Skip to main content
Log in

Parkinson’s Disease in the Era of Personalised Medicine: One Size Does Not Fit All

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The concept of personalised medicine in Parkinson’s disease has arrived where the implications of findings made in research are certain to have an increasing impact upon clinical practice. Disease heterogeneity in Parkinson’s disease has been well described and lends itself to the construct of personalised medicine where it is hypothesised that a greater understanding of genetic and pathophysiological contributions may underpin the sub-groups described. This in turn has driven the development of potentially individualised disease-modifying therapies where, for example, we are beginning to see treatments that target patients with Parkinson’s disease with specific genetic mutations. Furthermore, clinicians are increasingly recognising the need to tailor their management approach to patients depending on their age of presentation, acknowledging differential side-effect profiles and responses especially when considering the use of device-assisted technologies such as infusion or surgery. Clearly, individualising the treatment of both motor and non-motor symptoms will remain imperative but, in the future, personalised medicine may provide clearer insights into various aspects of a patient’s symptomatology, disease course and thus the best therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 2009;154(6):277–87.

    Article  PubMed  Google Scholar 

  2. Obeso JA, Stamelou M, Goetz CG, et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord. 2017;32(9):1264–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Titova N, Padmakumar C, Lewis SJ, et al. Parkinson’s: a syndrome rather than a disease? J Neural Transm (Vienna). 2017;124(8):907–14.

    Article  CAS  Google Scholar 

  4. Ehgoetz Martens KA, Shine JM, Walton CC, et al. Evidence for subtypes of freezing of gait in Parkinson’s disease. Mov Disord. 2018;33(7):1174–8.

    Article  PubMed  Google Scholar 

  5. Mu J, Chaudhuri KR, Bielza C, et al. Parkinson’s disease subtypes identified from cluster analysis of motor and non-motor symptoms. Front Aging Neurosci. 2017;9:301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lawton M, Baig F, Rolinski M, et al. Parkinson’s disease subtypes in the Oxford Parkinson Disease Centre (OPDC) discovery cohort. J Parkinsons Dis. 2015;5(2):269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lewis SJ, Foltynie T, Blackwell AD, et al. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry. 2005;76(3):343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erro R, Vitale C, Amboni M, et al. The heterogeneity of early Parkinson’s disease: a cluster analysis on newly diagnosed untreated patients. PLoS One. 2013;8(8):e70244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Szeto JY, O’Callaghan C, Shine JM, et al. The relationships between mild cognitive impairment and phenotype in Parkinson’s disease. NPJ Parkinsons Dis. 2015;1:15015.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mestre TA, Eberly S, Tanner C, et al. Reproducibility of data-driven Parkinson’s disease subtypes for clinical research. Parkinsonism Relat Disord. 2018. https://doi.org/10.1016/j.parkreldis.2018.07.009 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  11. Selikhova M, Williams DR, Kempster PA, et al. A clinico-pathological study of subtypes in Parkinson’s disease. Brain. 2009;132(Pt 11):2947–57.

    Article  CAS  PubMed  Google Scholar 

  12. Fahn S, Jankovic J, Hallett M. Principles and practice of movement disorders. 2nd ed. Edinburgh: Elsevier/Saunders; 2011. p. 548 (vii).

    Google Scholar 

  13. Sulzer D, Alcalay RN, Garretti F, et al. T cells from patients with Parkinson’s disease recognize alpha-synuclein peptides. Nature. 2017;546(7660):656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dzamko N, Geczy CL, Halliday GM. Inflammation is genetically implicated in Parkinson’s disease. Neuroscience. 2015;302:89–102.

    Article  CAS  PubMed  Google Scholar 

  15. Alessi DR, Sammler E. LRRK2 kinase in Parkinson’s disease. Science. 2018;360(6384):36–7.

    Article  CAS  PubMed  Google Scholar 

  16. O’Donnell PH, Ratain MJ. Germline pharmacogenomics in oncology: decoding the patient for targeting therapy. Mol Oncol. 2012;6(2):251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atashrazm F, Hammond D, Perera G, et al. Reduced glucocerebrosidase activity in monocytes from patients with Parkinson’s disease. Sci Rep. 2018;8(1):15446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Titova N, Chaudhuri KR. Personalized medicine and nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol. 2017;134:1257–81.

    Article  PubMed  Google Scholar 

  19. Nandipati S, Litvan I. Environmental exposures and Parkinson’s disease. Int J Environ Res Public Health. 2016;13(9):881. https://doi.org/10.3390/ijerph13090881.

    Article  CAS  PubMed Central  Google Scholar 

  20. Antonini A, Moro E, Godeiro C, et al. Medical and surgical management of advanced Parkinson’s disease. Mov Disord. 2018;33(6):900–8.

    Article  PubMed  Google Scholar 

  21. Giugni JC, Okun MS. Treatment of advanced Parkinson’s disease. Curr Opin Neurol. 2014;27(4):450–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silberstein P, Bittar RG, Boyle R, et al. Deep brain stimulation for Parkinson’s disease: Australian referral guidelines. J Clin Neurosci. 2009;16(8):1001–8.

    Article  PubMed  Google Scholar 

  23. Trenkwalder C, Chaudhuri KR, Garcia Ruiz PJ, et al. Expert Consensus Group report on the use of apomorphine in the treatment of Parkinson’s disease: clinical practice recommendations. Parkinsonism Relat Disord. 2015;21(9):1023–30.

    Article  PubMed  Google Scholar 

  24. Fung VS. New and emerging treatments for Parkinson disease. Med J Aust. 2015;202(6):283–4.

    Article  PubMed  Google Scholar 

  25. Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol. 2014;71(4):499–504.

    Article  PubMed  Google Scholar 

  26. Schrag A, Hovris A, Morley D, et al. Young- versus older-onset Parkinson’s disease: impact of disease and psychosocial consequences. Mov Disord. 2003;18(11):1250–6.

    Article  PubMed  Google Scholar 

  27. Calne SM, Kumar A. Young onset Parkinson’s disease: practical management of medical issues. Parkinsonism Relat Disord. 2008;14(2):133–42.

    Article  PubMed  Google Scholar 

  28. Seier M, Hiller A. Parkinson’s disease and pregnancy: an updated review. Parkinsonism Relat Disord. 2017;40:11–7.

    Article  PubMed  Google Scholar 

  29. Chen JJ, Swope DM, Dashtipour K. Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther. 2007;29(9):1825–49.

    Article  CAS  PubMed  Google Scholar 

  30. Weintraub D, David AS, Evans AH, et al. Clinical spectrum of impulse control disorders in Parkinson’s disease. Mov Disord. 2015;30(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lenka A, Padmakumar C, Pal PK. Treatment of older Parkinson’s disease. Int Rev Neurobiol. 2017;132:381–405.

    Article  PubMed  Google Scholar 

  32. Lewis SJ, Gangadharan S, Padmakumar CP. Parkinson’s disease in the older patient. Clin Med (Lond). 2016;16(4):376–8.

    Article  Google Scholar 

  33. Meng Y, Voisin MR, Suppiah S, et al. Is there a role for MR-guided focused ultrasound in Parkinson’s disease? Mov Disord. 2018;33(4):575–9.

    Article  PubMed  Google Scholar 

  34. Williams DR, Evans AH, Fung VS, et al. Practical approaches to commencing device-assisted therapies for Parkinson disease in Australia. Intern Med J. 2017;47(10):1107–13.

    Article  PubMed  Google Scholar 

  35. Lee JY, Lee EK, Park SS, et al. Association of DRD3 and GRIN2B with impulse control and related behaviors in Parkinson’s disease. Mov Disord. 2009;24(12):1803–10.

    Article  PubMed  Google Scholar 

  36. Lewis SJ. Disease-modifying approaches for Parkinson disease. Med J Aust. 2018;208(9):377–8.

    Article  PubMed  Google Scholar 

  37. Stebbins GT, Goetz CG, Burn DJ, et al. How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov Disord. 2013;28(5):668–70.

    Article  PubMed  Google Scholar 

  38. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pagano G, Ferrara F, Brooks DJ, et al. Age at onset and Parkinson disease phenotype. Neurology. 2016;86(15):1400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thaler A, Bregman N, Gurevich T, et al. Parkinson’s disease phenotype is influenced by the severity of the mutations in the GBA gene. Parkinsonism Relat Disord. 2018;55:45–9.

    Article  PubMed  Google Scholar 

  41. Ferreira M, Massano J. An updated review of Parkinson’s disease genetics and clinicopathological correlations. Acta Neurol Scand. 2017;135(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  42. O’Regan G, deSouza RM, Balestrino R, et al. Glucocerebrosidase mutations in Parkinson disease. J Parkinsons Dis. 2017;7(3):411–22.

    Article  CAS  PubMed  Google Scholar 

  43. Nyholm D. Duodopa® treatment for advanced Parkinson’s disease: a review of efficacy and safety. Parkinsonism Relat Disord. 2012;18(8):916–29.

    Article  PubMed  Google Scholar 

  44. Katzenschlager R, Poewe W, Rascol O, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018;17(9):749–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. G. Lewis.

Ethics declarations

Funding

Lauren E. Ryden receives a salary from the University of Sydney, ForeFront group and is currently completing a Neurodegenerative Disease Fellowship at the Brain and Mind Centre, Sydney, NSW, Australia. Simon J.G. Lewis is supported by an NHMRC-ARC Dementia Fellowship (#1110414) and funding to ForeFront, a collaborative research group at the Brain and Mind Centre, University of Sydney, from the NHMRC programme (#1132524), Dementia Research Team (#1095127), NeuroSleep Centre of Research Excellence (#1060992) grants and a Sydney Research Excellence Initiative 2020 grant. No sources of funding were received for the preparation of this article.

Conflict of interest

Lauren E. Ryden and Simon J. G. Lewis have no conflicts of interest that are directly relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryden, L.E., Lewis, S.J.G. Parkinson’s Disease in the Era of Personalised Medicine: One Size Does Not Fit All. Drugs Aging 36, 103–113 (2019). https://doi.org/10.1007/s40266-018-0624-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-018-0624-5

Navigation