Advertisement

Drugs & Aging

, Volume 35, Issue 5, pp 399–408 | Cite as

A Glimpse into Uveitis in the Aging Eye: Pathophysiology, Clinical Presentation and Treatment Considerations

  • Elizabeth Akinsoji
  • Raquel Goldhardt
  • Anat Galor
Review Article
  • 60 Downloads

Abstract

Uveitis describes a group of inflammatory conditions of the eye that have various underlying causes and clinical presentations. Susceptibilities to uveitis in the elderly may be attributed to age-related risk factors such as immunosenescence, increased immunological inflammatory mediators, and autoimmunity. Overall, anterior uveitis is more common than posterior and panuveitis in the general population and also in the elderly. Some causes of uveitis in the elderly are herpes simplex virus, ocular ischemic syndrome, sarcoidosis, and central nervous system lymphoma, and these will be discussed in detail herein. Eye care professionals need to consider the wide differential for uveitis, obtain the appropriate history, conduct a detailed clinical examination, and tailor management to the clinical presentation and underlying cause of disease. The challenges of polypharmacy and nonadherence in the elderly impact patient outcomes and must be taken into consideration when considering treatment.

Notes

Compliance with Ethical Standards

Conflict of interest

No conflicting relationship exists for any author.

Financial support

Supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Clinical Sciences Research EPID-006-15S (Dr. Galor), R01EY026174 (Dr. Galor), NIH Center Core Grant P30EY014801 and Research to Prevent Blindness Unrestricted Grant.

References

  1. 1.
    Abdulaal MR, Abiad BH, Hamam RN. Uveitis in the aging eye: incidence, patterns, and differential diagnosis. J Ophthalmol. 2015;2015:509456.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    National Eye Institute. Facts about uveitis. 2018. https://nei.nih.gov/health/uveitis/uveitis.
  3. 3.
    Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature Working G. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140:509–16.CrossRefPubMedGoogle Scholar
  4. 4.
    Gupta R, Murray PI. Chronic non-infectious uveitis in the elderly: epidemiology, pathophysiology and management. Drugs Aging. 2006;23:535–58.CrossRefPubMedGoogle Scholar
  5. 5.
    American Academy of Ophthalmology. Intermediate uveitis in children. 2016. https://www.aao.org/eyenet/article/intermediate-uveitis-in-children.)
  6. 6.
    Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol. 2007;42:385–90.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lesourd B, Mazari L. Nutrition and immunity in the elderly. Proc Nutr Soc. 1999;58:685–95.CrossRefPubMedGoogle Scholar
  8. 8.
    Guidi N, Sacma M, Ständker L, Soller K, Marka G, Eiwen K, Weiss JM, Kirchhoff F, Weil T, Cancelas JA, Florian MC, Geiger H. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36(7):840–53.  https://doi.org/10.15252/embj.201694969.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ventura MT, Casciaro M, Gangemi S, Buquicchio R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Allergy. 2017;15:21.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085.  https://doi.org/10.1098/rspb.2014.3085.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wulf HC, Sandby-Møller J, Kobayasi T, Gniadecki R. Skin aging and natural photoprotection. Micron. 2004;35:185–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Chandra RK. Nutrition and immunity in the elderly. Nutr Rev. 1992;50:367–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Malek TR. The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol. 2003;74:961–5.CrossRefPubMedGoogle Scholar
  14. 14.
    The origins of memory T cells. Nature, 2017. 2018, at https://www.nature.com/articles/d41586-017-08280-8.
  15. 15.
    Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature, 2017. 2018, at https://www.nature.com/articles/nature25144.
  16. 16.
    Boyman O, Cho JH, Sprent J. The role of interleukin-2 in memory CD8 cell differentiation. Adv Exp Med Biol. 2010;684:28–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Salam N, Rane S, Das R, et al. T cell ageing: effects of age on development, survival and function. Indian J Med Res. 2013;138:595–608.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Woodland DL, Kohlmeier JE. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol. 2009;9:153–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci. 2003;100:15053–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Forthal DN. Functions of antibodies. Microbiol Spectr. 2014;2:1–17.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Boren E, Gershwin ME. Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev. 2004;3:401–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Attanasio R, Brasky KM, Robbins SH, Jayashankar L, Nash RJ, Butler TM. Age-related autoantibody production in a nonhuman primate model. Clin Exp Immunol. 2001;123:361–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A. 2014;69:S4–9.CrossRefGoogle Scholar
  24. 24.
    Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995;270:1189–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Ghasemi H. Roles of IL-6 in ocular inflammation: a review. Ocul Immunol Inflamm. 2018;26:37–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Directors Assoc. 2013;14:877–82.CrossRefGoogle Scholar
  27. 27.
    Mau T, Yung R. Adipose tissue inflammation in aging. Exp Gerontol. 2018;105:27–31.CrossRefPubMedGoogle Scholar
  28. 28.
    Busso N, So A. Gout. Mechanisms of inflammation in gout. Arthritis Res Ther. 2010;12:206.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stacy S, Krolick KA, Infante AJ, Kraig E. Immunological memory and late onset autoimmunity. Mech Ageing Dev. 2002;123:975–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Hylkema HA. The role of the immune system in uveitis induced in animals. Doc Ophthalmol Adv Ophthalmol. 1988;70:339–51.CrossRefGoogle Scholar
  31. 31.
    Ildefonso CJ, Biswal MR, Ahmed CM, Lewin AS. The NLRP3 inflammasome and its role in age-related macular degeneration. Adv Exp Med Biol. 2016;854:59–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Reeves SW, Sloan FA, Lee PP, Jaffe GJ. Uveitis in the elderly: epidemiological data from the National Long-term Care Survey Medicare Cohort. Ophthalmology. 2006;113(307):e1.Google Scholar
  33. 33.
    Hoeksema L, Los LI. Vision-related quality of life in herpetic anterior uveitis patients. PloS One. 2014;9:e85224.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Foster CS, Vitale AT. Diagnosis and treatment of uveitis. Jaypee Highlights Medical Publishers, Inc. 2013.Google Scholar
  35. 35.
    American Academy of Ophthalmology (Eye Wiki). Herpes simplex virus keratitis. 2017. http://eyewiki.aao.org/Herpes_simplex_uveitis.
  36. 36.
    Nalcacioglu-Yüksekkaya P, Ozdal PC, Teke MY, Kara C, Ozturk F. Presumed herpetic anterior uveitis: a study with retrospective analysis of 79 cases. Eur J Ophthalmol. 2013;24:14–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Anwar Z, Galor A, Albini TA, Miller D, Perez V, Davis JL. The diagnostic utility of anterior chamber paracentesis with polymerase chain reaction in anterior uveitis. Am J Ophthalmol. 2013;155:781–6.CrossRefPubMedGoogle Scholar
  38. 38.
    The Herpetic Eye Disease Study Group. A controlled trial of oral acyclovir for iridocyclitis caused by herpes simplex virus. Arch Ophthalmol. 1996;114:1065–72.CrossRefGoogle Scholar
  39. 39.
    Bonfioli AA, Eller AW. Acute retinal necrosis. Semin Ophthalmol. 2005;20:155–60.CrossRefPubMedGoogle Scholar
  40. 40.
    Brown GC, Magargal LE. The ocular ischemic syndrome. Clinical, fluorescein angiographic and carotid angiographic features. Int Ophthalmol. 1988;11:239–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Terelak-Borys B, Skonieczna K, Grabska-Liberek I. Ocular ischemic syndrome—a systematic review. Med Sci Monit Int Med J Exp Clin Res. 2012;18:138–44.Google Scholar
  42. 42.
    Magargal LE, Sanborn GE, Zimmerman A. Venous stasis retinopathy associated with embolic obstruction of the central retinal artery. J Clin Neuro Ophthalmol. 1982;2:113–8.Google Scholar
  43. 43.
    Pasadhika S, Rosenbaum JT. Ocular sarcoidosis. Clin Chest Med. 2015;36:669–83.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Acharya NR, Browne EN, Rao N, Mochizuki M. Distinguishing features of ocular sarcoidosis in an international cohort of uveitis patients. Ophthalmology. 2018;125:119–26.CrossRefPubMedGoogle Scholar
  45. 45.
    Kefella H, Luther D, Hainline C. Ophthalmic and neuro-ophthalmic manifestations of sarcoidosis. Curr Opin Ophthalmol. 2017;28:587–94.CrossRefPubMedGoogle Scholar
  46. 46.
    Rossman MD, Thompson B, Frederick M, et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet. 2003;73:720–35.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pathology and pathogenesis of sarcoidosis. 2017. https://www.uptodate.com/contents/pathology-and-pathogenesis-of-sarcoidosis.
  48. 48.
    Crick RP, Hoyle C, Smellie H. The eyes in sarcoidosis. Br J Ophthalmol. 1961;45:461–81.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gould H, Kaufman HE. Sarcoid of the fundus. Arch Ophthalmol (Chicago, Ill: 1960). 1961;65:453–6.CrossRefGoogle Scholar
  50. 50.
    Mehta H, Sim DA, Keane PA, et al. Structural changes of the choroid in sarcoid- and tuberculosis-related granulomatous uveitis. Eye (Lond, Engl). 2015;29:1060–8.CrossRefGoogle Scholar
  51. 51.
    Baughman RP, Lower EE, Ingledue R, Kaufman AH. Management of ocular sarcoidosis. Sarcoidosis Vasc Diffus Lung Dis Off J WASOG. 2012;29:26–33.Google Scholar
  52. 52.
    Chan CC, Rubenstein JL, Coupland SE, et al. Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncol. 2011;16:1589–99.Google Scholar
  53. 53.
    Coupland SE, Heimann H, Bechrakis NE. Primary intraocular lymphoma: a review of the clinical, histopathological and molecular biological features. Graefe’s Arch Clin Exp Ophthalmol. 2004;242:901–13.CrossRefGoogle Scholar
  54. 54.
    Villano JL, Koshy M, Shaikh H, Dolecek TA, McCarthy BJ. Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br J Cancer. 2011;105:1414–8.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Moslehi R, Devesa SS, Schairer C, Fraumeni JF Jr. Rapidly increasing incidence of ocular non-Hodgkin lymphoma. J Natl Cancer Inst. 2006;98:936–9.CrossRefPubMedGoogle Scholar
  56. 56.
  57. 57.
    Jahnke K, Thiel E, Abrey LE, Neuwelt EA, Korfel A. Diagnosis and management of primary intraocular lymphoma: an update. Clin Ophthalmol (Auckland, NZ). 2007;1:247–58.Google Scholar
  58. 58.
    Akpek EK, Ahmed I, Hochberg FH, et al. Intraocular-central nervous system lymphoma: clinical features, diagnosis, and outcomes. Ophthalmology. 1999;106:1805–10.CrossRefPubMedGoogle Scholar
  59. 59.
    Teckie S, Yahalom J. Primary intraocular lymphoma: treatment outcomes with ocular radiation therapy alone. Leuk Lymphoma. 2014;55:795–801.CrossRefPubMedGoogle Scholar
  60. 60.
    Ma WL, Hou HA, Hsu YJ, et al. Clinical outcomes of primary intraocular lymphoma patients treated with front-line systemic high-dose methotrexate and intravitreal methotrexate injection. Ann Hematol. 2016;95:593–601.CrossRefPubMedGoogle Scholar
  61. 61.
    Cantlay DA, Glyn DT, Barton DN. Polypharmacy in the elderly. InnovAiT. 2016;9:69–77.CrossRefGoogle Scholar
  62. 62.
    MacLaughlin EJ, Raehl CL, Treadway AK, Sterling TL, Zoller DP, Bond CA. Assessing medication adherence in the elderly. Drugs Aging. 2005;22:231–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elizabeth Akinsoji
    • 1
  • Raquel Goldhardt
    • 1
    • 2
    • 3
  • Anat Galor
    • 1
    • 2
    • 3
  1. 1.University of Miami Miller School of MedicineMiamiUSA
  2. 2.Miami Veterans Administration Medical CenterMiamiUSA
  3. 3.Bascom Palmer Eye Institute, University of Miami Miller School of MedicineMiamiUSA

Personalised recommendations