Drugs & Aging

, Volume 36, Issue 6, pp 511–530 | Cite as

Safety and Tolerability of Pharmacotherapies for Parkinson’s Disease in Geriatric Patients

  • Martin KlietzEmail author
  • Stephan Greten
  • Florian Wegner
  • Günter U. Höglinger
Review Article


Parkinson’s disease is a chronic neurodegenerative movement disorder affecting people mainly beyond their 50s. Geriatric patients with Parkinson’s disease experience a specific profile of comorbidities. Multimorbidity and resulting polypharmacotherapy are frequent at this age. Comorbid diseases, widely spread, involve arterial hypertension, ischemic heart disease, heart failure, atrial fibrillation, polyneuropathy, diabetes mellitus, cerebrovascular disease, sarcopenia, and frailty. Following years of drug development, levodopa is still the most effective drug for the treatment of motor symptoms. However, a wide range of other drugs are available with specific effects, contraindications, and complications. The treatment of geriatric patients with Parkinson’s disease is challenging and requires the cooperation of multidisciplinary teams. A careful assessment of a patient’s Parkinson’s disease symptoms, comorbidities, medication, vital signs, and resources is crucial for an effective and safe therapy. Laboratory tests can assist in the identification of contraindications for specific treatments. Identifying potentially inadequate drugs from prescription lists can lead to a better targeted treatment for geriatric patients with Parkinson’s disease. Future research should help develop a more evidence-based therapy of geriatric patients with Parkinson’s disease. For this purpose, randomized controlled trials of geriatric patients are urgently needed. An international register concerning issues of safer drug application and monitoring could help to implement a better treatment.



The authors thank the many collaborators and patients for vital and challenging discussions on the pharmacotherapy of Parkinson’s disease.

Compliance with Ethical Standards


No sources of funding were received for the preparation of this article.

Conflict of interest

Martin Klietz, Stephan Greten, Florian Wegner, and Günter U. Höglinger have no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–35.Google Scholar
  2. 2.
    Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348:1356–64.Google Scholar
  3. 3.
    Politis M, Wu K, Molloy S, Bain PG, Chaudhuri KR, Piccini P. Parkinson’s disease symptoms: the patients perspective. Mov Disord. 2010;25:1646–51.Google Scholar
  4. 4.
    Forsaa EB, Larsen JP, Wentzel-Larsen T, Herlofson K, Alves G. Predictors and course of health-related quality of life in Parkinson’s disease. Mov Disord. 2008;23:1420–7.Google Scholar
  5. 5.
    Soh S-E, Morris ME, McGinley JL. Determinants of health-related quality of life in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2011;17:1–9.Google Scholar
  6. 6.
    Klietz M, Tulke A, Müschen LH, Paracka L, Schrader C, Dressler DW, et al. Impaired quality of life and need for palliative care in a German cohort of advanced Parkinson’s disease patients. Front Neurol. 2018;9:120.Google Scholar
  7. 7.
    Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain. 2010;133:1755–62.Google Scholar
  8. 8.
    Muller-Rebstein S, Trenkwalder C, Oertel WH, Culmsee C, Eckermann G, Höglinger GU. Pharmacotherapy of Parkinson’s disease: aspects of drug safety. Nervenarzt. 2017;88:888–94.Google Scholar
  9. 9.
    Giugni JC, Okun MS. Treatment of advanced Parkinsonʼs disease. Curr Opin Neurol. 2014;27:450–60.Google Scholar
  10. 10.
    Lingor P, Csoti I, Koschel J, Schrader C, Winkler C, Wolz M, et al. The geriatric patient with Parkinson’s disease: a neurological challenge. Fortschr Neurol Psychiatry. 2016;84(Suppl. 1):S41–7.Google Scholar
  11. 11.
    Jakovljevic M, Ostojic L. Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatr Danub. 2013;25(Suppl. 1):18–28.Google Scholar
  12. 12.
    Dodel R. Multimorbidity: concept, epidemiology and treatment. Nervenarzt. 2014;85:401–8.Google Scholar
  13. 13.
    Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380:37–43.Google Scholar
  14. 14.
    Hou JG, Wu LJ, Moore S, Ward C, York M, Atassi F, et al. Assessment of appropriate medication administration for hospitalized patients with Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:377–81.Google Scholar
  15. 15.
    McLean G, Hindle JV, Guthrie B, Mercer SW. Co-morbidity and polypharmacy in Parkinson’s disease: insights from a large Scottish primary care database. BMC Neurol. 2017;17:126.Google Scholar
  16. 16.
    Choi J, Ahn A, Kim S, Won CW. Global prevalence of physical frailty by Fried’s criteria in community-dwelling elderly with national population-based surveys. J Am Med Dir Assoc. 2015;16:548–50.Google Scholar
  17. 17.
    Santos-Eggimann B, Cuenoud P, Spagnoli J, Junod J. Prevalence of frailty in middle-aged and older community-dwelling Europeans living in 10 countries. J Gerontol A Biol Sci Med Sci. 2009;64:675–81.Google Scholar
  18. 18.
    Peball M, Mahlknecht P, Werkmann M, Marini K, Murr F, Herzmann H, et al. Prevalence and associated factors of sarcopenia and frailty in Parkinson’s disease: a cross-sectional study. Gerontology. 2018. (Epub ahead of print).Google Scholar
  19. 19.
    Riedel O, Dodel R, Deuschl G, Förstl H, Henn F, Heuser I, et al. Dementia and depression determine care dependency in Parkinson’s disease: analysis of 1,449 outpatients receiving nursing care in Germany. Nervenarzt. 2011;82:1012–9.Google Scholar
  20. 20.
    Riedel O, Dodel R, Deuschl G, Klotsche J, Förstl H, Heuser I, et al. Depression and care-dependency in Parkinson’s disease: results from a nationwide study of 1449 outpatients. Parkinsonism Relat Disord. 2012;18:598–601.Google Scholar
  21. 21.
    Leibson CL, Maraganore DM, Bower JH, Ransom JE, O’Brien PC, Rocca WA. Comorbid conditions associated with Parkinson’s disease: a population-based study. Mov Disord. 2005;21:446–55.Google Scholar
  22. 22.
    Tönges L, Bartig D, Muhlack S, Jost W, Gold R, Krogias C. Characteristics and dynamics of inpatient treatment of patients with Parkinson’s disease in Germany: analysis of 1.5 million patient cases from 2010 to 2015. Nervenarzt. 2018;2018(16):552.Google Scholar
  23. 23.
    Müller-Rebstein S, Trenkwalder C, Ebentheuer J, Oertel WH, Culmsee C, Höglinger GU. Drug safety analysis in a real-life cohort of Parkinson’s disease patients with polypharmacy. CNS Drugs. 2018;31:1093–102.Google Scholar
  24. 24.
    Balzer-Geldsetzer M, Ferreira J, Odin P, Bloem BR, Meissner WG, Lorenzl S, et al. Study protocol: Care of Late-Stage Parkinsonism (CLaSP): a longitudinal cohort study. BMC Neurol. 2018;18:185.Google Scholar
  25. 25.
    Zesiewicz TA, Strom JA, Borenstein AR, Hauser RA, Cimino CR, Fontanet HL, et al. Heart failure in Parkinson’s disease: analysis of the United States Medicare current beneficiary survey. Parkinsonism Relat Disord. 2004;10:417–20.Google Scholar
  26. 26.
    Santiago JA, Bottero V, Potashkin JA. Biological and clinical implications of comorbidities in Parkinson’s disease. Front Aging Neurosci. 2017;9:394.Google Scholar
  27. 27.
    Lai S-W, Lin C-L, Liao K-F, Chang-Ou K-C. Increased risk of Parkinson’s disease in cataract patients: a population-based cohort study. Parkinsonism Relat Disord. 2015;21:68–71.Google Scholar
  28. 28.
    Jellinger KA. Prevalence of cerebrovascular lesions in Parkinson’s disease: a postmortem study. Acta Neuropathol. 2003;105:415–9.Google Scholar
  29. 29.
    Hong CT, Hu H-H, Chan L, Bai C-H. Prevalent cerebrovascular and cardiovascular disease in people with Parkinson’s disease: a meta-analysis. Clin Epidemiol. 2018;10:1147–54.Google Scholar
  30. 30.
    Ebersbach G, Sojer M, Muller J, Ransmayr G, Wenning G, Poewe W. Dysequilibrium in idiopathic Parkinson disease: the effect of cerebrovascular comorbidity. Nervenarzt. 2002;73:162–5.Google Scholar
  31. 31.
    Kotagal V, Albin RL, Muller MLTM, Koeppe RA, Studenski S, Frey KA, et al. Advanced age, cardiovascular risk burden, and Timed Up and Go Test performance in Parkinson disease. J Gerontol A Biol Sci Med Sci. 2014;69:1569–75.Google Scholar
  32. 32.
    Hu G, Jousilahti P, Bidel S, Antikainen R, Tuomilehto J. Type 2 diabetes and the risk of Parkinson’s disease. Diabetes Care. 2007;30:842–7.Google Scholar
  33. 33.
    Cereda E, Barichella M, Cassani E, Caccialanza R, Pezzoli G. Clinical features of Parkinson disease when onset of diabetes came first: a case–control study. Neurology. 2012;78:1507–11.Google Scholar
  34. 34.
    Kotagal V, Albin RL, Müller MLTM, Koeppe RA, Frey KA, Bohnen NI. Diabetes is associated with postural instability and gait difficulty in Parkinson disease. Parkinsonism Relat Disord. 2013;19:522–6.Google Scholar
  35. 35.
    Bohnen NI, Kotagal V, Müller MLTM, Koeppe RA, Scott PJH, Albin RL, et al. Diabetes mellitus is independently associated with more severe cognitive impairment in Parkinson disease. Parkinsonism Relat Disord. 2014;20:1394–8.Google Scholar
  36. 36.
    Metta V, Sanchez TC, Padmakumar C. Osteoporosis: a hidden nonmotor face of Parkinson’s disease. Int Rev Neurobiol. 2017;134:877–90.Google Scholar
  37. 37.
    Deng Q, Zhou X, Chen J, Pan M, Gao H, Zhou J, et al. Lower hemoglobin levels in patients with Parkinson’s disease are associated with disease severity and iron metabolism. Brain Res. 2017;1655:145–51.Google Scholar
  38. 38.
    Wielinski CL, Erickson-Davis C, Wichmann R, Walde-Douglas M, Parashos SA. Falls and injuries resulting from falls among patients with Parkinson’s disease and other parkinsonian syndromes. Mov Disord. 2005;20:410–5.Google Scholar
  39. 39.
    Huang Y-F, Cherng Y-G, Hsu SPC, Yeh C-C, Chou Y-C, Wu C-H, et al. Risk and adverse outcomes of fractures in patients with Parkinson’s disease: two nationwide studies. Osteoporos Int. 2015;26:1723–32.Google Scholar
  40. 40.
    Abbott A. Levodopa: the story so far. Nature. 2010;466:S6–7.Google Scholar
  41. 41.
    Hornykiewicz O. Dopamine miracle: from brain homogenate to dopamine replacement. Mov Disord. 2002;17:501–8.Google Scholar
  42. 42.
    Hauser RA. Levodopa: past, present, and future. Eur Neurol. 2009;62:1–8.Google Scholar
  43. 43.
    Nutt JG, Fellman JH. Pharmacokinetics of levodopa. Clin Neuropharmacol. 1984;7:35–49.Google Scholar
  44. 44.
    Cedarbaum JM. Clinical pharmacokinetics of anti-parkinsonian drugs. Clin Pharmacokinet. 1987;13:141–78.Google Scholar
  45. 45.
    Wood LD. Clinical review and treatment of select adverse effects of dopamine receptor agonists in Parkinson’s disease. Drugs Aging. 2010;27:295–310.Google Scholar
  46. 46.
    Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16:448–58.Google Scholar
  47. 47.
    Schrag A, Ben-Shlomo Y, Quinn N. How common are complications of Parkinson’s disease? J Neurol. 2002;249:419–23.Google Scholar
  48. 48.
    Fahn S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial earlier vs later l-DOPA. Arch Neurol. 1999;56:529–35.Google Scholar
  49. 49.
    Olanow CW, Obeso JA, Stocchi F. Drug insight: continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Nat Clin Pract Neurol. 2006;2:382–92.Google Scholar
  50. 50.
    Blanchet PJ, Grondin R, Bedard PJ, Shiosaki K, Britton DR. Dopamine D1 receptor desensitization profile in MPTP-lesioned primates. Eur J Pharmacol. 1996;309:13–20.Google Scholar
  51. 51.
    Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol. 2006;5:677–87.Google Scholar
  52. 52.
    Keber U, Klietz M, Carlsson T, Oertel WH, Weihe E, Schafer MKH, et al. Striatal tyrosine hydroxylase-positive neurons are associated with l-DOPA-induced dyskinesia in hemiparkinsonian mice. Neurosciene. 2015;298:302–17.Google Scholar
  53. 53.
    Klietz M, Keber U, Carlsson T, Chiu W-H, Höglinger GU, Weihe E, et al. l-DOPA-induced dyskinesia is associated with a deficient numerical downregulation of striatal tyrosine hydroxylase mRNA-expressing neurons. Neuroscience. 2016;331:120–33.Google Scholar
  54. 54.
    Kadastik-Eerme L, Taba N, Asser T, Taba P. Factors associated with motor complications in Parkinson’s disease. Brain Behav. 2017;7:e00837.Google Scholar
  55. 55.
    Othman AA, Dutta S. Population pharmacokinetics of levodopa in subjects with advanced Parkinson’s disease: levodopa-carbidopa intestinal gel infusion vs. oral tablets. Br J Clin Pharmacol. 2014;78:94–105.Google Scholar
  56. 56.
    Stocchi F, Vacca L, Stirpe P, Torti M. Pharmacokinetic drug evaluation of CVT-301 for the treatment of Parkinson’s disease. Expert Opin Drug Metab Toxicol. 2018;14:1189–95.Google Scholar
  57. 57.
    Stampanoni Bassi M, Sancesario A, Morace R, Centonze D, Iezzi E. Cannabinoids in Parkinson’s disease. Cannabis Cannabinoid Res. 2017;2:21–9.Google Scholar
  58. 58.
    Weintraub D, Chiang C, Kim HM, Wilkinson J, Marras C, Stanislawski B, et al. Association of antipsychotic use with mortality risk in patients with Parkinson disease. JAMA Neurol. 2016;73:535–41.Google Scholar
  59. 59.
    Weintraub D, Chiang C, Kim HM, Wilkinson J, Marras C, Stanislawski B, et al. Antipsychotic use and physical morbidity in Parkinson disease. Am J Geriatr Psychiatry. 2017;25:697–705.Google Scholar
  60. 60.
    Divac N, Prostran M, Jakovcevski I, Cerovac N. Second-generation antipsychotics and extrapyramidal adverse effects. BioMed Res Int. 2014;2014:656370.Google Scholar
  61. 61.
    Fredericks D, Norton JC, Atchison C, Schoenhaus R, Pill MW. Parkinson’s disease and Parkinsons disease psychosis: a perspective on the challenges, treatments, and economic burden. Am J Manag Care. 2017;23:S83–92.Google Scholar
  62. 62.
    Schneider LS, Dagerman KS, Insel P. Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials. JAMA. 2005;294:1934–43.Google Scholar
  63. 63.
    Meltzer HY, Mills R, Revell S, Williams H, Johnson A, Bahr D, et al. Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of Parkinson’s disease psychosis. Neuropsychopharmacology. 2010;35:881–92.Google Scholar
  64. 64.
    Riederer P, Laux G. MAO-inhibitors in Parkinson’s disease. Exp Neurobiol. 2011;20:1–17.Google Scholar
  65. 65.
    Schapira AHV. Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs. 2011;25:1061–71.Google Scholar
  66. 66.
    Cereda E, Cilia R, Canesi M, Tesei S, Mariani CB, Zecchinelli AL, et al. Efficacy of rasagiline and selegiline in Parkinson’s disease: a head-to-head 3-year retrospective case–control study. J Neurol. 2017;264:1254–63.Google Scholar
  67. 67.
    Kumagai T, Nagayama H, Ota T, Nishiyama Y, Mishina M, Ueda M. Sex differences in the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin Neuropharmacol. 2014;37:173–6.Google Scholar
  68. 68.
    Nagayama H, Ueda M, Kumagai T, Tsukamoto K, Nishiyama Y, Nishimura S, et al. Influence of ageing on the pharmacokinetics of levodopa in elderly patients with Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:150–2.Google Scholar
  69. 69.
    Kanis JA, Cooper C, Rizzoli R, Reginster J-Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30:3–44.Google Scholar
  70. 70.
    van den Bos F, Speelman AD, Samson M, Munneke M, Bloem BR, Verhaar HJJ. Parkinson’s disease and osteoporosis. Age Ageing. 2013;42:156–62.Google Scholar
  71. 71.
    Yasui K, Nakaso K, Kowa H, Takeshima T, Nakashima K. Levodopa-induced hyperhomocysteinaemia in Parkinson’s disease. Acta Neurol Scand. 2003;108:66–7.Google Scholar
  72. 72.
    Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6.Google Scholar
  73. 73.
    Szadejko K, Dziewiatowski K, Szabat K, Robowski P, Schinwelski M, Sitek E, et al. Polyneuropathy in levodopa-treated Parkinson’s patients. J Neurol Sci. 2016;371:36–41.Google Scholar
  74. 74.
    Loens S, Chorbadzhieva E, Kleimann A, Dressler D, Schrader C. Effects of levodopa/carbidopa intestinal gel versus oral levodopa/carbidopa on B vitamin levels and neuropathy. Brain Behav. 2017;7:e00698.Google Scholar
  75. 75.
    Velseboer DC, de Haan RJ, Wieling W, Goldstein DS, de Bie RMA. Prevalence of orthostatic hypotension in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2011;17:724–9.Google Scholar
  76. 76.
    Ferrer-Gila T, Rizea C. Orthostatic hypotension in the elderly. Rev Neurol. 2013;56:337–43.Google Scholar
  77. 77.
    Jost WH, Augustis S. Severity of orthostatic hypotension in the course of Parkinson’s disease: no correlation with the duration of the disease. Parkinsonism Relat Disord. 2015;21:314–6.Google Scholar
  78. 78.
    Noack C, Schroeder C, Heusser K, Lipp A. Cardiovascular effects of levodopa in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:815–8.Google Scholar
  79. 79.
    Kondo M, Ueda Y, Makino M, Nakajima K. Worsened orthostatic hypotension due to levodopa administration in a case of Parkinson’s disease. Nihon Ronen Igakkai Zasshi. 2000;37:255–8.Google Scholar
  80. 80.
    Merola A, Sawyer RP, Artusi CA, Suri R, Berndt Z, Lopez-Castellanos JR, et al. Orthostatic hypotension in Parkinson disease: impact on health care utilization. Parkinsonism Relat Disord. 2018;47:45–9.Google Scholar
  81. 81.
    Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Curr Treat Options Neurol. 2018;20:54.Google Scholar
  82. 82.
    Doi H, Sakakibara R, Sato M, Masaka T, Kishi M, Tateno A, et al. Plasma levodopa peak delay and impaired gastric emptying in Parkinson’s disease. J Neurol Sci. 2012;319:86–8.Google Scholar
  83. 83.
    Muller T, Erdmann C, Bremen D, Schmidt WE, Muhlack S, Woitalla D, et al. Impact of gastric emptying on levodopa pharmacokinetics in Parkinson disease patients. Clin Neuropharmacol. 2006;29:61–7.Google Scholar
  84. 84.
    Heetun ZS, Quigley EMM. Gastroparesis and Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2012;18:433–40.Google Scholar
  85. 85.
    Greene RJ, Hall AD, Hider RC. The interaction of orally administered iron with levodopa and methyldopa therapy. J Pharm Pharmacol. 1990;42:502–4.Google Scholar
  86. 86.
    Campbell NR, Hasinoff B. Ferrous sulfate reduces levodopa bioavailability: chelation as a possible mechanism. Clin Pharmacol Ther. 1989;45:220–5.Google Scholar
  87. 87.
    Deleu D, Jacob P, Chand P, Sarre S, Colwell A. Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology. 2006;67:897–9.Google Scholar
  88. 88.
    Robertson DR, Higginson I, Macklin BS, Renwick AG, Waller DG, George CF. The influence of protein containing meals on the pharmacokinetics of levodopa in healthy volunteers. Br J Clin Pharmacol. 1991;31:413–7.Google Scholar
  89. 89.
    Simon N, Gantcheva R, Bruguerolle B, Viallet F. The effects of a normal protein diet on levodopa plasma kinetics in advanced Parkinson’s disease. Parkinsonism Relat Disord. 2004;10:137–42.Google Scholar
  90. 90.
    Hubble JP. Long-term studies of dopamine agonists. Neurology. 2002;58:S42–50.Google Scholar
  91. 91.
    Jenner P. Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology. 2002;58(4 Suppl. 1):S1–8.Google Scholar
  92. 92.
    Piercey MF. Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson’s disease. Clin Neuropharmacol. 1998;21:141–51.Google Scholar
  93. 93.
    Chen JJ, Swope DM, Dashtipour K, Lyons KE. Transdermal rotigotine: a clinically innovative dopamine-receptor agonist for the management of Parkinson’s disease. Pharmacotherapy. 2009;29:1452–67.Google Scholar
  94. 94.
    Tulloch IF. Pharmacologic profile of ropinirole: a nonergoline dopamine agonist. Neurology. 1997;49(1 Suppl. 1):S58–62.Google Scholar
  95. 95.
    Hagell P, Odin P. Apomorphine in the treatment of Parkinson’s disease. J Neurosci Nurs. 2001;33(21–34):37–8.Google Scholar
  96. 96.
    Stacy M, Silver D. Apomorphine for the acute treatment of “off” episodes in Parkinson’s disease. Parkinsonism Relat Disord. 2008;14:85–92.Google Scholar
  97. 97.
    Kulisevsky J, Pagonabarraga J. Tolerability and safety of ropinirole versus other dopamine agonists and levodopa in the treatment of Parkinson’s disease: meta-analysis of randomized controlled trials. Drug Saf. 2010;33:147–61.Google Scholar
  98. 98.
    Voon V, Hassan K, Zurowski M, Duff-Canning S, de Souza M, Fox S, et al. Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology. 2006;66:1750–2.Google Scholar
  99. 99.
    Voon V, Hassan K, Zurowski M, de Souza M, Thomsen T, Fox S, et al. Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology. 2006;67:1254–7.Google Scholar
  100. 100.
    Weintraub D, Siderowf AD, Potenza MN, Goveas J, Morales KH, Duda JE, et al. Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol. 2006;63:969–73.Google Scholar
  101. 101.
    Bienfait KL, Menza M, Mark MH, Dobkin RD. Impulsive smoking in a patient with Parkinson’s disease treated with dopamine agonists. J Clin Neurosci. 2010;17:539–40.Google Scholar
  102. 102.
    Ceravolo R, Frosini D, Rossi C, Bonuccelli U. Impulse control disorders in Parkinson’s disease: definition, epidemiology, risk factors, neurobiology and management. Parkinsonism Relat Disord. 2009;15(Suppl. 4):S111–5.Google Scholar
  103. 103.
    Miyasaki JM. Evidence-based initiation of dopaminergic therapy in Parkinson’s disease. J Neurol. 2010;257(Suppl. 2):S309–13.Google Scholar
  104. 104.
    Antonini A, Chaudhuri KR, Boroojerdi B, Asgharnejad M, Bauer L, Grieger F, et al. Impulse control disorder related behaviours during long-term rotigotine treatment: a post hoc analysis. Eur J Neurol. 2016;23:1556–65.Google Scholar
  105. 105.
    Moller JC, Eggert KM, Unger M, Odin P, Chaudhuri KR, Oertel WH. Clinical risk-benefit assessment of dopamine agonists. Eur J Neurol. 2008;15(Suppl. 2):15–23.Google Scholar
  106. 106.
    Paus S, Brecht HM, Koster J, Seeger G, Klockgether T, Wullner U. Sleep attacks, daytime sleepiness, and dopamine agonists in Parkinson’s disease. Mov Disord. 2003;18:659–67.Google Scholar
  107. 107.
    Etminan M, Gill S, Samii A. Comparison of the risk of adverse events with pramipexole and ropinirole in patients with Parkinson’s disease: a meta-analysis. Drug Saf. 2003;26:439–44.Google Scholar
  108. 108.
    Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD, et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology. 2001;57:456–62.Google Scholar
  109. 109.
    Gao X, Chen H, Schwarzschild MA, Ascherio A. A prospective study of bowel movement frequency and risk of Parkinson’s disease. Am J Epidemiol. 2011;174:546–51.Google Scholar
  110. 110.
    Zhou C-Q, Zhang J-W, Wang M, Peng G-G. Meta-analysis of the efficacy and safety of long-acting non-ergot dopamine agonists in Parkinson’s disease. J Clin Neurosci. 2014;21:1094–101.Google Scholar
  111. 111.
    Tan EK, Jankovic J. Choosing dopamine agonists in Parkinson’s disease. Clin Neuropharmacol. 2001;24:247–53.Google Scholar
  112. 112.
    Chaudhuri KR, Pal S, Brefel-Courbon C. ‘Sleep attacks’ or “unintended sleep episodes” occur with dopamine agonists: is this a class effect? Drug Saf. 2002;25:473–83.Google Scholar
  113. 113.
    Razmy A, Lang AE, Shapiro CM. Predictors of impaired daytime sleep and wakefulness in patients with Parkinson disease treated with older (ergot) vs newer (nonergot) dopamine agonists. Arch. Neurol. 2004;61:97–102.Google Scholar
  114. 114.
    Sprenger FS, Seppi K, Poewe W. Drug safety evaluation of rotigotine. Expert Opin Drug Saf. 2012;11:503–12.Google Scholar
  115. 115.
    Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I. Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005;33:495–9.Google Scholar
  116. 116.
    Knop J, Hoier E, Ebner T, Fromm MF, Muller F. Renal tubular secretion of pramipexole. Eur J Pharm Sci. 2015;79:73–8.Google Scholar
  117. 117.
    Wu MJ, Ing TS, Soung LS, Daugirdas JT, Hano JE, Gandhi VC. Amantadine hydrochloride pharmacokinetics in patients with impaired renal function. Clin Nephrol. 1982;17:19–23.Google Scholar
  118. 118.
    Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39:243–54.Google Scholar
  119. 119.
    Bloomer JC, Clarke SE, Chenery RJ. In vitro identification of the P450 enzymes responsible for the metabolism of ropinirole. Drug Metab Dispos. 1997;25:840–4.Google Scholar
  120. 120.
    Girndt M, Trocchi P, Scheidt-Nave C, Markau S, Stang A. The prevalence of renal failure: results from the German Health Interview and Examination Survey for Adults, 2008–2011 (DEGS1). Dtsch Arztebl Int. 2016;113:85–91.Google Scholar
  121. 121.
    Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157:471–81.Google Scholar
  122. 122.
    Pellecchia MT, Vitale C, Sabatini M, Longo K, Amboni M, Bonavita V, et al. Ropinirole as a treatment of restless legs syndrome in patients on chronic hemodialysis: an open randomized crossover trial versus levodopa sustained release. Clin Neuropharmacol. 2004;27:178–81.Google Scholar
  123. 123.
    Cawello W, Ahrweiler S, Sulowicz W, Szymczakiewicz-Multanowska A, Braun M. Single dose pharmacokinetics of the transdermal rotigotine patch in patients with impaired renal function. Br J Clin Pharmacol. 2012;73:46–54.Google Scholar
  124. 124.
    Cieslak KP, Baur O, Verheij J, Bennink RJ, van Gulik TM. Liver function declines with increased age. HPB (Oxford). 2016;18:691–6.Google Scholar
  125. 125.
    Cawello W, Fichtner A, Boekens H, Braun M. Influence of hepatic impairment on the pharmacokinetics of the dopamine agonist rotigotine. Eur J Drug Metab Pharmacokinet. 2014;39:155–63.Google Scholar
  126. 126.
    Navacerrada F, Gonzalez-Alonso MR, Alonso-Navarro H, Pilo-de-la-Fuente B, Plaza-Nieto JF, Jimenez-Jimenez FJ. Liver toxicity possibly related with ropinirole use in the treatment of restless legs syndrome. Eur J Neurol. 2011;18:e65.Google Scholar
  127. 127.
    Dewey RBJ, Hutton JT, LeWitt PA, Factor SA. A randomized, double-blind, placebo-controlled trial of subcutaneously injected apomorphine for parkinsonian off-state events. Arch Neurol. 2001;58:1385–92.Google Scholar
  128. 128.
    Stibe CM, Lees AJ, Kempster PA, Stern GM. Subcutaneous apomorphine in parkinsonian on-off oscillations. Lancet. 1988;1:403–6.Google Scholar
  129. 129.
    Humphrey SJ, Turman CN, Curry JT, Wheeler GJ. Cardiovascular and electrocardiographic effects of the dopamine receptor agonists ropinirole, apomorphine, and PNU-142774E in conscious beagle dogs. J Cardiovasc Pharmacol. 2006;47:337–47.Google Scholar
  130. 130.
    Stocchi F, De Pandis MF, Delfino FA, Anselmo T, Frongillo D. Transient atrial fibrillation after subcutaneous apomorphine bolus. Mov Disord. 1996;11:584–5.Google Scholar
  131. 131.
    Kaminioti AN, Nikitas GT, Terlis AK, Manolis AG, Thomaides T, Panousopoulou AN. Ventricular bigeminy after subcutaneous administration of apomorphine in a patient with refractory Parkinson’s disease: a case report. J Mov Disord. 2013;6:9–12.Google Scholar
  132. 132.
    Sartori M, Pratt CM, Young JB. Torsade de Pointe. Malignant cardiac arrhythmia induced by amantadine poisoning. Am J Med. 1984;77:388–91.Google Scholar
  133. 133.
    Schwartz M, Patel M, Kazzi Z, Morgan B. Cardiotoxicity after massive amantadine overdose. J Med Toxicol. 2008;4:173–9.Google Scholar
  134. 134.
    De Ponti F, Poluzzi E, Cavalli A, Recanatini M, Montanaro N. Safety of non-antiarrhythmic drugs that prolong the QT interval or induce torsade de pointes: an overview. Drug Saf. 2002;25:263–86.Google Scholar
  135. 135.
    Watanabe Y, Nakamura Y, Cao X, Ohara H, Yamazaki Y, Murayama N, et al. Intravenous administration of apomorphine does NOT induce long QT syndrome: experimental evidence from in vivo canine models. Basic Clin Pharmacol Toxicol. 2015;116:468–75.Google Scholar
  136. 136.
    Halvorsen KA, Martensen-Larsen O. Apomorphine revived: fortified, prolonged, and improved therapeutical effect. Int J Addict. 1978;13:475–84.Google Scholar
  137. 137.
    Auffret M, Drapier S, Verin M. The many faces of apomorphine: lessons from the past and challenges for the future. Drugs R D. 2018;18:91–107.Google Scholar
  138. 138.
    Rausten DS, Ochs MA. Apomorphine-naloxone controlled rapid emesis. J Am Coll Emerg Phys. 1973;2:44–5.Google Scholar
  139. 139.
    Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30:194–202.Google Scholar
  140. 140.
    Muller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs. 2015;75:157–74.Google Scholar
  141. 141.
    Axelrod J, Tomchick R. Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem. 1958;233:702–5.Google Scholar
  142. 142.
    Guldberg HC, Marsden CA. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev. 1975;27:135–206.Google Scholar
  143. 143.
    Napolitano A, Del Dotto P, Petrozzi L, Dell’Agnello G, Bellini G, Gambaccini G, et al. Pharmacokinetics and pharmacodynamics of l-Dopa after acute and 6-week tolcapone administration in patients with Parkinson’s disease. Clin Neuropharmacol. 1999;22:24–9.Google Scholar
  144. 144.
    Ruottinen HM, Rinne UK. A double-blind pharmacokinetic and clinical dose-response study of entacapone as an adjuvant to levodopa therapy in advanced Parkinson’s disease. Clin Neuropharmacol. 1996;19:283–96.Google Scholar
  145. 145.
    Ferreira JJ, Lees A, Rocha J-F, Poewe W, Rascol O, Soares-da-Silva P. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol. 2016;15:154–65.Google Scholar
  146. 146.
    Factor SA, Molho ES, Feustel PJ, Brown DL, Evans SM. Long-term comparative experience with tolcapone and entacapone in advanced Parkinson’s disease. Clin Neuropharmacol. 2001;24:295–9.Google Scholar
  147. 147.
    Rocha J-F, Almeida L, Falcao A, Palma PN, Loureiro AI, Pinto R, et al. Opicapone: a short lived and very long acting novel catechol-O-methyltransferase inhibitor following multiple dose administration in healthy subjects. Br J Clin Pharmacol. 2013;76:763–75.Google Scholar
  148. 148.
    Davis TL, Roznoski M, Burns RS. Effects of tolcapone in Parkinson’s patients taking l-dihydroxyphenylalanine/carbidopa and selegiline. Mov Disord. 1995;10:349–51.Google Scholar
  149. 149.
    Kuoppamaki M, Leinonen M, Poewe W. Efficacy and safety of entacapone in levodopa/carbidopa versus levodopa/benserazide treated Parkinson’s disease patients with wearing-off. J Neural Transm (Vienna). 2015;122:1709–14.Google Scholar
  150. 150.
    Rodrigues FB, Ferreira JJ. Opicapone for the treatment of Parkinson’s disease. Expert Opin Pharmacother. 2017;18:445–53.Google Scholar
  151. 151.
    Antonini A, Abbruzzese G, Barone P, Bonuccelli U, Lopiano L, Onofrj M, et al. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): relevance for motor and non-motor features. Neuropsychiatr Dis Treat. 2008;4:1–9.Google Scholar
  152. 152.
    Suchowersky O, Bailey P, Pourcher E, Bulger L, Facciponte G. Comparison of two dosages of tolcapone added to levodopa in nonfluctuating patients with PD. Clin Neuropharmacol. 2001;24:214–20.Google Scholar
  153. 153.
    Olanow CW, Watkins PB. Tolcapone: an efficacy and safety review (2007). Clin Neuropharmacol. 2007;30:287–94.Google Scholar
  154. 154.
    Lees AJ, Ratziu V, Tolosa E, Oertel WH. Safety and tolerability of adjunctive tolcapone treatment in patients with early Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78:944–8.Google Scholar
  155. 155.
    Unger MM, Reese JP, Oertel WH, Eggert KM. Real-life evaluations of compliance with mandatory drug safety monitoring exemplified with tolcapone in Parkinson’s disease. Eur Neurol. 2008;60:122–6.Google Scholar
  156. 156.
    Heranval A, Lefaucheur R, Fetter D, Rouille A, Le Goff F, Maltete D. Drugs with potential cardiac adverse effects: retrospective study in a large cohort of parkinsonian patients. Rev Neurol (Paris). 2016;172:318–23.Google Scholar
  157. 157.
    Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE, et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010;20:277–81.Google Scholar
  158. 158.
    Dingemanse J, Meyerhoff C, Schadrack J. Effect of the catechol-O-methyltransferase inhibitor entacapone on the steady-state pharmacokinetics and pharmacodynamics of warfarin. Br J Clin Pharmacol. 2002;53:485–91.Google Scholar
  159. 159.
    European Medicines Agency. Ongentys: EMA assessment report. London, UK: European Medicines Agency; 2016. p. 1–140.Google Scholar
  160. 160.
    Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34:45–78.Google Scholar
  161. 161.
    Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal drug interactions mediated by OATPs: a systematic review of preclinical and clinical findings. J Pharm Sci. 2017;106:2312–25.Google Scholar
  162. 162.
    Kalgutkar AS, Dalvie DK, Castagnoli NJ, Taylor TJ. Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem Res Toxicol. 2001;14:1139–62.Google Scholar
  163. 163.
    Fernandez HH, Chen JJ. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy. 2007;27:174S–85S.Google Scholar
  164. 164.
    Chang Y, Wang L-B, Li D, Lei K, Liu S-Y. Efficacy of rasagiline for the treatment of Parkinson’s disease: an updated meta-analysis. Ann Med. 2017;49:421–34.Google Scholar
  165. 165.
    Dashtipour K, Chen JJ, Kani C, Bahjri K, Ghamsary M. Clinical outcomes in patients with Parkinson’s disease treated with a monoamine oxidase type-B inhibitor: a cross-sectional, cohort study. Pharmacotherapy. 2015;35:681–6.Google Scholar
  166. 166.
    Dezsi L, Vecsei L. Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol Disord Drug Targets. 2017;16:425–39.Google Scholar
  167. 167.
    Riederer P, Lachenmayer L. Selegiline’s neuroprotective capacity revisited. J Neural Transm (Vienna). 2003;110:1273–8.Google Scholar
  168. 168.
    Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009;361:1268–78.Google Scholar
  169. 169.
    Sadeghian M, Mullali G, Pocock JM, Piers T, Roach A, Smith KJ. Neuroprotection by safinamide in the 6-hydroxydopamine model of Parkinson’s disease. Neuropathol Appl Neurobiol. 2016;42:423–35.Google Scholar
  170. 170.
    Hauser RA, Abler V, Eyal E, Eliaz RE. Efficacy of rasagiline in early Parkinson’s disease: a meta-analysis of data from the TEMPO and ADAGIO studies. Int J Neurosci. 2016;126:942–6.Google Scholar
  171. 171.
    Jenner P, Langston JW. Explaining ADAGIO: a critical review of the biological basis for the clinical effects of rasagiline. Mov Disord. 2011;26:2316–23.Google Scholar
  172. 172.
    Romberg RW, Needleman SB, Snyder JJ, Greedan A. Methamphetamine and amphetamine derived from the metabolism of selegiline. J Forensic Sci. 1995;40:1100–2.Google Scholar
  173. 173.
    Stocchi F, Torti M. Adjuvant therapies for Parkinson’s disease: critical evaluation of safinamide. Drug Des Dev Ther. 2016;10:609–18.Google Scholar
  174. 174.
    Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol. 2002;59:1937–43.Google Scholar
  175. 175.
    Elmer L, Schwid S, Eberly S, Goetz C, Fahn S, Kieburtz K, et al. Rasagiline-associated motor improvement in PD occurs without worsening of cognitive and behavioral symptoms. J Neurol Sci. 2006;248:78–83.Google Scholar
  176. 176.
    Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328:176–83.Google Scholar
  177. 177.
    Hauser RA, Silver D, Choudhry A, Eyal E, Isaacson S. Randomized, controlled trial of rasagiline as an add-on to dopamine agonists in Parkinson’s disease. Mov Disord. 2014;29:1028–34.Google Scholar
  178. 178.
    Richard IH, Kurlan R, Tanner C, Factor S, Hubble J, Suchowersky O, et al. Serotonin syndrome and the combined use of deprenyl and an antidepressant in Parkinson’s disease in Parkinson Study Group. Neurology. 1997;48:1070–7.Google Scholar
  179. 179.
    Panisset M, Chen JJ, Rhyee SH, Conner J, Mathena J. Serotonin toxicity association with concomitant antidepressants and rasagiline treatment: retrospective study (STACCATO). Pharmacotherapy. 2014;34:1250–8.Google Scholar
  180. 180.
    Aboukarr A, Giudice M. Interaction between monoamine oxidase B inhibitors and selective serotonin reuptake inhibitors. Can J Hosp Pharm. 2018;71:196–207.Google Scholar
  181. 181.
    Taylor JJ, Wilson JW, Estes LL. Linezolid and serotonergic drug interactions: a retrospective survey. Clin Infect Dis. 2006;43:180–7.Google Scholar
  182. 182.
    Chen JJ, Swope DM. Clinical pharmacology of rasagiline: a novel, second-generation propargylamine for the treatment of Parkinson disease. J Clin Pharmacol. 2005;45:878–94.Google Scholar
  183. 183.
    Churchyard A, Mathias CJ, Boonkongchuen P, Lees AJ. Autonomic effects of selegiline: possible cardiovascular toxicity in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;63:228–34.Google Scholar
  184. 184.
    Laine K, Anttila M, Helminen A, Karnani H, Huupponen R. Dose linearity study of selegiline pharmacokinetics after oral administration: evidence for strong drug interaction with female sex steroids. Br J Clin Pharmacol. 1999;47:249–54.Google Scholar
  185. 185.
    Palovaara S, Anttila M, Nyman L, Laine K. Effect of concomitant hormone replacement therapy containing estradiol and levonorgestrel on the pharmacokinetics of selegiline. Eur J Clin Pharmacol. 2002;58:259–63.Google Scholar
  186. 186.
    Cruz MP. Xadago (Safinamide): a monoamine oxidase B inhibitor for the adjunct treatment of motor symptoms in Parkinson’s disease. P T. 2017;42:622–37.Google Scholar
  187. 187.
    Finberg JPM. Pharmacology of rasagiline, a new MAO-B inhibitor drug for the treatment of Parkinson’s disease with neuroprotective potential. Rambam Maimonides Med J. 2010;1:e0003.Google Scholar
  188. 188.
    Chen JJ, Wilkinson JR. The monoamine oxidase type B inhibitor rasagiline in the treatment of Parkinson disease: is tyramine a challenge? J Clin Pharmacol. 2012;52:620–8.Google Scholar
  189. 189.
    Marquet A, Kupas K, Johne A, Astruc B, Patat A, Krosser S, et al. The effect of safinamide, a novel drug for Parkinson’s disease, on pressor response to oral tyramine: a randomized, double-blind, clinical trial. Clin Pharmacol Ther. 2012;92:450–7.Google Scholar
  190. 190.
    Anttila M, Sotaniemi EA, Pelkonen O, Rautio A. Marked effect of liver and kidney function on the pharmacokinetics of selegiline. Clin Pharmacol Ther. 2005;77:54–62.Google Scholar
  191. 191.
    Rudolph JL, Salow MJ, Angelini MC, McGlinchey RE. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch Intern Med. 2008;168:508–13.Google Scholar
  192. 192.
    Aizenberg D, Sigler M, Weizman A, Barak Y. Anticholinergic burden and the risk of falls among elderly psychiatric inpatients: a 4-year case–control study. Int Psychogeriatr. 2002;14:307–10.Google Scholar
  193. 193.
    Ehrt U, Broich K, Larsen JP, Ballard C, Aarsland D. Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study. J Neurol Neurosurg Psychiatry. 2010;81:160–5.Google Scholar
  194. 194.
    Crispo JAG, Willis AW, Thibault DP, Fortin Y, Hays HD, McNair DS, et al. Associations between anticholinergic burden and adverse health outcomes in Parkinson disease. PLoS One. 2016;11:e0150621.Google Scholar
  195. 195.
    Vezina P, Mohr E, Grimes D. Deprenyl in Parkinson’s disease: mechanisms, neuroprotective effect, indications and adverse effects. Can J Neurol Sci. 1992;19:142–6.Google Scholar
  196. 196.
    Glavin GB, Dugani AM, Pinsky C. L-deprenyl attenuates stress ulcer formation in rats. Neurosci Lett. 1986;70:379–81.Google Scholar
  197. 197.
    Geyer M, Stamenic I, Buhler H, Bertschinger P. Epidemiology of gastrointestinal bleeding in the elderly. Praxis (Bern 1994). 2006;95:757–65.Google Scholar
  198. 198.
    Kyaw MH, Chan FKL. Pharmacologic options in the management of upper gastrointestinal bleeding: focus on the elderly. Drugs Aging. 2014;31:349–61.Google Scholar
  199. 199.
    Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature. 1991;354:31–7.Google Scholar
  200. 200.
    Faulkner MA. Safety overview of FDA-approved medications for the treatment of the motor symptoms ofParkinson's disease. Expert Opin Drug Saf. 2014;13(8):1055–69. Scholar
  201. 201.
    Hubsher G, Haider M, Okun MS. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012;78:1096–9.Google Scholar
  202. 202.
    Schwab RS, England ACJ, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson’s disease. JAMA. 1969;208:1168–70.Google Scholar
  203. 203.
    Mizoguchi K, Yokoo H, Yoshida M, Tanaka T, Tanaka M. Amantadine increases the extracellular dopamine levels in the striatum by re-uptake inhibition and by N-methyl-d-aspartate antagonism. Brain Res. 1994;662:255–8.Google Scholar
  204. 204.
    Pahwa R, Tanner CM, Hauser RA, Isaacson SH, Nausieda PA, Truong DD, et al. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID Study): a randomized clinical trial. JAMA Neurol. 2017;74:941–9.Google Scholar
  205. 205.
    Oertel W, Eggert K, Pahwa R, Tanner CM, Hauser RA, Trenkwalder C, et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov Disord. 2017;32:1701–9.Google Scholar
  206. 206.
    Hiraoka M, Hirano Y, Kawano S, Fan Z, Sawanobori T. Amantadine-induced afterpotentials and automaticity in guinea pig ventricular myocytes. Circ Res. 1989;65:880–93.Google Scholar
  207. 207.
    Manini AF, Raspberry D, Hoffman RS, Nelson LS. QT prolongation and torsades de pointes following overdose of ziprasidone and amantadine. J Med Toxicol. 2007;3:178–81.Google Scholar
  208. 208.
    Wilson TW, Rajput AH. Amantadine-dyazide interaction. Can Med Assoc J. 1983;129:974–5.Google Scholar
  209. 209.
    Akturk IF, Erol MK. Bradyarrhythmias and pacemaker indications in elderly patients. Turk Kardiyol Dern Ars. 2017;45:71–4.Google Scholar
  210. 210.
    Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH. The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J Card Fail. 2014;20:304–9.Google Scholar
  211. 211.
    Nakata M, Ito S, Shirai W, Hattori T. Severe reversible neurological complications following amantadine treatment in three elderly patients with renal insufficiency. Eur Neurol. 2006;56:59–61.Google Scholar
  212. 212.
    Bleidner WE, Harmon JB, Hewes WE, Lynes TE, Hermann EC. Absorption, distribution and excretion of amantadine hydrochloride. J Pharmacol Exp Ther. 1965;150:484–90.Google Scholar
  213. 213.
    Ing TS, Rahn AC, Armbruster KF, Oyama JH, Klawans HL. Letter: accumulation of amantadine hydrochloride in renal insufficiency. N Engl J Med. 1974;291:1257.Google Scholar
  214. 214.
    Stoof JC, Booij J, Drukarch B, Wolters EC. The anti-parkinsonian drug amantadine inhibits the N-methyl-d-aspartic acid-evoked release of acetylcholine from rat neostriatum in a non-competitive way. Eur J Pharmacol. 1992;213:439–43.Google Scholar
  215. 215.
    Lupp A, Lucking CH, Koch R, Jackisch R, Feuerstein TJ. Inhibitory effects of the antiparkinsonian drugs memantine and amantadine on N-methyl-d-aspartate-evoked acetylcholine release in the rabbit caudate nucleus in vitro. J Pharmacol Exp Ther. 1992;263:717–24.Google Scholar
  216. 216.
    Oh ES, Fong TG, Hshieh TT, Inouye SK. Delirium in older persons: advances in diagnosis and treatment. JAMA. 2017;318:1161–74.Google Scholar
  217. 217.
    Neagoe AD. Delirium with manic and psychotic features associated with amantadine. Gen Hosp Psychiatry. 2013;35(680):e7–8.Google Scholar
  218. 218.
    Postma JU, Van Tilburg W. Visual hallucinations and delirium during treatment with amantadine (Symmetrel). J Am Geriatr Soc. 1975;23:212–5.Google Scholar
  219. 219.
    Flaherty JA, Bellur SN. Mental side effects of amantadine therapy: its spectrum and characteristics in a normal population. J Clin Psychiatry. 1981;42:344–5.Google Scholar
  220. 220.
    Scott JL, Walls RM. QT interval prolongation. J Emerg Med. 1985;3:221–5.Google Scholar
  221. 221.
    Moreno O, Garcia PT, Sanchez D, Sancho T, Lecumberri B. Cognitive impairment and severe hypocalcemia in a patient with hypoparathyroidism and systemic sclerosis: report of a case. Endocrinol Nutr. 2015;62:356–8.Google Scholar
  222. 222.
    Fujioka S, Fukae J, Ogura H, Mishima T, Yanamoto S, Higuchi M-A, et al. Hospital-based study on emergency admission of patients with Parkinson’s disease. eNeurologicalSci. 2016;4:19–21.Google Scholar
  223. 223.
    Guneysel O, Onultan O, Onur O. Parkinson’s disease and the frequent reasons for emergency admission. Neuropsychiatr Dis Treat. 2008;4:711–4.Google Scholar
  224. 224.
    Braga M, Pederzoli M, Antonini A, Beretta F, Crespi V. Reasons for hospitalization in Parkinson’s disease: a case–control study. Parkinsonism Relat Disord. 2014;20:488–92.Google Scholar
  225. 225.
    Begg DP. Disturbances of thirst and fluid balance associated with aging. Physiol Behav. 2017;178:28–34.Google Scholar
  226. 226.
    Hindle JV. The practical management of cognitive impairment and psychosis in the older Parkinson’s disease patient. J Neural Transm (Vienna). 2013;120:649–53.Google Scholar
  227. 227.
    Parkers JD, Marsden CD, Price P. Amantadine-induced heart-failure. Lancet. 1977;1:904.Google Scholar
  228. 228.
    Mokhles MM, Trifiro G, Dieleman JP, Haag MD, van Soest EM, Verhamme KMC, et al. The risk of new onset heart failure associated with dopamine agonist use in Parkinson’s disease. Pharmacol Res. 2012;65:358–64.Google Scholar
  229. 229.
    Hasenfuss G, Kasper W, Meinertz T, Busch W, Lehmann M, Krause T, et al. Evaluation of long-term oral levodopa therapy in chronic congestive heart failure. Klin Wochenschr. 1987;65:1087–94.Google Scholar
  230. 230.
    Montastruc JL, Rascol O, Montastruc P. Naloxone or haloperidol but not yohimbine reverse apomorphine-induced respiratory depression. Clin Neuropharmacol. 1992;15:404–7.Google Scholar
  231. 231.
    Srinivasan M, Lagercrantz H, Yamamoto Y. A possible dopaminergic pathway mediating hypoxic depression in neonatal rabbits. J Appl Physiol. 1985;1989(67):1271–6.Google Scholar
  232. 232.
    Gibbons CH, Simon DK, Huang M, Tilley B, Aminoff MJ, Bainbridge JL, et al. Autonomic and electrocardiographic findings in Parkinson’s disease. Auton Neurosci. 2017;205:93–8.Google Scholar
  233. 233.
    Kannankeril PJ, Roden DM. Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol. 2007;22:39–43.Google Scholar
  234. 234.
    Roden DM. Predicting drug-induced QT prolongation and torsades de pointes. J Physiol. 2016;594:2459–68.Google Scholar
  235. 235.
    Jahn K, Kressig RW, Bridenbaugh SA, Brandt T, Schniepp R. Dizziness and unstable gait in old age: etiology, diagnosis and treatment. Dtsch Arztebl Int. 2015;112:387–93.Google Scholar
  236. 236.
    Hanewinckel R, van Oijen M, Ikram MA, van Doorn PA. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol. 2016;31:5–20.Google Scholar
  237. 237.
    Nyholm D, Nilsson Remahl AIM, Dizdar N, Constantinescu R, Holmberg B, Jansson R, et al. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology. 2005;64:216–23.Google Scholar
  238. 238.
    Swanson PD. Drug treatment of Parkinson’s disease: is ‘polypharmacy’ best? J. Neurol Neurosurg Psychiatry. 1994;57:401–3.Google Scholar
  239. 239.
    Krause O, Wiese B, Doyle I-M, Kirsch C, Thürmann P, Wilm S, et al. Multidisciplinary intervention to improve medication safety in nursing home residents: protocol of a cluster randomised controlled trial (HIOPP-3-iTBX study). BMC Geriatr. 2019;19:24.Google Scholar
  240. 240.
    Lange R, Erbguth F. Parkinson’s disease in the elderly. Z Gerontol Geriatr. 2017;50:547–59.Google Scholar
  241. 241.
    Yildirim AB, Kilinc AY. Polypharmacy and drug interactions in elderly patients. Turk Kardiyol Dern Ars. 2017;45:17–21.Google Scholar
  242. 242.
    Moriarty F, Hardy C, Bennett K, Smith SM, Fahey T. Trends and interaction of polypharmacy and potentially inappropriate prescribing in primary care over 15 years in Ireland: a repeated cross-sectional study. BMJ Open. 2015;5:e008656.Google Scholar
  243. 243.
    Muhic N, Mrhar A, Brvar M. Comparative analysis of three drug–drug interaction screening systems against probable clinically relevant drug–drug interactions: a prospective cohort study. Eur J Clin Pharmacol. 2017;73:875–82.Google Scholar
  244. 244.
    Somogyi-Vegh A, Nyaka B, Vida RG, Lovasz A, Botz L. Comprehensive evaluation of drug interaction screening programs: discrepancies and concordances. Orv Hetil. 2015;156:720–30.Google Scholar
  245. 245.
    Kheshti R, Aalipour M, Namazi S. A comparison of five common drug–drug interaction software programs regarding accuracy and comprehensiveness. J Res Pharm Pract. 2016;5:257–63.Google Scholar
  246. 246.
    Moura CS, Prado NM, Belo NO, Acurcio FA. Evaluation of drug–drug interaction screening software combined with pharmacist intervention. Int J Clin Pharm. 2012;34:547–52.Google Scholar
  247. 247.
    Pazan F, Weiss C, Wehling M. The FORTA (Fit fOR The Aged) List 2015: update of a validated clinical tool for improved pharmacotherapy in the elderly. Drugs Aging. 2016;33:447–9.Google Scholar
  248. 248.
    Kuhn-Thiel AM, Weiss C, Wehling M. Consensus validation of the FORTA (Fit fOR The Aged) List: a clinical tool for increasing the appropriateness of pharmacotherapy in the elderly. Drugs Aging. 2014;31:131–40.Google Scholar
  249. 249.
    Brown JD, Hutchison LC, Li C, Painter JT, Martin BC. Predictive validity of the Beers and Screening Tool of Older Persons’ Potentially Inappropriate Prescriptions (STOPP) criteria to detect adverse drug events, hospitalizations, and emergency department visits in the United States. J Am Geriatr Soc. 2016;64:22–30.Google Scholar
  250. 250.
    Hamilton H, Gallagher P, Ryan C, Byrne S, O’Mahony D. Potentially inappropriate medications defined by STOPP criteria and the risk of adverse drug events in older hospitalized patients. Arch Intern Med. 2011;171:1013–9.Google Scholar
  251. 251.
    Siebert S, Elkeles B, Hempel G, Kruse J, Smollich M. The PRISCUS list in clinical routine: practicability and comparison to international PIM lists. Z Gerontol Geriatr. 2013;46:35–47.Google Scholar
  252. 252.
    Cooper JA, Cadogan CA, Patterson SM, Kerse N, Bradley MC, Ryan C, et al. Interventions to improve the appropriate use of polypharmacy in older people: a Cochrane systematic review. BMJ Open. 2015;5:e009235.Google Scholar
  253. 253.
    Kim J, Parish AL. Polypharmacy and medication management in older adults. Nurs Clin North Am. 2017;52:457–68.Google Scholar
  254. 254.
    O’Mahony D, O’Ullivan D, Byrne S, O’Connor MN, Ryan C, Gallagher P. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015;44:213–8.Google Scholar
  255. 255.
    Salbu RL, Feuer J. A closer look at the 2015 Beers criteria. J Pharm Pract. 2017;30:419–24.Google Scholar
  256. 256.
    Antimisiaris D, Cutler T. Managing polypharmacy in the 15-minute office visit. Prim Care. 2017;44:413–28.Google Scholar
  257. 257.
    Jansen J, Naganathan V, Carter SM, McLachlan AJ, Nickel B, Irwig L, et al. Too much medicine in older people? Deprescribing through shared decision making. BMJ. 2016;353:i2893.Google Scholar
  258. 258.
    Scott IA, Hilmer SN, Reeve E, Potter K, Le Couteur D, Rigby D, et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern Med. 2015;175:827–34.Google Scholar
  259. 259.
    Loffler C, Drewelow E, Paschka SD, Frankenstein M, Eger J, Jatsch L, et al. Optimizing polypharmacy among elderly hospital patients with chronic diseases: study protocol of the cluster randomized controlled POLITE-RCT trial. Implement Sci. 2014;9:151.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurologyHannover Medical SchoolHannoverGermany
  2. 2.German Center for Neurodegenerative Diseases (DZNE)MunichGermany
  3. 3.Department of NeurologyTechnical UniversityMunichGermany

Personalised recommendations