discusses novel therapeutic strategies to mitigate low levels of AAT or misfolded AAT in an aging host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eke PI, Thornton-Evans GO, Wei L, Borgnakke WS, Dye BA, Genco RJ. Periodontitis in US Adults: national Health and Nutrition Examination Survey 2009-2014. J Am Dent Assoc. 2018;149(7):576-88.e6.

    Article  Google Scholar 

  2. Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129(14):1493–501.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, et al. Blue Journal Conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med. 2015;191(3):261–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hobbins S, Chapple IL, Sapey E, Stockley RA. Is periodontitis a comorbidity of COPD or can associations be explained by shared risk factors/behaviors? Int J Chron Obstruct Pulmon Dis. 2017;12:1339–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sevenoaks MJ, Stockley RA. Chronic Obstructive Pulmonary Disease, inflammation and co-morbidity–a common inflammatory phenotype? Respir Res. 2006;7(1):70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnes PJ. Mechanisms of development of multimorbidity in the elderly. Eur Respir J. 2015;45(3):790.

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med. 2018;5:61.

    Article  Google Scholar 

  9. Kennedy BK, Pennypacker JK. Drugs that modulate aging: the promising yet difficult path ahead. Transl Res. 2014;163(5):456–65.

    Article  PubMed  Google Scholar 

  10. Hill AT, Bayley DL, Campbell EJ, Hill SL, Stockley RA. Airways inflammation in chronic bronchitis: the effects of smoking and alpha1-antitrypsin deficiency. Eur Respir J. 2000;15(5):886.

    Article  CAS  PubMed  Google Scholar 

  11. Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol. 2017;79(1):517–39.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobsson KI. Studies on the determination of fibrinogen in human blood plasma. II. Studies on the trypsin and plasmin inhibitors in human blood serum. Scand J Clin Lab Invest. 1955;7:3–102.

    Article  PubMed  Google Scholar 

  13. Clemmensen SN, Jacobsen LC, Rørvig S, Askaa B, Christenson K, Iversen M, et al. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exocytosis. Eur J Haematol. 2011;86(6):517–30.

    Article  CAS  PubMed  Google Scholar 

  14. Perlmutter DH, Cole FS, Kilbridge P, Rossing TH, Colten HR. Expression of the alpha 1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci USA. 1985;82(3):795–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lou J, Triponez F, Oberholzer J, Wang H, Yu D, Buhler L, et al. Expression of alpha-1 proteinase inhibitor in human islet microvascular endothelial cells. Diabetes. 1999;48(9):1773.

    Article  CAS  PubMed  Google Scholar 

  16. Perlmutter DH, Daniels JD, Auerbach HS, De Schryver-Kecskemeti K, Winter HS, Alpers DH. The alpha 1-antitrypsin gene is expressed in a human intestinal epithelial cell line. J Biol Chem. 1989;264(16):9485–90.

    CAS  PubMed  Google Scholar 

  17. Campbell EJ, Campbell MA, Boukedes SS, Owen CA. Quantum proteolysis by neutrophils; implications for pulmonary emphysema in alpha 1 anti trypsin deficiency. J Clin Invest. 1999;104:337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bucurenci N, Blake DR, Chidwick K, Winyard PG. Inhibition of neutrophil superoxide production by human plasma α1-antitrypsin. FEBS Lett. 1992;300(1):21–4.

    Article  CAS  PubMed  Google Scholar 

  19. Alfawaz B, Bergin DA, McElvaney NG, Reeves EP. Alpha-1 antitrypsin regulates neutrophil reactive oxygen species production via inhibition of key players of the respiratory burst oxidase system. BMC Proc. 2013;7(Suppl 1):P7.

    Article  PubMed Central  Google Scholar 

  20. Janciauskiene S, Tumpara S, Wiese M, Wrenger S, Vijayan V, Gueler F, et al. Alpha1-antitrypsin binds hemin and prevents oxidative activation of human neutrophils: putative pathophysiological significance. J Leukoc Biol. 2017;102(4):1127–41.

    Article  CAS  PubMed  Google Scholar 

  21. Lomas DA, Stone SR, Llewellyn-Jones C, Keogan MT, Wang ZM, Rubin H. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin. J Biol Chem. 1996;270:23437–43.

    Article  Google Scholar 

  22. Churg A, Wang X, Wang RD, Meixner SC, Pryzdial ELG, Wright JL. α1-antitrypsin suppresses TNF-α and MMP-12 production by cigarette smoke-stimulated macrophages. Am J Respir Cell Mol Biol. 2007;37(2):144–51.

    Article  CAS  PubMed  Google Scholar 

  23. Nita I, Hollander C, Westin U, Janciauskiene S-M. Prolastin, a pharmaceutical preparation of purified human alpha1-antitrypsin, blocks endotoxin-mediated cytokine release. Respir Res. 2005;6(1):12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cantin AM, Woods DE. Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med. 1999;160(4):1130–5.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou X, Liu Z, Zhang J, Adelsberger JW, Yang J, Burton GF. Alpha-1-antitrypsin interacts with gp41 to block HIV-1 entry into CD4+ T lymphocytes. BMC Microbiol. 2016;16(1):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewis EC, Mizrahi M, Toledano M, Defelice N, Wright JL, Churg A, et al. alpha1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc Natl Acad Sci USA. 2008;105(42):16236–41.

    Article  PubMed  Google Scholar 

  27. Lu Y, Tang M, Wasserfall C, Kou Z, Campbell-Thompson M, Gardemann T, et al. α 1-antitrypsin gene therapy modulates cellular immunity and efficiently prevents type 1 diabetes in nonobese diabetic mice. Hum Gene Ther. 2006;17(6):625–34.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang B, Lu Y, Campbell-Thompson M, Spencer T, Wasserfall C, Atkinson M, et al. α1-antitrypsin protects β-cells from apoptosis. Diabetes. 2007;56(5):1316.

    Article  CAS  PubMed  Google Scholar 

  29. Weir GC, Ehlers MR, Harris KM, Kanaparthi S, Long A, Phippard D, et al. Alpha-1 antitrypsin treatment of new-onset type 1 diabetes: an open-label, phase I clinical trial (RETAIN) to assess safety and pharmacokinetics. Pediatr Diab. 2018;19(5):945–54.

    Article  CAS  Google Scholar 

  30. Gold M, Dolga AM, Koepke J, Mengel D, Culmsee C, Dodel R, et al. α1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-β-induced toxicity. J Neuroinflamm. 2014;11:165.

    Article  CAS  Google Scholar 

  31. Gooptu B, Ekeowa UI, Lomas DA. Mechanisms of emphysema in α1-antitrypsin deficiency: molecular and cellular insights. Eur Respir J. 2009;34(2):475.

    Article  CAS  PubMed  Google Scholar 

  32. Parmar JS, Mahadeva R, Reed BJ, Farahi N, Cadwallader KA, Keogan MT, et al. Polymers of α1-antitrypsin are chemotactic for human neutrophils. Am J Respir Cell Mol Biol. 2002;26(6):723–30.

    Article  CAS  PubMed  Google Scholar 

  33. Brantly ML, Wittes JT, Vogelmeier CF, Hubbard RC, Fells GA, Crystal RG. Use of a highly purified alpha 1 antitrypsin standard to establish ranges for the common normal and deficient alpha 1 antitrypsin phenotypes. Chest. 1991;100(3):703–8.

    Article  CAS  PubMed  Google Scholar 

  34. Sveger T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med. 1976;294(24):1316–21.

    Article  CAS  PubMed  Google Scholar 

  35. O’Brien ML, Buist NRM, Murphey WH. Neonatal screening for alpha-1antitrypsin deficiency. J Pediatr. 1978;92(6):1006–10.

    Article  PubMed  Google Scholar 

  36. de Serres FJ. Worldwide racial and ethnic distribution of alpha 1 antitrypsin deficiency: summary of an analysis of published genetic epidemiologic surveys. Chest. 2002;122(5):1818–29.

    Article  PubMed  Google Scholar 

  37. Blanco I, Bueno P, Diego I, Pérez-Holanda S, Casas-Maldonado F, Esquinas C, et al. Alpha-1 antitrypsin Pi*Z gene frequency and Pi*ZZ genotype numbers worldwide: an update. Int J Chronic Obstr Pulm Dis. 2017;12:561–9.

    Article  CAS  Google Scholar 

  38. Blanco I, Bueno P, Diego I, Pérez-Holanda S, Lara B, Casas-Maldonado F, et al. Alpha-1 antitrypsin Pi*SZ genotype: estimated prevalence and number of SZ subjects worldwide. Int J Chronic Obstr Pulm Dis. 2017;12:1683–94.

    Article  CAS  Google Scholar 

  39. Luisetti M, Seersholm N. Alpha1-antitrypsin deficiency. 1: epidemiology of alpha1-antitrypsin deficiency. Thorax. 2004;59(2):164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alpha 1-antitrypsin deficiency: memorandum from a WHO meeting. Bull World Health Organ. 1997;75(5):397–415.

  41. American Thoracic Society, European Respiratory Society. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med. 2003;168(7):818–900.

    Article  Google Scholar 

  42. Miravitlles M, Dirksen A, Ferrarotti I, Koblizek V, Lange P, Mahadeva R, et al. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α1-antitrypsin deficiency. Eur Respir J. 2017;50(5):1700610.

    Article  CAS  PubMed  Google Scholar 

  43. Soriano JB, Lucas SJ, Jones R, Miravitlles M, Carter V, Small I, et al. Trends of testing for and diagnosis of alpha-1 antitrypsin deficiency in the UK: more testing is needed. Eur Respir J. 2018:1800360.

  44. Stoller JK, Smith P, Yang P, Spray J. Physical and social impact of alpha 1-antitrypsin deficiency: results of a survey. Cleve Clin J Med. 1994;61:461–7.

    Article  CAS  PubMed  Google Scholar 

  45. Stoller JK, Sandhaus RA, Turino G, Dickson R, Rodgers K, Strange C. Delay in diagnosis of α-antitrypsin deficiency: a continuing problem. Chest. 2005;128(4):1989–94.

    Article  CAS  PubMed  Google Scholar 

  46. Laurell CB, Eriksson S. The electrophoretic α;1-globulin pattern of serum in α;1-antitrypsin deficiency. Scand J Clin Lab Invest. 1963;15(2):132–40.

    Article  CAS  Google Scholar 

  47. Parr DG, Stoel BC, Stolk J, Stockley RA. Pattern of emphysema distribution in α1-antitrypsin deficiency influences lung function impairment. Am J Respir Crit Care Med. 2004;170(11):1172–8.

    Article  PubMed  Google Scholar 

  48. Stockley RA, Edgar RG, Pillai A, Turner AM. Individualized lung function trends in alpha-1-antitrypsin deficiency: a need for patience in order to provide patient centered management? Int J Chronic Obstr Pulm Dis. 2016;11:1745–56.

    Article  Google Scholar 

  49. Stockley RA, Miravitlles M, Vogelmeier C. Alpha One International R. Augmentation therapy for alpha-1 antitrypsin deficiency: towards a personalised approach. Orphanet J Rare Dis. 2013;8:149.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Townsend SA, Edgar RG, Ellis PR, Kantas D, Newsome PN, Turner AM. Systematic review: the natural history of alpha-1 antitrypsin deficiency, and associated liver disease. Aliment Pharmacol Ther. 2018;47(7):877–85.

    Article  CAS  PubMed  Google Scholar 

  51. Townsend S, Newsome P, Turner AM. Presentation and prognosis of liver disease in alpha-1 antitrypsin deficiency. Exp Rev Gastroenterol Hepatol. 2018;12(8):745–7.

    Article  CAS  Google Scholar 

  52. McElcaney NG, Stoller JK, Buist AS, Prakash UBS, Brantly ML, Schluchter MD, et al. Baseline characteristics of enrollees in the National Heart, Lung and blood institute registry of alpha 1-antitrypsin deficiency. Chest. 1997;111(2):394–403.

    Article  Google Scholar 

  53. Parr DG, Guest PG, Reynolds JH, Dowson LJ, Stockley RA. Prevalence and impact of bronchiectasis in α1-antitrypsin deficiency. Am J Respir Crit Care Med. 2007;176(12):1215–21.

    Article  PubMed  Google Scholar 

  54. Esnault VL, Testa A, Audrain M, Roge C, Hamidou M, Barrier JH, et al. Alpha 1-antitrypsin genetic polymorphism in ANCA-positive systemic vasculitis. Kidney Int. 1993;43:1329–32.

    Article  CAS  PubMed  Google Scholar 

  55. Segelmark M, Elzouk IAN, Wieslander J, Eriksson S. The PiZ gene of alpha 1-antitrypsin as a determinant of outcome in PR3-ANCA-positive vasculitis. Kidney Int. 1995;48:844–50.

    Article  CAS  PubMed  Google Scholar 

  56. Stone H, Pye A, Stockley RA. Disease associations in alpha-1-antitrypsin deficiency. Respir Med. 2014;108(2):338–43.

    Article  CAS  PubMed  Google Scholar 

  57. Duckers JM, Shale DJ, Stockley RA, Gale NS, Evans BAJ, Cockcroft JR, et al. Cardiovascular and musculskeletal co-morbidities in patients with alpha 1 antitrypsin deficiency. Respir Res. 2010;11(1):173.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sandström CS, Ohlsson B, Melander O, Westin U, Mahadeva R, Janciauskiene S. An association between type 2 diabetes and α1-antitrypsin deficiency. Diabet Med. 2008;25(11):1370–3.

    PubMed  Google Scholar 

  59. Greulich T, Nell C, Hohmann D, Grebe M, Janciauskiene S, Koczulla AR, et al. The prevalence of diagnosed α1-antitrypsin deficiency and its comorbidities: results from a large population-based database. Eur Respir J. 2017;49(1):1600154.

    Article  PubMed  Google Scholar 

  60. Smith SC Jr. Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med. 2007;120(3):S3–11.

    Article  PubMed  Google Scholar 

  61. Strange C, Dickson R, Carter C, Carpenter MJ, Holladay B, Lundquist R, et al. Genetic testing for alpha 1 -antitrypsin deficiency. Genet Med. 2004;6(4):204–10.

    Article  CAS  PubMed  Google Scholar 

  62. Vestbo J, Søorensen T, Lange P, Brix A, Torre P, Viskum K. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 1999;353(9167):1819–23.

    Article  CAS  PubMed  Google Scholar 

  63. Mittman C, Edelman NH, Norris AH, Shock NW. Relationship between chest wall and pulmonary compliance with age. J Appl Physiol. 1965;20:1211–6.

    Article  Google Scholar 

  64. McClaran SR, Babcock MA, Pegelow DF, Reddan WG, Dempsey JA. Longitudinal effects of aging on lung function at rest and exercise in healthy active fit elderly adults. J Appl Physiol. 1995;78(5):1957–68.

    Article  CAS  PubMed  Google Scholar 

  65. Gillooly M, Lamb D. Airspace size in lungs of lifelong non-smokers: effect of age and sex. Thorax. 1993;48(1):39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Enright PL, Kronmal RA, Higgins M, Schenker M, Haponik EF. Spirometry reference values for women and men 65 to 85 years of age: cardiovascular health study. Am Rev Respir Dis. 1993;147(1):125–33.

    Article  CAS  PubMed  Google Scholar 

  67. Stam H, Hrachovina V, Stijnen T, Versprille A. Diffusing capacity dependent on lung volume and age in normal subjects. J Appl Physiol. 1994;76(6):2356–63.

    Article  CAS  PubMed  Google Scholar 

  68. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9.

    Article  Google Scholar 

  69. Busse PJ, Zhang TF, Srivastava K, Schofield B, Li X-M. Effect of ageing on pulmonary inflammation, airway hyperresponsiveness and T and B cell responses in antigen-sensitized and -challenged mice. Clin Exp Allergy. 2007;37(9):1392–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Long D, Blake S, Song X-Y, Lark M, Loeser RF. Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Res Ther. 2008;10(1):R23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walker KA, Walston J, Gottesman RF, Kucharska-Newton A, Palta P, Windham BG. Midlife systemic inflammation is associated with frailty in later life: the ARIC study. J Gerontol A Biol Sci Med Sci. 2019;74(3):343–9. https://doi.org/10.1093/gerona/gly045.

    Article  PubMed  Google Scholar 

  72. Wenisch C, Patruta S, Daxbock F, Krause R, Horl W. Effect of age on human neutrophil function. J Leukoc Biol. 2000;67(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  73. Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3(4):217–26.

    Article  CAS  PubMed  Google Scholar 

  74. Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci. 1989;44(22):1655–64.

    Article  CAS  PubMed  Google Scholar 

  75. Sapey E, Greenwood H, Walton G, Mann E, Love A, Aaronson N, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood. 2014;123(2):239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hawkins PT, Stephens LR, Suire S, Wilson M. PI3K signaling in neutrophils. In: Rommel C, Vanhaesebroeck B, Vogt PK, editors. Phosphoinositide 3-kinase in health and disease, vol. 1. Heidelberg: Springer; 2011. p. 183–202.

    Google Scholar 

  77. Butcher S, Chahel H, Lord JM. Ageing and the neutrophil: no appetite for killing? Immunology. 2000;100(4):411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70(6):881–6.

    CAS  PubMed  Google Scholar 

  79. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int. 2009;22(11):1041–50.

    Article  CAS  PubMed  Google Scholar 

  80. Hazeldine J, Harris P, Chapple IL, Grant M, Greenwood H, Livesey A, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13(4):690–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sapey E, Patel JM, Greenwood HL, Walton GM, Hazeldine J, Sadhra C, et al. Pulmonary infections in the elderly lead to impaired neutrophil targeting, which is improved by simvastatin. Am J Respir Crit Care Med. 2017;196(10):1325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chatta GS, Andrews RG, Rodger E, Schrag M, Hammond WP, Dale DC. Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J Gerontol. 1993;48(5):M207–12.

    Article  CAS  PubMed  Google Scholar 

  83. Lord JM, Butcher S, Killampali V, Lascelles D, Salmon M. Neutrophil ageing and immunesenescence. Mech Ageing Dev. 2001;122(14):1521–35.

    Article  CAS  PubMed  Google Scholar 

  84. Fortin CF, Larbi A, Dupuis G, Lesur O, Fulop T Jr. GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology. 2007;8(2):173–87.

    Article  CAS  PubMed  Google Scholar 

  85. Margolick JB, Ferrucci L. Accelerating aging research: how can we measure the rate of biologic aging? Exp Gerontol. 2015;64:78–80.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287.

    Article  CAS  PubMed  Google Scholar 

  88. Olovnikov AM. Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol. 1996;31(4):443–8.

    Article  CAS  PubMed  Google Scholar 

  89. Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11(4):694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang B, Fu D, Xu Q, Cong X, Wu C, Zhong X, et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat Commun. 2018;9(1):1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fontana L, Partridge L, Longo VD. Extending healthy life span–from yeast to humans. Science (New York, NY). 2010;328(5976):321–6.

    Article  CAS  Google Scholar 

  93. Hekimi S, Lapointe J, Wen Y. Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 2011;21(10):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 2007;22(3):807–18.

    Article  CAS  PubMed  Google Scholar 

  95. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, et al. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;8:14063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stone H, McNab G, Wood AM, Stockley RA, Sapey E. Variability of sputum inflammatory mediators in COPD and alpha1-antitrypsin deficiency. Eur Respir J. 2012;40(3):561–9.

    Article  CAS  PubMed  Google Scholar 

  97. Bergin DA, Reeves EP, Meleady P, Henry M, McElvaney OJ, Carroll TP, et al. alpha-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin Invest. 2010;120(12):4236–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O’Dwyer CA, O’Brien ME, Wormald MR, White MM, Banville N, Hurley K, et al. The BLT1 inhibitory function of α-1 antitrypsin augmentation therapy disrupts leukotriene B4 neutrophil signaling. J Immunol. 2015;195(8):3628.

    Article  CAS  PubMed  Google Scholar 

  99. Kirwan JP, Krishnan RK, Weaver JA, Del Aguila LF, Evans WJ. Human aging is associated with altered TNF-α production during hyperglycemia and hyperinsulinemia. Am J Physiol-Endocrinol Metabol. 2001;281(6):E1137–43.

    Article  CAS  Google Scholar 

  100. Clark IA, Atwood CS. Is TNF a link between aging-related reproductive endocrine dyscrasia and Alzheimer’s disease? J Alzheimer’s Dis. 2011;27(4):691–9.

    Article  CAS  Google Scholar 

  101. Bruunsgaard H, Skinhøj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol. 2000;121(2):255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lockett AD, Kimani S, Ddungu G, Wrenger S, Tuder RM, Janciauskiene SM, et al. α1-Antitrypsin modulates lung endothelial cell inflammatory responses to TNF-α. Am J Respir Cell Mol Biol. 2013;49(1):143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Subramaniyam D, Virtala R, Pawłowski K, Clausen IG, Warkentin S, Stevens T, et al. TNF-α-induced self expression in human lung endothelial cells is inhibited by native and oxidized α1-antitrypsin. Int J Biochem Cell Biol. 2008;40(2):258–71.

    Article  CAS  PubMed  Google Scholar 

  104. Torres-Duran M, Lopez-Campos JL, Barrecheguren M, Miravitlles M, Martinez-Delgado B, Castillo S, et al. Alpha-1 antitrypsin deficiency: outstanding questions and future directions. Orphanet J Rare Dis. 2018;13(1):114.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bergin DA, Reeves EP, Hurley K, Wolfe R, Jameel R, Fitzgerald S, et al. The circulating proteinase inhibitor alpha-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci Transl Med. 2014;6(217):217ra1.

    Article  CAS  PubMed  Google Scholar 

  106. Maekawa T, Liu B, Nakai D, Yoshida K, Nakamura KI, Yasukawa M, et al. ATF7 mediates TNF-α–induced telomere shortening. Nucleic Acids Res. 2018;46(9):4487–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eastman A, Potchen N, Carolan J, Malachowski A, Kryczek I, Kunkel S, et al. TNFα-induced epigenetic modifications support a DC1 program in dendritic cells during protective immunity to cryptococcal infection (MPF4P.732). J Immunol. 2015;194(1 Supplement):136.8.

    Google Scholar 

  108. Westbrook AM, Wei B, Hacke K, Xia M, Braun J, Schiestl RH. The role of tumour necrosis factor-α and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis. 2012;27(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  109. Yan B, Wang H, Rabbani ZN, Zhao Y, Li W, Yuan Y, et al. Tumor necrosis factor-α is a potent endogenous mutagen that promotes cellular transformation. Can Res. 2006;66(24):11565.

    Article  CAS  Google Scholar 

  110. Stanley SE, Merck SJ, Armanios M. Telomerase and the genetics of emphysema susceptibility. Implications for pathogenesis paradigms and patient care. Ann Am Thorac Soc. 2016;13(Suppl 5):S447–51.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Escribano A, Pastor S, Reula A, Castillo S, Vicente S, Sanz F, et al. Accelerated telomere attrition in children and teenagers with alpha1-antitrypsin deficiency. Eur Respir J. 2016;48(2):350–8.

    Article  CAS  PubMed  Google Scholar 

  112. Niemietz C, Fleischhauer L, Sandfort V, Guttmann S, Zibert A, Schmidt HHJ. Hepatocyte-like cells reveal novel role of SerpinA1 in transthyretin amyloidosis. J Cell Sci. 2018;131:jcs.219824. https://doi.org/10.1242/jcs.219824.

    Article  CAS  Google Scholar 

  113. Willis-Martinez D, Richards HW, Timchenko NA, Medrano EE. Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol. 2010;45(4):279–85.

    Article  CAS  PubMed  Google Scholar 

  114. Bouchecareilh M, Hutt DM, Szajner P, Flotte TR, Balch WE. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency. J Biol Chem. 2012;287(45):38265–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Escribano A, Amor M, Pastor S, Castillo S, Sanz F, Codoñer-Franch P, et al. Decreased glutathione and low catalase activity contribute to oxidative stress in children with α-1 antitrypsin deficiency. Thorax. 2015;70(1):82.

    Article  PubMed  Google Scholar 

  116. Teckman JH, An J-K, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy and injury in the liver in α1-antitrypsin deficiency. Am J Physiol-Gastrointest Liver Physiol. 2004;286(5):G851–62.

    Article  CAS  PubMed  Google Scholar 

  117. Carter RI, Ungurs MJ, Mumford RA, Stockley RA. Aα-Val360: a marker of neutrophil elastase and COPD disease activity. Eur Respir J. 2012;41(1):31.

    Article  CAS  PubMed  Google Scholar 

  118. Walton GM, Belchamber KBR, Hughes SM, Barnes PJ, Stockley RA, Donnelly L, et al. Non-typeable haemophilus influenzae is associated with rapid lung function decline and poor macrophage and neutrophil phagocytosis in patients with alpha-1 anti-trypsin deficiency. D101 mechanistic and translational studies in COPD. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2017. p. A7363-A.

  119. Sapey E, Stockley JA, Greenwood H, Ahmad A, Bayley D, Lord JM, et al. Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(9):1176–86.

    Article  PubMed  Google Scholar 

  120. Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol. 2007;43(5):571–9.

    Article  CAS  PubMed  Google Scholar 

  122. Shi J, Yin N, Xuan LL, Yao CS, Meng AM, Hou Q. Vam3, a derivative of resveratrol, attenuates cigarette smoke-induced autophagy. Acta pharmacologica Sinica. 2012;33(7):888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, et al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012;122(6):2032–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science. 2009;323(5917):1063–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ohlmeier S, Nieminen P, Gao J, Kanerva T, Ronty M, Toljamo T, et al. Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1155–65.

    Article  PubMed  Google Scholar 

  126. Bernspång E, Wollmer P, Sveger T, Piitulainen E. Lung function in 30-year-old alpha-1-antitrypsin-deficient individuals. Respir Med. 2009;103(6):861–5.

    Article  PubMed  Google Scholar 

  127. Stockley JA, Stockley RA. Pulmonary physiology of chronic obstructive pulmonary disease, cystic fibrosis, and alpha-1 antitrypsin deficiency. Ann Am Thorac Soc. 2016;13(Suppl 2):S118–22.

    PubMed  Google Scholar 

  128. Dawkins PA, Dawkins CL, Wood AM, Nightingale PG, Stockley JA, Stockley RA. Rate of progression of lung function impairment in Alpha-1-Antitrypsin deficiency. Eur Respir J. 2009;1:1. https://doi.org/10.1183/09031936.00061208.

    Article  Google Scholar 

  129. Vestbo J, Edwards LD, Scanlon PD, Yates JC, Agusti A, Bakke P, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med. 2011;365(13):1184–92.

    Article  CAS  PubMed  Google Scholar 

  130. Hoare M, Das T, Alexander G. Ageing, telomeres, senescence, and liver injury. J Hepatol. 2010;53(5):950–61.

    Article  CAS  PubMed  Google Scholar 

  131. Aravinthan A, Scarpini C, Tachtatzis P, Verma S, Penrhyn-Lowe S, Harvey R, et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol. 2013;58:549–56.

    Article  CAS  PubMed  Google Scholar 

  132. Nishijima T, Nakayama Y, Tsumura K, Yamashita N, Yoshimaru K, Ueda H, et al. Pulsatility of ascending aortic blood pressure waveform is associated with an increased risk of coronary heart disease. Am J Hypertens. 2001;14(5):469–73.

    Article  CAS  PubMed  Google Scholar 

  133. Sabit R, Bolton CE, Edwards PH, Pettit RJ, Evans WD, McEniery CM, et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(12):1259–65.

    Article  PubMed  Google Scholar 

  134. McAllister DA, Maclay JD, Mills NL, Mair G, Miller J, Anderson D, et al. Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(12):1208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fisk M, Cheriyan J, Mohan D, McEniery CM, Forman J, Cockcroft JR, et al. Vascular inflammation and aortic stiffness: potential mechanisms of increased vascular risk in chronic obstructive pulmonary disease. Respir Res. 2018;19(1):100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sever PS, Poulter NR, Chang CL, Thom SA, Hughes AD, Welsh P, et al. Evaluation of C-reactive protein before and on-treatment as a predictor of benefit of atorvastatin: a cohort analysis from the Anglo-Scandinavian Cardiac Outcomes Trial lipid-lowering arm. J Am Coll Cardiol. 2013;62(8):717–29.

    Article  CAS  PubMed  Google Scholar 

  137. Ferrari R. The role of TNF in cardiovascular disease. Pharmacol Res. 1999;40(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  138. Takahashi T, Hiasa Y, Ohara Y, Miyazaki S, Ogura R, Suzuki N, et al. Relationship of admission neutrophil count to microvascular injury, left ventricular dilation, and long-term outcome in patients treated with primary angioplasty for acute myocardial infarction. Circ J. 2008;72(6):867–72.

    Article  PubMed  Google Scholar 

  139. Akbar MA, Nardo D, Chen M-J, Elshikha AS, Ahamed R, Elsayed EM, et al. Alpha-1 antitrypsin inhibits RANKL-induced osteoclast formation and functions. Mol Med (Cambridge, Mass). 2017;23:57–69.

    Article  CAS  PubMed Central  Google Scholar 

  140. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol (1985). 2003;95(4):1717–27.

    Article  CAS  Google Scholar 

  141. Jarosch I, Gehlert S, Jacko D, Koczulla RA, Wencker M, Welte T, et al. Different training-induced skeletal muscle adaptations in COPD patients with and without alpha-1 antitrypsin deficiency. Respiration. 2016;92(5):339–47.

    Article  CAS  PubMed  Google Scholar 

  142. Edgar RG, Patel M, Bayliss S, Crossley D, Sapey E, Turner AM. Treatment of lung disease in alpha-1 antitrypsin deficiency: a systematic review. Int J Chronic Obst Pulm Dis. 2017;12:1295–308.

    Article  CAS  Google Scholar 

  143. Fahndrich SW, Biertz F, Karch A, Kleibrink B, Koch A, Teschler H, et al. Comorbidity Patterns in Alpha-1-Antitrypsin Deficiency Depend on Natural History and Substitution Therapy. D103 alpha 1-antitrypsin deficiency: 50 years of progress. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2017. p. A7397-A.

  144. Jedicke N, Struever N, Aggrawal N, Welte T, Manns MP, Malek NP, et al. Alpha-1-antitrypsin inhibits acute liver failure in mice. Hepatology. 2014;59(6):2299–308.

    Article  CAS  PubMed  Google Scholar 

  145. Burrows JA, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA. 2000;97(4):1796–801.

    Article  CAS  PubMed  Google Scholar 

  146. Fan J-Q, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal α–galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 1999;5:112.

    Article  CAS  PubMed  Google Scholar 

  147. Kaushal S, Annamali M, Blomenkamp K, Rudnick D, Halloran D, Brunt EM, et al. Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med (Maywood, NJ). 2010;235(6):700–9.

    Article  CAS  Google Scholar 

  148. Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science. 2010;329(5988):229.

    Article  CAS  PubMed  Google Scholar 

  149. Connolly B, Isaacs C, Cheng L, Asrani KH, Subramanian RR. SERPINA1 mRNA as a treatment for alpha-1 antitrypsin deficiency. J Nucl Acids. 2018;2018:7.

    Article  CAS  Google Scholar 

  150. Ivancich M, Schrank Z, Wojdyla L, Leviskas B, Kuckovic A, Sanjali A, et al. Treating cancer by targeting telomeres and telomerase. Antioxidants (Basel, Switzerland). 2017;6(1):15.

    PubMed Central  Google Scholar 

  151. de Bernardes JB, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704.

    Article  CAS  Google Scholar 

  152. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166(4):822–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lockwood LE, Youssef NA. Systematic review of epigenetic effects of pharmacological agents for bipolar disorders. Brain Sci. 2017;7(11):154.

    Article  CAS  PubMed Central  Google Scholar 

  154. Karlic H, Thaler R, Gerner C, Grunt T, Proestling K, Haider F, et al. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet. 2015;208(5):241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Greenwood H, Patel J, Mahida R, Wang Q, Parekh D, Dancer RC, et al. Simvastatin to modify neutrophil function in older patients with septic pneumonia (SNOOPI): study protocol for a randomised placebo-controlled trial. Trials. 2014;15:332. https://doi.org/10.1186/1745-6215-15-332.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rahaghi FF, Miravitlles M. Long-term clinical outcomes following treatment with alpha 1-proteinase inhibitor for COPD associated with alpha-1 antitrypsin deficiency: a look at the evidence. Respir Res. 2017;18(1):105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stocks JM, Brantly ML, Wang-Smith L, Campos MA, Chapman KR, Kueppers F, et al. Pharmacokinetic comparability of Prolastin(R)-C to Prolastin(R) in alpha(1)-antitrypsin deficiency: a randomized study. BMC Clin Pharmacol. 2010;10:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Campos MA, Kueppers F, Stocks JM, Strange C, Chen J, Griffin R, et al. Safety and pharmacokinetics of 120 mg/kg versus 60 mg/kg weekly intravenous infusions of alpha-1 proteinase inhibitor in alpha-1 antitrypsin deficiency: a multicenter, randomized, double-blind, crossover study (SPARK). COPD. 2013;10(6):687–95.

    Article  PubMed  Google Scholar 

  159. Sorrells S, Camprubi S, Griffin R, Chen J, Ayguasanosa J. SPARTA clinical trial design: exploring the efficacy and safety of two dose regimens of alpha1-proteinase inhibitor augmentation therapy in alpha1-antitrypsin deficiency. Respir Med. 2015;109(4):490–9.

    Article  PubMed  Google Scholar 

  160. Seyama K, Nukiwa T, Sato T, Suzuki M, Konno S, Takahashi K, et al. Safety and pharmacokinetics of Alpha-1 MP (Prolastin((R))-C) in Japanese patients with alpha1-antitrypsin (AAT) deficiency. Respir Investig. 2019;57(1):89–96.

    Article  PubMed  Google Scholar 

  161. Sandhaus RA, Stocks J, Rouhani FN, Brantly M, Strauss P. Biochemical efficacy and safety of a new, ready-to-use, liquid alpha-1-proteinase inhibitor, GLASSIA (alpha1-proteinase inhibitor (human), intravenous). COPD. 2014;11(1):17–25.

    Article  PubMed  Google Scholar 

  162. Chapman KR, Burdon JG, Piitulainen E, Sandhaus RA, Seersholm N, Stocks JM, et al. Intravenous augmentation treatment and lung density in severe alpha1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9991):360–8.

    Article  CAS  PubMed  Google Scholar 

  163. McElvaney NG, Burdon J, Holmes M, Glanville A, Wark PA, Thompson PJ, et al. Long-term efficacy and safety of alpha1 proteinase inhibitor treatment for emphysema caused by severe alpha1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir Med. 2017;5(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  164. Campos MA, Geraghty P, Holt G, Mendes E, Newby PR, Ma S, et al. The biological effects of double-dose alpha-1 antitrypsin augmentation therapy: a pilot study. Am J Respir Crit Care Med. 2019. https://doi.org/10.1164/rccm.201901-0010OC.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Barker AF, Campos MA, Brantly ML, Stocks JM, Sandhaus RA, Lee D, et al. Bioequivalence of a liquid formulation of alpha1-proteinase inhibitor compared with prolastin®-C (lyophilized alpha1-PI) in alpha1-antitrypsin deficiency. COPD. 2017;14(6):590–6.

    Article  PubMed  Google Scholar 

  166. Teckman JH. Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr. 2004;39(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  167. Turner AM, Stolk J, Bals R, Lickliter JD, Hamilton J, Christianson DR, et al. Hepatic-targeted RNA interference provides robust and persistent knockdown of alpha-1 antitrypsin levels in ZZ patients. J Hepatol. 2018;69(2):378–84.

    Article  CAS  PubMed  Google Scholar 

  168. Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results. Hum Gene Ther. 2011;22(10):1239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci USA. 2009;106(38):16363–8.

    Article  PubMed  Google Scholar 

  170. Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc. 2017;65(10):2297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Houssaini A, Breau M, Kebe K, Abid S, Marcos E, Lipskaia L, et al. mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight. 2018;3(3):e93203. https://doi.org/10.1172/jci.insight.93203.

    Article  PubMed Central  Google Scholar 

  172. Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia. 2010;25:341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Füllgrabe J, Ghislat G, Cho D-H, Rubinsztein DC. Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci. 2016;129(16):3059.

    Article  CAS  PubMed  Google Scholar 

  174. Pastore N, Ballabio A, Brunetti-Pierri N. Autophagy master regulator TFEB induces clearance of toxic SERPINA1/alpha-1-antitrypsin polymers. Autophagy. 2013;9(7):1094–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Guo S, Booten SL, Aghajan M, Hung G, Zhao C, Blomenkamp K, et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Investig. 2014;124(1):251–61.

    Article  CAS  PubMed  Google Scholar 

  176. Li C, Xiao P, Gray SJ, Weinberg MS, Samulski RJ. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins. Proc Natl Acad Sci USA. 2011;108(34):14258–63.

    Article  PubMed  Google Scholar 

  177. Mueller C, Tang Q, Gruntman A, Blomenkamp K, Teckman J, Song L, et al. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther. 2012;20(3):590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, et al. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin deficiency phenotype. EBio Med. 2018;29:104–11.

    Google Scholar 

  179. Kaushal S, Annamali M, Blomenkamp K, Rudnick D, Halloran D, Brunt EM, et al. Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med (Maywood). 2010;235(6):700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Walton GM, Stockley JA, Griffiths D, Sadhra CS, Purvis T, Sapey E. Repurposing treatments to enhance innate immunity. Can statins improve neutrophil functions and clinical outcomes in COPD? J Clin Med. 2016;5(10):89. https://doi.org/10.3390/jcm5100089.

    Article  CAS  PubMed Central  Google Scholar 

  181. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells. 2005;10(12):1113–25.

    Article  CAS  PubMed  Google Scholar 

  182. Harvey CJ, Thimmulappa RK, Sethi S, Kong X, Yarmus L, Brown RH, et al. Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med. 2011;3(78):78ra32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Patel JM, Thickett DR, Gao F, Sapey E. Statins for sepsis: distinguishing signal from the noise when designing clinical trials. Am J Respir Crit Care Med. 2013;188(7):874.

    Article  PubMed  Google Scholar 

  184. Balaguer C, Peralta A, Ríos Á, Iglesias A, Valera JL, Noguera A, et al. Effects of simvastatin in chronic obstructive pulmonary disease: results of a pilot, randomized, placebo-controlled clinical trial. Contemp Clin Trials Commun. 2016;2:91–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Sapey.

Ethics declarations

Funding

No sources of funding were used in the preparation of this manuscript.

Conflict of interest

DC, ES and RAS have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crossley, D., Stockley, R. & Sapey, E. Alpha-1 Antitrypsin Deficiency and Accelerated Aging: A New Model for an Old Disease?. Drugs Aging 36, 823–840 (2019). https://doi.org/10.1007/s40266-019-00684-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-019-00684-7

Navigation