Skip to main content
Log in

Factors to Consider in the Selection of Dopamine Agonists for Older Persons with Parkinson’s Disease

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Dopamine agonists (DAs) are frequently used in the management of Parkinson’s disease (PD), a complex multisystem disorder influenced substantially by age-related factors. Over 80% of PD patients present after age 60 years and may have clinical features exacerbated by age-related comorbidities or decline in physiological compensatory mechanisms. Pharmacotherapy for motor symptoms in older persons is more likely to involve exclusive use of levodopa combined with a peripheral decarboxylase inhibitor throughout the course of the illness. Non-ergot DAs, such as pramipexole, rotigotine and ropinirole, may be used as de novo monotherapy for the control of motor symptoms in older persons, although they are less efficacious than levodopa therapy. DAs may also be considered as adjunct therapy in older persons when motor symptoms are no longer adequately controlled by levodopa or when motor fluctuations and dyskinesia appear. DAs may be used cautiously in older persons with cognitive impairment and orthostatic hypotension but should be avoided when there is a history or risk of psychosis or impulse control disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Elbaz A, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, et al. Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol. 2002;55(1):25–31.

    Article  Google Scholar 

  2. Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology. 2009;72(5):432–8. https://doi.org/10.1212/01.wnl.0000341769.50075.bb.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Diederich NJ, Moore CG, Leurgans SE, Chmura TA, Goetz CG. Parkinson disease with old-age onset: a comparative study with subjects with middle-age onset. Arch Neurol. 2003;60(4):529–33.

    Article  Google Scholar 

  4. Santos Garcia D, Suarez Castro E, Exposito I, de Deus T, Tunas C, Aneiros A, et al. Comorbid conditions associated with Parkinson’s disease: a longitudinal and comparative study with Alzheimer disease and control subjects. J Neurol Sci. 2017;373:210–5. https://doi.org/10.1016/j.jns.2016.12.046.

    Article  CAS  PubMed  Google Scholar 

  5. Beydoun HA, Beydoun MA, Mishra NK, Rostant OS, Zonderman AB, Eid SM. Comorbid Parkinson’s disease, falls and fractures in the 2010 National Emergency Department sample. Parkinsonism Relat Disord. 2017;35:30–5. https://doi.org/10.1016/j.parkreldis.2016.11.005.

    Article  PubMed  Google Scholar 

  6. Inouye SK, Studenski S, Tinetti ME, Kuchel GA. Geriatric syndromes: clinical, research, and policy implications of a core geriatric concept. J Am Geriatr Soc. 2007;55(5):780–91. https://doi.org/10.1111/j.1532-5415.2007.01156.x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson’s disease. J Neurol. 2001;248(11):950–8.

    Article  CAS  Google Scholar 

  8. Borek LL, Amick MM, Friedman JH. Non-motor aspects of Parkinson’s disease. CNS Spectr. 2006;11(7):541–54.

    Article  Google Scholar 

  9. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–44. https://doi.org/10.1002/mds.21956.

    Article  PubMed  Google Scholar 

  10. Hely MA, Morris JG, Reid WG, Trafficante R. Sydney multicenter study of Parkinson’s disease: non-l-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20(2):190–9.

    Article  Google Scholar 

  11. Schrag A, Ben-Shlomo Y, Brown R, Marsden CD, Quinn N. Young-onset Parkinson’s disease revisited—clinical features, natural history, and mortality. Mov Disord. 1998;13(6):885–94. https://doi.org/10.1002/mds.870130605.

    Article  CAS  PubMed  Google Scholar 

  12. Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M. Young- versus older-onset Parkinson’s disease: impact of disease and psychosocial consequences. Mov Disord. 2003;18(11):1250–6.

    Article  Google Scholar 

  13. Caslake R, Taylor K, Scott N, Harris C, Gordon J, Wilde K, et al. Age-, and gender-specific incidence of vascular parkinsonism, progressive supranuclear palsy, and parkinsonian-type multiple system atrophy in North East Scotland: the PINE study. Parkinsonism Relat Disord. 2014;20(8):834–9. https://doi.org/10.1016/j.parkreldis.2014.04.013.

    Article  PubMed  Google Scholar 

  14. Olfson M, King M, Schoenbaum M. Antipsychotic treatment of adults in the United States. J Clin Psychiatry. 2015;76(10):1346–53. https://doi.org/10.4088/JCP.15m09863.

    Article  PubMed  Google Scholar 

  15. Glare P, Miller J, Nikolova T, Tickoo R. Treating nausea and vomiting in palliative care: a review. Clin Interv Aging. 2011;6:243–59. https://doi.org/10.2147/CIA.S13109.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shulman LM, Taback RL, Bean J, Weiner WJ. Comorbidity of the nonmotor symptoms of Parkinson’s disease. Mov Disord. 2001;16(3):507–10.

    Article  CAS  Google Scholar 

  17. Schrag A, Jahanshahi M, Quinn N. What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry. 2000;69(3):308–12.

    Article  CAS  Google Scholar 

  18. Sauerbier A, Jenner P, Todorova A, Chaudhuri KR. Non motor subtypes and Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S41–6. https://doi.org/10.1016/j.parkreldis.2015.09.027.

    Article  PubMed  Google Scholar 

  19. Goetz CG, Tanner CM, Stebbins GT, Buchman AS. Risk factors for progression in Parkinson’s disease. Neurology. 1988;38(12):1841–4.

    Article  CAS  Google Scholar 

  20. Levy G. The relationship of Parkinson disease with aging. Arch Neurol. 2007;64(9):1242–6. https://doi.org/10.1001/archneur.64.9.1242.

    Article  PubMed  Google Scholar 

  21. Horstink M, Tolosa E, Bonuccelli U, Deuschl G, Friedman A, Kanovsky P, et al. Review of the therapeutic management of Parkinson’s disease. Report of a joint task force of the European Federation of Neurological Societies and the Movement Disorder Society-European Section. Part I: early (uncomplicated) Parkinson’s disease. Eur J Neurol. 2006;13(11):1170–85. https://doi.org/10.1111/j.1468-1331.2006.01547.x.

    Article  CAS  PubMed  Google Scholar 

  22. PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial [erratum appears in Lancet. 2014 Sep 27;384(9949):1186]. Lancet. 2014;384(9949):1196–205. https://doi.org/10.1016/S0140-6736(14)60683-8.

    Article  CAS  Google Scholar 

  23. Lees A. Alternatives to levodopa in the initial treatment of early Parkinson’s disease. Drugs Aging. 2005;22(9):731–40.

    Article  CAS  Google Scholar 

  24. Chen JJ, Fernandez HH. Community and long-term care management of Parkinson’s disease in the elderly: focus on monoamine oxidase type B inhibitors. Drugs Aging. 2007;24(8):663–80.

    Article  CAS  Google Scholar 

  25. Mitchell SL, Sullivan EA, Lipsitz LA. Exclusion of elderly subjects from clinical trials for Parkinson disease. Arch Neurol. 1997;54(11):1393–8.

    Article  CAS  Google Scholar 

  26. Oertel W, LeWitt P, Giladi N, Ghys L, Grieger F, Boroojerdi B. Treatment of patients with early and advanced Parkinson’s disease with rotigotine transdermal system: age-relationship to safety and tolerability. Parkinsonism Relat Disord. 2013;19(1):37–42. https://doi.org/10.1016/j.parkreldis.2012.06.009.

    Article  PubMed  Google Scholar 

  27. Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature. 1979;277(5692):93–6.

    Article  CAS  Google Scholar 

  28. Jenner P. Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology. 2002;58(4 Supplement (1)):S1–8.

    Article  CAS  Google Scholar 

  29. Seeman P. Parkinson’s disease treatment may cause impulse-control disorder via dopamine D3 receptors. Synapse. 2015;69(4):183–9. https://doi.org/10.1002/syn.21805.

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Ruiz PJ, Martinez Castrillo JC, Alonso-Canovas A, Herranz Barcenas A, Vela L, Sanchez Alonso P, et al. Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study. J Neurol Neurosurg Psychiatry. 2014;85(8):840–4. https://doi.org/10.1136/jnnp-2013-306787.

    Article  PubMed  Google Scholar 

  31. Bostwick JM, Hecksel KA, Stevens SR, Bower JH, Ahlskog JE. Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clin Proc. 2009;84(4):310–6. https://doi.org/10.1016/s0025-6196(11)60538-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Utsumi H, Okuma Y, Kano O, Suzuki Y, Iijima M, Tomimitsu H, et al. Evaluation of the efficacy of pramipexole for treating levodopa-induced dyskinesia in patients with Parkinson’s disease. Intern Med. 2013;52(3):325–32.

    Article  CAS  Google Scholar 

  33. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther. 2002;303(2):791–804.

    Article  CAS  Google Scholar 

  34. Borgemeester RW, Lees AJ, van Laar T. Parkinson’s disease, visual hallucinations and apomorphine: a review of the available evidence. Parkinsonism Relat Disord. 2016;27:35–40. https://doi.org/10.1016/j.parkreldis.2016.04.023.

    Article  PubMed  Google Scholar 

  35. Newman-Tancredi A, Cussac D, Audinot V, Nicolas JP, De Ceuninck F, Boutin JA, et al. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. II. Agonist and antagonist properties at subtypes of dopamine D(2)-like receptor and alpha(1)/alpha(2)-adrenoceptor. J Pharmacol Exp Ther. 2002;303(2):805–14.

    Article  CAS  Google Scholar 

  36. Borovac JA. Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology. Yale J Biol Med. 2016;89(1):37–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Haro-Estarriol M, Sabater-Talaverano G, Rodriguez-Jerez F, Obrador-Lagares A, Genis-Batlle D, Sendra-Salillas S. Pleural effusion and pulmonary hypertension in a patient with Parkinson disease treated with cabergoline. Arch Bronconeumol. 2009;45(2):100–2. https://doi.org/10.1016/j.arbres.2008.01.003.

    Article  PubMed  Google Scholar 

  38. Chaudhuri KR, Dhawan V, Basu S, Jackson G, Odin P. Valvular heart disease and fibrotic reactions may be related to ergot dopamine agonists, but non-ergot agonists may also not be spared. Mov Disord. 2004;19(12):1522–3. https://doi.org/10.1002/mds.20330.

    Article  PubMed  Google Scholar 

  39. Townsend M, MacIver DH. Constrictive pericarditis and pleuropulmonary fibrosis secondary to cabergoline treatment for Parkinson’s disease. Heart. 2004;90(8):e47. https://doi.org/10.1136/hrt.2004.036236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hely MA, Morris JG, Lawrence S, Jeremy R, Genge S. Retroperitoneal fibrosis, skin and pleuropulmonary changes associated with bromocriptine therapy. Aust N Z J Med. 1991;21(1):82–4.

    Article  CAS  Google Scholar 

  41. Hely MA, Morris JG, Reid WG, O’Sullivan DJ, Williamson PM, Rail D, et al. The Sydney multicentre study of Parkinson’s disease: a randomised, prospective five year study comparing low dose bromocriptine with low dose levodopa-carbidopa. J Neurol Neurosurg Psychiatry. 1994;57(8):903–10.

    Article  CAS  Google Scholar 

  42. Renoux C, Dell’Aniello S, Brophy JM, Suissa S. Dopamine agonist use and the risk of heart failure. Pharmacoepidemiol Drug Saf. 2012;21(1):34–41. https://doi.org/10.1002/pds.2267.

    Article  CAS  PubMed  Google Scholar 

  43. Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med. 2007;356(1):39–46.

    Article  CAS  Google Scholar 

  44. Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E. Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med. 2007;356(1):29–38.

    Article  CAS  Google Scholar 

  45. Van Camp G, Flamez A, Cosyns B, Goldstein J, Perdaens C, Schoors D. Heart valvular disease in patients with Parkinson’s disease treated with high-dose pergolide. Neurology. 2003;61(6):859–61.

    Article  Google Scholar 

  46. Van Camp G, Flamez A, Cosyns B, Weytjens C, Muyldermans L, Van Zandijcke M, et al. Treatment of Parkinson’s disease with pergolide and relation to restrictive valvular heart disease. Lancet. 2004;363(9416):1179–83. https://doi.org/10.1016/s0140-6736(04)15945-x.

    Article  PubMed  Google Scholar 

  47. Boguszewski CL, dos Santos CM, Sakamoto KS, Marini LC, de Souza AM, Azevedo M. A comparison of cabergoline and bromocriptine on the risk of valvular heart disease in patients with prolactinomas. Pituitary. 2012;15(1):44–9. https://doi.org/10.1007/s11102-011-0339-7.

    Article  CAS  PubMed  Google Scholar 

  48. Tan LC, Ng KK, Au WL, Lee RK, Chan YH, Tan NC. Bromocriptine use and the risk of valvular heart disease. Mov Disord. 2009;24(3):344–9. https://doi.org/10.1002/mds.22228.

    Article  PubMed  Google Scholar 

  49. Antonini A, Poewe W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol. 2007;6(9):826–9.

    Article  CAS  Google Scholar 

  50. Zadikoff C, Duong-Hua M, Sykora K, Marras C, Lang A, Rochon P. Pergolide associated cardiac valvulopathy based on Ontario administrative data. Can J Neurol Sci. 2008;35(2):173–8.

    Article  Google Scholar 

  51. Tran T, Brophy JM, Suissa S, Renoux C. Risks of cardiac valve regurgitation and heart failure associated with ergot- and non-ergot-derived dopamine agonist use in patients with Parkinson’s disease: a systematic review of observational studies. CNS Drugs. 2015;29(12):985–98. https://doi.org/10.1007/s40263-015-0293-4.

    Article  CAS  PubMed  Google Scholar 

  52. Mokhles MM, Trifiro G, Dieleman JP, Haag MD, van Soest EM, Verhamme KM, et al. The risk of new onset heart failure associated with dopamine agonist use in Parkinson’s disease. Pharmacol Res. 2012;65(3):358–64. https://doi.org/10.1016/j.phrs.2011.11.009.

    Article  CAS  PubMed  Google Scholar 

  53. Hsieh PH, Hsiao FY. Risk of heart failure associated with dopamine agonists: a nested case–control study. Drugs Aging. 2013;30(9):739–45. https://doi.org/10.1007/s40266-013-0102-z.

    Article  CAS  PubMed  Google Scholar 

  54. Ling LH, Ahlskog JE, Munger TM, Limper AH, Oh JK. Constrictive pericarditis and pleuropulmonary disease linked to ergot dopamine agonist therapy (cabergoline) for Parkinson’s disease. Mayo Clin Proc. 1999;74(4):371–5. https://doi.org/10.4065/74.4.371.

    Article  CAS  PubMed  Google Scholar 

  55. Andersohn F, Garbe E. Cardiac and noncardiac fibrotic reactions caused by ergot-and nonergot-derived dopamine agonists. Mov Disord. 2009;24(1):129–33. https://doi.org/10.1002/mds.22385.

    Article  PubMed  Google Scholar 

  56. McElvaney NG, Wilcox PG, Churg A, Fleetham JA. Pleuropulmonary disease during bromocriptine treatment of Parkinson’s disease. Arch Intern Med. 1988;148(10):2231–6.

    Article  CAS  Google Scholar 

  57. Dewey RB 2nd, Reimold SC, O’Suilleabhain PE. Cardiac valve regurgitation with pergolide compared with nonergot agonists in Parkinson disease. Arch Neurol. 2007;64(3):377–80.

    Article  Google Scholar 

  58. d’Arcy JL, Coffey S, Loudon MA, Kennedy A, Pearson-Stuttard J, Birks J, et al. Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort Study. Eur Heart J. 2016;37(47):3515–22. https://doi.org/10.1093/eurheartj/ehw229.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484–91.

    Article  CAS  Google Scholar 

  60. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial [erratum appears in Arch Neurol. 2005 Mar;62(3):430]. Arch Neurol. 2004;61(7):1044–53.

    PubMed  Google Scholar 

  61. Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. Parkinson Study Group. JAMA. 2000;284(15):1931–8.

    Article  Google Scholar 

  62. Lieberman A, Olanow CW, Sethi K, Swanson P, Waters CH, Fahn S, et al. A multicenter trial of ropinirole as adjunct treatment for Parkinson’s disease. Ropinirole Study Group. Neurology. 1998;51(4):1057–62.

    Article  CAS  Google Scholar 

  63. Nomoto M, Iwaki H, Kondo H, Sakurai M. Efficacy and safety of rotigotine in elderly patients with Parkinson’s disease in comparison with the non-elderly: a post hoc analysis of randomized, double-blind, placebo-controlled trials. J Neurol. 2018;265(2):253–65. https://doi.org/10.1007/s00415-017-8671-0.

    Article  CAS  PubMed  Google Scholar 

  64. Schapira AH, Barone P, Hauser RA, Mizuno Y, Rascol O, Busse M, et al. Patient-reported convenience of once-daily versus three-times-daily dosing during long-term studies of pramipexole in early and advanced Parkinson’s disease. Eur J Neurol. 2013;20(1):50–6. https://doi.org/10.1111/j.1468-1331.2012.03712.x.

    Article  CAS  PubMed  Google Scholar 

  65. Giladi N, Boroojerdi B, Korczyn AD, Burn DJ, Clarke CE, Schapira AHV, et al. Rotigotine transdermal patch in early Parkinson’s disease: a randomized, double-blind, controlled study versus placebo and ropinirole. Mov Disord. 2007;22(16):2398–404.

    Article  Google Scholar 

  66. Mizuno Y, Nomoto M, Kondo T, Hasegawa K, Murata M, Takeuchi M, et al. Transdermal rotigotine in early stage Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Mov Disord. 2013;28(10):1447–50. https://doi.org/10.1002/mds.25537.

    Article  CAS  PubMed  Google Scholar 

  67. Mizuno Y, Nomoto M, Hasegawa K, Hattori N, Kondo T, Murata M, et al. Rotigotine vs ropinirole in advanced stage Parkinson’s disease: a double-blind study. Parkinsonism Relat Disord. 2014;20(12):1388–93. https://doi.org/10.1016/j.parkreldis.2014.10.005.

    Article  PubMed  Google Scholar 

  68. Wood LD. Clinical review and treatment of select adverse effects of dopamine receptor agonists in Parkinson’s disease. Drugs Aging. 2010;27(4):295–310. https://doi.org/10.2165/11318330-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  69. Elshoff JP, Cawello W, Andreas JO, Mathy FX, Braun M. An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson’s disease and restless legs syndrome. Drugs. 2015;75(5):487–501. https://doi.org/10.1007/s40265-015-0377-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen JJ, Swope DM, Dashtipour K, Lyons KE. Transdermal rotigotine: a clinically innovative dopamine-receptor agonist for the management of Parkinson’s disease. Pharmacotherapy. 2009;29(12):1452–67. https://doi.org/10.1592/phco.29.12.1452.

    Article  CAS  PubMed  Google Scholar 

  71. Mirapex ER® Full prescribing information. Boehringer Ingelheim Pharmaceuticals, Inc. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022421s003lbl.pdf. Accessed 8 July 2018.

  72. Requip® Full prescibing information. GlaxoSmithKline, Research Triangle Park. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020658s024s026s027s030s032lbl.pdf. Accessed 8 July 2018.

  73. Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet. 2000;39(4):243–54. https://doi.org/10.2165/00003088-200039040-00001.

    Article  CAS  PubMed  Google Scholar 

  74. Shulman LM, Minagar A, Rabinstein A, Weiner WJ. The use of dopamine agonists in very elderly patients with Parkinson’s disease. Mov Disord. 2000;15(4):664–8.

    Article  CAS  Google Scholar 

  75. Blandini F, Armentero MT. Dopamine receptor agonists for Parkinson’s disease. Expert Opin Investig Drugs. 2014;23(3):387–410. https://doi.org/10.1517/13543784.2014.869209.

    Article  CAS  PubMed  Google Scholar 

  76. Rinne UK, Bracco F, Chouza C, Dupont E, Gershanik O, Marti Masso JF, et al. Early treatment of Parkinson’s disease with cabergoline delays the onset of motor complications. Results of a double-blind levodopa controlled trial. The PKDS009 Study Group. Drugs. 1998;55(Suppl 1):23–30.

    Article  CAS  Google Scholar 

  77. Clarke CE, Deane KH. Cabergoline for levodopa-induced complications in Parkinson’s disease. Cochrane Database Syst Rev. 2001;1:CD001518. https://doi.org/10.1002/14651858.cd001518.

    Article  Google Scholar 

  78. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311(16):1670–83. https://doi.org/10.1001/jama.2014.3654.

    Article  CAS  PubMed  Google Scholar 

  79. Reichmann H, Herting B, Miller A, Sommer U. Switching and combining dopamine agonists. J Neural Transm. 2003;110(12):1393–400.

    Article  CAS  Google Scholar 

  80. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58.

    Article  CAS  Google Scholar 

  81. Parkinson’s Disease Research Group in the United Kingdom. Comparisons of therapeutic effects of levodopa, levodopa and selegiline, and bromocriptine in patients with early, mild Parkinson’s disease: three year interim report. BMJ. 1993;307(6902):469–72.

    Article  Google Scholar 

  82. Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol. 2006;63(12):1756–60. https://doi.org/10.1001/archneur.63.12.1756.

    Article  PubMed  Google Scholar 

  83. Quinn N, Critchley P, Marsden CD. Young onset Parkinson’s disease. Mov Disord. 1987;2(2):73–91. https://doi.org/10.1002/mds.870020201.

    Article  CAS  PubMed  Google Scholar 

  84. Kumar N, Van Gerpen JA, Bower JH, Ahlskog JE. Levodopa-dyskinesia incidence by age of Parkinson’s disease onset. Mov Disord. 2005;20(3):342–4. https://doi.org/10.1002/mds.20360.

    Article  PubMed  Google Scholar 

  85. Ahlskog JE. Seniors with Parkinson’s disease: initial medical treatment. J Clin Neurol. 2010;6(4):159–66. https://doi.org/10.3988/jcn.2010.6.4.159.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Van Gerpen JA, Kumar N, Bower JH, Weigand S, Ahlskog JE. Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976–1990. Arch Neurol. 2006;63(2):205–9. https://doi.org/10.1001/archneur.63.2.205.

    Article  PubMed  Google Scholar 

  87. Goetz CG, Schwid SR, Eberly SW, Oakes D, Shoulson I, Parkinson Study Group T, et al. Safety of rasagiline in elderly patients with Parkinson disease. Neurology. 2006;66(9):1427–9.

    Article  CAS  Google Scholar 

  88. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018;33(8):1248–66. https://doi.org/10.1002/mds.27372.

    Article  CAS  PubMed  Google Scholar 

  89. Mizuno Y, Yamamoto M, Kuno S, Hasegawa K, Hattori N, Kagimura T, et al. Efficacy and safety of extended- versus immediate-release pramipexole in Japanese patients with advanced and l-dopa-undertreated Parkinson disease: a double-blind, randomized trial. Clin Neuropharmacol. 2012;35(4):174–81. https://doi.org/10.1097/WNF.0b013e31825f77b9.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Z, Wang J, Zhang X, Chen S, Wang Z, Zhang B, et al. The efficacy and safety of ropinirole prolonged release tablets as adjunctive therapy in Chinese subjects with advanced Parkinson’s disease: a multicenter, double-blind, randomized, placebo-controlled study. Parkinsonism Relat Disord. 2013;19(11):1022–6. https://doi.org/10.1016/j.parkreldis.2013.07.009.

    Article  PubMed  Google Scholar 

  91. Ossig C, Reichmann H. Treatment of Parkinson’s disease in the advanced stage. J Neural Transm. 2013;120(4):523–9. https://doi.org/10.1007/s00702-013-1008-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stowe R, Ives N, Clarke CE, Deane K, Wheatley K, Gray R, et al. Evaluation of the efficacy and safety of adjuvant treatment to levodopa therapy in Parkinson s disease patients with motor complications. Cochrane Database Syst Rev. 2010;7:CD007166. https://doi.org/10.1002/14651858.cd007166.pub2.

    Article  Google Scholar 

  93. MacMahon DG. The initial drug treatment of older patients with Parkinson’s disease—consider an agonist, but don’t demonise dopa. Age Ageing. 2003;32(3):244–5.

    Article  Google Scholar 

  94. Inzelberg R, Schechtman E, Nisipeanu P. Cabergoline, pramipexole and ropinirole used as monotherapy in early Parkinson’s disease: an evidence-based comparison. Drugs Aging. 2003;20(11):847–55.

    Article  CAS  Google Scholar 

  95. Hietanen M, Teravainen H. The effect of age of disease onset on neuropsychological performance in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51(2):244–9.

    Article  CAS  Google Scholar 

  96. Fasano A, Guidubaldi A, De Nigris F, Bentivoglio AR. Safety and efficacy of rotigotine in individuals with Parkinson’s disease aged 75 and older. J Am Geriatr Soc. 2011;59(12):2386–7. https://doi.org/10.1111/j.1532-5415.2011.03689.x.

    Article  PubMed  Google Scholar 

  97. Woitalla D, Kassubek J, Timmermann L, Lauterbach T, Berkels R, Grieger F, et al. Reduction of gastrointestinal symptoms in Parkinson’s disease after a switch from oral therapy to rotigotine transdermal patch: a non-interventional prospective multicenter trial. Parkinsonism Relat Disord. 2015;21(3):199–204. https://doi.org/10.1016/j.parkreldis.2014.11.024.

    Article  PubMed  Google Scholar 

  98. Ritter JM. Cardiac safety, drug-induced QT prolongation and torsade de pointes (TdP). Br J Clin Pharmacol. 2012;73(3):331–4. https://doi.org/10.1111/j.1365-2125.2012.04193.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Camilleri M, Parkman HP, Shafi MA, Abell TL, Gerson L, American College of G. Clinical guideline: management of gastroparesis. Am J Gastroenterol. 2013;108(1):18–37. https://doi.org/10.1038/ajg.2012.373.

    Article  CAS  PubMed  Google Scholar 

  100. Umehara T, Toyoda C, Oka H. Postprandial hypotension in de novo Parkinson’s disease: a comparison with orthostatic hypotension. Parkinsonism Relat Disord. 2014;20(6):573–7. https://doi.org/10.1016/j.parkreldis.2014.02.007.

    Article  PubMed  Google Scholar 

  101. Bonuccelli U, Lucetti C, Del Dotto P, Ceravolo R, Gambaccini G, Bernardini S, et al. Orthostatic hypotension in de novo Parkinson disease. Arch Neurol. 2003;60(10):1400–4. https://doi.org/10.1001/archneur.60.10.1400.

    Article  PubMed  Google Scholar 

  102. Rutan GH, Hermanson B, Bild DE, Kittner SJ, LaBaw F, Tell GS. Orthostatic hypotension in older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Hypertension. 1992;19(6 Pt 1):508–19.

    Article  CAS  Google Scholar 

  103. Kujawa K, Leurgans S, Raman R, Blasucci L, Goetz CG. Acute orthostatic hypotension when starting dopamine agonists in Parkinson’s disease. Arch Neurol. 2000;57(10):1461–3.

    Article  CAS  Google Scholar 

  104. Mehagnoul-Schipper DJ, Boerman RH, Hoefnagels WH, Jansen RW. Effect of levodopa on orthostatic and postprandial hypotension in elderly Parkinsonian patients. J Gerontol A Biol Sci Med Sci. 2001;56(12):M749–55.

    Article  CAS  Google Scholar 

  105. Lang AE. Acute orthostatic hypotension when starting dopamine agonist therapy in parkinson disease: the role of domperidone therapy. Arch Neurol. 2001;58(5):835.

    Article  CAS  Google Scholar 

  106. Schoffer KL, Henderson RD, O’Maley K, O’Sullivan JD. Nonpharmacological treatment, fludrocortisone, and domperidone for orthostatic hypotension in Parkinson’s disease. Mov Disord. 2007;22(11):1543–9.

    Article  Google Scholar 

  107. Perez-Lloret S, Rey MV, Crispo J, Krewski D, Lapeyre-Mestre M, Montastruc JL, et al. Risk of heart failure following treatment with dopamine agonists in Parkinson’s disease patients. Expert Opin Drug Saf. 2014;13(3):351–60. https://doi.org/10.1517/14740338.2014.888057.

    Article  CAS  PubMed  Google Scholar 

  108. Investigators PSGCC. Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Arch Neurol. 2009;66(5):563-70.

  109. Biglan KM, Holloway RG Jr, McDermott MP, Richard IH, Parkinson Study Group C-PDI. Risk factors for somnolence, edema, and hallucinations in early Parkinson disease. Neurology. 2007;69(2):187–95.

    Article  Google Scholar 

  110. Schrag AE, Brooks DJ, Brunt E, Fuell D, Korczyn A, Poewe W, et al. The safety of ropinirole, a selective nonergoline dopamine agonist, in patients with Parkinson’s disease. Clin Neuropharmacol. 1998;21(3):169–75.

    CAS  PubMed  Google Scholar 

  111. Ceravolo R, Rossi C, Del Prete E, Bonuccelli U. A review of adverse events linked to dopamine agonists in the treatment of Parkinson’s disease. Expert Opin Drug Saf. 2016;15(2):181–98. https://doi.org/10.1517/14740338.2016.1130128.

    Article  CAS  PubMed  Google Scholar 

  112. Razmy A, Lang AE, Shapiro CM. Predictors of impaired daytime sleep and wakefulness in patients with Parkinson disease treated with older (ergot) vs newer (nonergot) dopamine agonists. Arch Neurol. 2004;61(1):97–102. https://doi.org/10.1001/archneur.61.1.97.

    Article  PubMed  Google Scholar 

  113. Frucht S, Rogers JD, Greene PE, Gordon MF, Fahn S. Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology. 1999;52(9):1908–10.

    Article  CAS  Google Scholar 

  114. Trenkwalder C, Kies B, Rudzinska M, Fine J, Nikl J, Honczarenko K, et al. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord. 2011;26(1):90–9. https://doi.org/10.1002/mds.23441.

    Article  PubMed  Google Scholar 

  115. Garcia Ruiz PJ. Sleep attack associated to rotigotine. Clin Neuropharmacol. 2009;32(6):365. https://doi.org/10.1097/WNF.0b013e3181a946d5.

    Article  PubMed  Google Scholar 

  116. Ferreira JJ, Desboeuf K, Galitzky M, Thalamas C, Brefel-Courbon C, Fabre N, et al. Sleep disruption, daytime somnolence and ‘sleep attacks’ in Parkinson’s disease: a clinical survey in PD patients and age-matched healthy volunteers. Eur J Neurol. 2006;13(3):209–14. https://doi.org/10.1111/j.1468-1331.2006.01262.x.

    Article  CAS  PubMed  Google Scholar 

  117. Bracco F, Battaglia A, Chouza C, Dupont E, Gershanik O, Marti Masso JF, et al. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: final results of a 5-year, double-blind, levodopa-controlled study. CNS Drugs. 2004;18(11):733–46.

    Article  CAS  Google Scholar 

  118. Friedman JH, Factor SA. Atypical antipsychotics in the treatment of drug-induced psychosis in Parkinson’s disease. Mov Disord. 2000;15(2):201–11.

    Article  CAS  Google Scholar 

  119. Alvir JM, Lieberman JA, Safferman AZ, Schwimmer JL, Schaaf JA. Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med. 1993;329(3):162–7. https://doi.org/10.1056/nejm199307153290303.

    Article  CAS  PubMed  Google Scholar 

  120. Shah AA, Aftab A, Coverdale J. QTc prolongation with antipsychotics: is routine ECG monitoring recommended? J Psychiatr Pract. 2014;20(3):196–206. https://doi.org/10.1097/01.pra.0000450319.21859.6d.

    Article  PubMed  Google Scholar 

  121. Warren N, O’Gorman C, Lehn A, Siskind D. Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. J Neurol Neurosurg Psychiatry. 2017;88(12):1060–4. https://doi.org/10.1136/jnnp-2017-315985.

    Article  PubMed  Google Scholar 

  122. Grall-Bronnec M, Victorri-Vigneau C, Donnio Y, Leboucher J, Rousselet M, Thiabaud E, et al. Dopamine agonists and impulse control disorders: a complex association. Drug Saf. 2018;41(1):19–75. https://doi.org/10.1007/s40264-017-0590-6.

    Article  CAS  PubMed  Google Scholar 

  123. Carriere N, Kreisler A, Dujardin K, Destee A, Defebvre L. Impulse control disorders in Parkinson’s disease: a cohort of 35 patients. Rev Neurol (Paris). 2012;168(2):143–51. https://doi.org/10.1016/j.neurol.2011.07.010.

    Article  CAS  PubMed  Google Scholar 

  124. Bastiaens J, Dorfman BJ, Christos PJ, Nirenberg MJ. Prospective cohort study of impulse control disorders in Parkinson’s disease. Mov Disord. 2013;28(3):327–33. https://doi.org/10.1002/mds.25291.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Perez-Lloret S, Rey MV, Fabre N, Ory F, Spampinato U, Brefel-Courbon C, et al. Prevalence and pharmacological factors associated with impulse-control disorder symptoms in patients with Parkinson disease. Clin Neuropharmacol. 2012;35(6):261–5. https://doi.org/10.1097/WNF.0b013e31826e6e6d.

    Article  PubMed  Google Scholar 

  126. Sohtaoglu M, Demiray DY, Kenangil G, Ozekmekci S, Erginoz E. Long term follow-up of Parkinson’s disease patients with impulse control disorders. Parkinsonism Relat Disord. 2010;16(5):334–7. https://doi.org/10.1016/j.parkreldis.2010.02.006.

    Article  PubMed  Google Scholar 

  127. Todorova A, Samuel M, Brown RG, Chaudhuri KR. Infusion therapies and development of impulse control disorders in advanced Parkinson disease: clinical experience after 3 years’ follow-up. Clin Neuropharmacol. 2015;38(4):132–4. https://doi.org/10.1097/wnf.0000000000000091.

    Article  PubMed  Google Scholar 

  128. Martinez-Martin P, Reddy P, Katzenschlager R, Antonini A, Todorova A, Odin P, et al. EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. Mov Disord. 2015;30(4):510–6. https://doi.org/10.1002/mds.26067.

    Article  CAS  PubMed  Google Scholar 

  129. Rabinak CA, Nirenberg MJ. Dopamine agonist withdrawal syndrome in Parkinson disease. Arch Neurol. 2010;67(1):58–63. https://doi.org/10.1001/archneurol.2009.294.

    Article  PubMed  Google Scholar 

  130. Cunnington AL, White L, Hood K. Identification of possible risk factors for the development of dopamine agonist withdrawal syndrome in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(9):1051–2. https://doi.org/10.1016/j.parkreldis.2012.05.012.

    Article  PubMed  Google Scholar 

  131. Poewe W, Wenning GK. Apomorphine: an underutilized therapy for Parkinson’s disease. Mov Disord. 2000;15(5):789–94.

    Article  CAS  Google Scholar 

  132. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, et al. Continuous intrajejunal infusion of levodopa–carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–9. https://doi.org/10.1016/s1474-4422(13)70293-x.

    Article  CAS  PubMed  Google Scholar 

  133. Buongiorno M, Antonelli F, Camara A, Puente V, de Fabregues-Nebot O, Hernandez-Vara J, et al. Long-term response to continuous duodenal infusion of levodopa/carbidopa gel in patients with advanced Parkinson disease: the Barcelona registry. Parkinsonism Relat Disord. 2015;21(8):871–6. https://doi.org/10.1016/j.parkreldis.2015.05.014.

    Article  PubMed  Google Scholar 

  134. Titova N, Chaudhuri KR. Apomorphine therapy in Parkinson’s and future directions. Parkinsonism Relat Disord. 2016;33(Suppl 1):S56–60. https://doi.org/10.1016/j.parkreldis.2016.11.013.

    Article  PubMed  Google Scholar 

  135. Sesar A, Fernandez-Pajarin G, Ares B, Rivas MT, Castro A. Continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease: 10-year experience with 230 patients. J Neurol. 2017;264(5):946–54. https://doi.org/10.1007/s00415-017-8477-0.

    Article  CAS  PubMed  Google Scholar 

  136. Manson AJ, Hanagasi H, Turner K, Patsalos PN, Carey P, Ratnaraj N, et al. Intravenous apomorphine therapy in Parkinson’s disease: clinical and pharmacokinetic observations. Brain. 2001;124(Pt 2):331–40.

    Article  CAS  Google Scholar 

  137. Kulisevsky J, Garcia-Sanchez C, Berthier ML, Barbanoj M, Pascual-Sedano B, Gironell A, et al. Chronic effects of dopaminergic replacement on cognitive function in Parkinson’s disease: a two-year follow-up study of previously untreated patients. Mov Disord. 2000;15(4):613–26.

    Article  CAS  Google Scholar 

  138. Isaacson S, Lew M, Ondo W, Hubble J, Clinch T, Pagan F. Apomorphine subcutaneous injection for the management of morning akinesia in Parkinson’s disease. Mov Disord Clin Pract. 2017;4(1):78–83. https://doi.org/10.1002/mdc3.12350.

    Article  PubMed  Google Scholar 

  139. Boyle A, Ondo W. Role of apomorphine in the treatment of Parkinson’s disease. CNS Drugs. 2015;29(2):83–9. https://doi.org/10.1007/s40263-014-0221-z.

    Article  CAS  PubMed  Google Scholar 

  140. Kimber TE, Fang J, Huddy LJ, Thompson PD. Long-term adherence to apomorphine infusion in patients with Parkinson disease: a 10-year observational study. Intern Med J. 2017;47(5):570–3. https://doi.org/10.1111/imj.13378.

    Article  CAS  PubMed  Google Scholar 

  141. Kanovsky P, Kubova D, Bares M, Hortova H, Streitova H, Rektor I, et al. Levodopa-induced dyskinesias and continuous subcutaneous infusions of apomorphine: results of a two-year, prospective follow-up. Mov Disord. 2002;17(1):188–91. https://doi.org/10.1002/mds.1276.

    Article  PubMed  Google Scholar 

  142. Katzenschlager R, Poewe W, Rascol O, Trenkwalder C, Deuschl G, Chaudhuri KR, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018;17(9):749–59. https://doi.org/10.1016/s1474-4422(18)30239-4.

    Article  CAS  PubMed  Google Scholar 

  143. Morgante L, Basile G, Epifanio A, Spina E, Antonini A, Stocchi F, et al. Continuous apomorphine infusion (CAI) and neuropsychiatric disorders in patients with advanced Parkinson’s disease: a follow-up of two years. Arch Gerontol Geriatr Suppl. 2004;9:291–6. https://doi.org/10.1016/j.archger.2004.04.039.

    Article  CAS  Google Scholar 

  144. Lang AE, Rodriguez RL, Boyd JT, Chouinard S, Zadikoff C, Espay AJ, et al. Integrated safety of levodopa–carbidopa intestinal gel from prospective clinical trials. Mov Disord. 2016;31(4):538–46. https://doi.org/10.1002/mds.26485.

    Article  CAS  PubMed  Google Scholar 

  145. Udd M, Lyytinen J, Eerola-Rautio J, Kenttämies A, Lindström O, Kylänpää L, et al. Problems related to levodopa–carbidopa intestinal gel treatment in advanced Parkinson’s disease. Brain Behav. 2017;7(7):e00737. https://doi.org/10.1002/brb3.737.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Antonini A, Fung VSC, Boyd JT, Slevin JT, Hall C, Chatamra K, et al. Effect of levodopa–carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov Disord. 2016;31(4):530–7. https://doi.org/10.1002/mds.26528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. DeLong MR, Huang KT, Gallis J, Lokhnygina Y, Parente B, Hickey P, et al. Effect of advancing age on outcomes of deep brain stimulation for Parkinson disease. JAMA Neurol. 2014;71(10):1290–5. https://doi.org/10.1001/jamaneurol.2014.1272.

    Article  PubMed  Google Scholar 

  148. Rughani AI, Hodaie M, Lozano AM. Acute complications of movement disorders surgery: effects of age and comorbidities. Mov Disord. 2013;28(12):1661–7. https://doi.org/10.1002/mds.25610.

    Article  PubMed  Google Scholar 

  149. de Souza R-M, Moro E, Lang AE, Schapira AH. Timing of deep brain stimulation in Parkinson disease: a need for reappraisal? Ann Neurol. 2013;73(5):565–75. https://doi.org/10.1002/ana.23890.

    Article  Google Scholar 

  150. Aquino CC, Lozano AM, Lang AE. Deep brain stimulation for Parkinson disease in elderly individuals. JAMA Neurol. 2015;72(3):367. https://doi.org/10.1001/jamaneurol.2014.4216.

    Article  PubMed  Google Scholar 

  151. Russmann H, Ghika J, Villemure JG, Robert B, Bogousslavsky J, Burkhard PR, et al. Subthalamic nucleus deep brain stimulation in Parkinson disease patients over age 70 years. Neurology. 2004;63(10):1952–4.

    Article  CAS  Google Scholar 

  152. Derost PP, Ouchchane L, Morand D, Ulla M, Llorca PM, Barget M, et al. Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? Neurology. 2007;68(17):1345–55. https://doi.org/10.1212/01.wnl.0000260059.77107.c2.

    Article  PubMed  Google Scholar 

  153. Kvernmo T, Hartter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006;28(8):1065–78. https://doi.org/10.1016/j.clinthera.2006.08.004.

    Article  CAS  PubMed  Google Scholar 

  154. Agundez JA, Garcia-Martin E, Alonso-Navarro H, Jimenez-Jimenez FJ. Anti-Parkinson’s disease drugs and pharmacogenetic considerations. Expert Opin Drug Metab Toxicol. 2013;9(7):859–74. https://doi.org/10.1517/17425255.2013.789018.

    Article  CAS  PubMed  Google Scholar 

  155. Abassi ZA, Binah O, Youdim MB. Cardiovascular activity of rasagiline, a selective and potent inhibitor of mitochondrial monoamine oxidase B: comparison with selegiline. Br J Pharmacol. 2004;143(3):371–8.

    Article  CAS  Google Scholar 

  156. Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol. 2002;59(12):1937–43.

    Article  Google Scholar 

  157. Castro Caldas A, Teodoro T, Ferreira JJ. The launch of opicapone for Parkinson’s disease: negatives versus positives. Expert Opin Drug Saf. 2018;17(3):331–7. https://doi.org/10.1080/14740338.2018.1433659.

    Article  PubMed  Google Scholar 

  158. Cruse B, Morales-Briceño H, Chang FCF, Mahant N, Ha AD, Kim SD, et al. 24-hour levodopa–carbidopa intestinal gel may reduce troublesome dyskinesia in advanced Parkinson’s disease. NPJ Parkinson’s Dis. 2018;4(1):34. https://doi.org/10.1038/s41531-018-0070-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Dominic Latt.

Ethics declarations

Funding

No specific funding was received for this work by Mark Dominic Latt, Simon Lewis, Olfat Zekry or Victor S. C. Fung.

Conflict of interest

Mark Dominic Latt and Olfat Zekry report no conflicts of interest or additional disclosures. Simon Lewis reports honoraria from Stada and Teva. Victor S. C. Fung is a member of advisory boards for Abbvie, Allergan, Ipsen, Merz, Stada, Teva and UCB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latt, M.D., Lewis, S., Zekry, O. et al. Factors to Consider in the Selection of Dopamine Agonists for Older Persons with Parkinson’s Disease. Drugs Aging 36, 189–202 (2019). https://doi.org/10.1007/s40266-018-0629-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-018-0629-0

Navigation