Skip to main content
Log in

Anticholinergic Drug Use and Risk to Cognitive Performance in Older Adults with Questionable Cognitive Impairment: A Cross-Sectional Analysis

  • Original Research Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Background

Age-associated decline in central cholinergic activity makes older adults susceptible to the harmful effects of anticholinergic (AC) medications; however, there is an inadequate understanding of the association and possible effects of AC drugs on cognition. This cross-sectional study examines the associations of AC medications on cognition among older adults with questionable cognitive impairment (QCI).

Methods

For this cross-sectional study, we used a multicenter database of community-dwelling older adults (N = 7351) aged 60+ years with QCI, from September 2005 to March 2014, as the baseline data. The Anticholinergic Drug Scale was used to categorize AC drug load into no, low, or moderate/high groups. Individuals with a Clinical Dementia Rating–Sum of Boxes score between 0.5 and 2.5 were identified as having QCI, while cognitive performance was evaluated using the Neuropsychological Test Battery. The mean z-scores of neuropsychological tests were grouped into a global cognition score.

Results

Participants who took AC medications were older, largely female, and had a higher prevalence of incontinence than those without AC exposure. Global cognition was significantly greater in the moderate/high-AC group than the no-AC group (−0.23 ± 0.53 vs. −0.32 ± 0.53). Multivariable linear regression showed that the global cognition score among the low- and moderate/high-AC groups, compared with the no-AC group, was 0.064 higher (p = 0.006 and p = 0.12, respectively).

Conclusions

This cross-sectional study indicates that older adults with QCI who were exposed to AC medications might have higher global cognitive scores than those without AC exposure. The observed associations indicate that older adults might experience some beneficial cognitive effects from AC drugs, possibly due to the therapeutic effects of these medications in controlling comorbidities, thus outweighing their adverse effects on cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brookmeyer R, Evans DA, Hebert L, et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement. 2011;7:61–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res. 2012;43:600–8.

    Article  PubMed  Google Scholar 

  3. Etienne P, Robitaille Y, Wood P, et al. Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience. 1986;19:1279–91.

    Article  CAS  PubMed  Google Scholar 

  4. Drachman DA, Sahakian B. Memory and cognitive function in the elderly: a preliminary trial of physostigmine. Arch Neurol. 1980;37:674–5.

    Article  CAS  PubMed  Google Scholar 

  5. Bird TD, Stranahan S, Sumi S, et al. Alzheimer’s disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol. 1983;14:284–93.

    Article  CAS  PubMed  Google Scholar 

  6. Henke H, Lang W. Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of Alzheimer-type patients. Brain Res. 1983;267:281–91.

    Article  CAS  PubMed  Google Scholar 

  7. Barnes CA. Animal models of age-related cognitive decline. In: Boller F, Grafman J, editors. Handbook of Neuropsychology. Amsterdam: Elsevier;1990. p. 169–96.

    Google Scholar 

  8. Gallagher M, Nicolle MM. Animal models of normal aging: relationship between cognitive decline and markers in hippocampal circuitry. Behav Brain Res. 1993;57:155–62.

    Article  CAS  PubMed  Google Scholar 

  9. Flaherty JH, Perry HM 3rd, Lynchard GS, et al. Polypharmacy and hospitalization among older home care patients. J Gerontol A Biol Sci Med Sci. 2000;55:M554–9.

    Article  CAS  PubMed  Google Scholar 

  10. Onder G, Liperoti R, Fialova D, et al. Polypharmacy in nursing home in Europe: results from the SHELTER study. J Gerontol A Biol Sci Med Sci. 2012;67:698–704.

    Article  PubMed  Google Scholar 

  11. Gray SL, Anderson ML, Dublin S, et al. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Int Med. 2015;175:401–7.

    Article  Google Scholar 

  12. Campbell N, Boustani M, Limbil T, et al. The cognitive impact of anticholinergics: a clinical review. Clin Interv Aging. 2009;4:225–33.

    PubMed  PubMed Central  Google Scholar 

  13. Fox C, Richardson K, Maidment ID, et al. Anticholinergic medication use and cognitive impairment in the older population: the medical research council cognitive function and ageing study. J Am Geriatr Soc. 2011;59:1477–83.

    Article  PubMed  Google Scholar 

  14. Lowry E, Woodman RJ, Soiza RL, et al. Associations between the anticholinergic risk scale score and physical function: potential implications for adverse outcomes in older hospitalized patients. J Am Med Dir Assoc. 2011;12:565–72.

    Article  PubMed  Google Scholar 

  15. Nabi G, Cody JD, Ellis G, et al. Anticholinergic drugs versus placebo for overactive bladder syndrome in adults. Cochrane Database Syst Rev. 2006;(4):CD003781. doi:10.1002/14651858.CD003781.pub2.

  16. Chew ML, Mulsant BH, Pollock BG. Serum anticholinergic activity and cognition in patients with moderate-to-severe dementia. Am J Geriatr Psychiatry. 2005;13:535–8.

    Article  PubMed  Google Scholar 

  17. Nebes RD, Pollock BG, Halligan EM, et al. Serum anticholinergic activity and motor performance in elderly persons. J Gerontol A Biol Sci Med Sci. 2007;62:83–5.

    Article  PubMed  Google Scholar 

  18. Feinberg M. The problems of anticholinergic adverse effects in older patients. Drugs Aging. 1993;3:335–48.

    Article  CAS  PubMed  Google Scholar 

  19. Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol. 1999;45:358–68.

    Article  CAS  PubMed  Google Scholar 

  20. Jessen F, Kaduszkiewicz H, Daerr M, et al. Anticholinergic drug use and risk for dementia: target for dementia prevention. Eur Arch Psychiatry Clin Neurosci. 2010;260:111–5.

    Article  Google Scholar 

  21. Shah RC, Janos AL, Kline JE, et al. Cognitive decline in older persons initiating anticholinergic medications. PloS One. 2013;8:e64111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carriere I, Fourrier-Reglat A, Dartigues JF, et al. Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-city study. Arch Intern Med. 2009;169:1317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ancelin ML, Artero S, Portet F, et al. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ. 2006;332:455–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bottiggi KA, Salazar JC, Yu L, et al. Long-term cognitive impact of anticholinergic medications in older adults. Am J Geriatr Psychiatry. 2006;14:980–4.

    Article  PubMed  Google Scholar 

  25. Uusvaara J, Pitkala KH, Kautiainen H, et al. Detailed cognitive function and use of drugs with anticholinergic properties in older people. Drugs Aging. 2013;30:177–82.

    Article  CAS  PubMed  Google Scholar 

  26. Petersen RC. Mild cognitive impairment or questionable dementia? Arch Neurol. 2000;57:643–4.

    Article  CAS  PubMed  Google Scholar 

  27. Daly E, Zaitchik D, Copeland M, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol. 2000;57:675–80.

    Article  CAS  PubMed  Google Scholar 

  28. Cronin-Stubbs D, DeKosky ST, Morris JC, et al. Promoting interactions with basic scientists and clinicians: the NIA Alzheimer’s Disease Data Coordinating Center. Stat Med. 2000;19:1453–61.

    Article  CAS  PubMed  Google Scholar 

  29. Beekly DL, Ramos EM, Lee WW, et al. The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Dis Assoc Disord. 2007;21:249–58.

    Article  PubMed  Google Scholar 

  30. Rosenberg P, Mielke M, Han D, et al. The association of psychotropic medication use with the cognitive, functional, and neuropsychiatric trajectory of Alzheimer’s disease. Int J Geriatr Psychiatry. 2012;27:1248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  31. O’Bryant SE, Waring SC, Cullum CM, et al. Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: a Texas Alzheimer’s research consortium study. Arch Neurol. 2008;65:1091–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carnahan RM, Lund BC, Perry PJ, et al. The Anticholinergic Drug Scale as a measure of drug-related anticholinergic burden: associations with serum anticholinergic activity. J Clin Pharmacol. 2006;46:1481–6.

    Article  CAS  PubMed  Google Scholar 

  33. Morris JC, Weintraub S, Chui HC, et al. The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc Disord. 2006;20:210–6.

    Article  PubMed  Google Scholar 

  34. Hayden KM, Jones RN, Zimmer C, et al. Factor structure of the National Alzheimer’s Coordinating Centers uniform dataset neuropsychological battery: an evaluation of invariance between and within groups over time. Alzheimer Dis Assoc Disord. 2011;25:128–37.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Albert MS, Moss MB, Tanzi R, et al. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc. 2001;7:631–9.

    Article  CAS  PubMed  Google Scholar 

  36. Price JL, McKeel DW, Buckles VD, et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging. 2009;30:1026–36.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rossouw JE, Prentice RL, Manson JE, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA. 2007;297:1465–77.

    Article  CAS  PubMed  Google Scholar 

  38. Uusvaara J, Pitkala KH, Tienari PJ, et al. Association between anticholinergic drugs and apolipoprotein E ɛ4 allele and poorer cognitive function in older cardiovascular patients: a cross-sectional study. J Am Geriatr Soc. 2009;57:427–31.

    Article  PubMed  Google Scholar 

  39. Fox C, Livingston G, Maidment ID, et al. The impact of anticholinergic burden in Alzheimer’s dementia-the LASER-AD study. Age Ageing. 2011;40:730–5.

    Article  PubMed  Google Scholar 

  40. Lechevallier-Michel N, Molimard M, Dartigues J, et al. Drugs with anticholinergic properties and cognitive performance in the elderly: results from the PAQUID Study. Br J Clin Pharmacol. 2005;59:143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sunderland T, Tariot PN, Cohen RM, et al. Anticholinergic sensitivity in patients with dementia of the Alzheimer type and age-matched controls: a dose-response study. Arch Gen Psychiatry. 1987;44:418–26.

    Article  CAS  PubMed  Google Scholar 

  42. Mulsant BH, Pollock BG, Kirshner M, et al. Serum anticholinergic activity in a community-based sample of older adults: relationship with cognitive performance. Arch Gen Psychiatry. 2003;60:198–203.

    Article  CAS  PubMed  Google Scholar 

  43. Kochanek KD, Murphy SL, Xu J, et al. Mortality in the United States, 2013. NCHS Data Brief. 2014;178:1–8.

    Google Scholar 

  44. Hannestad YS, Rortveit G, Sandvik H, et al. A community-based epidemiological survey of female urinary incontinence: the Norwegian EPINCONT study. J Clin Epidemiol. 2000;53:1150–7.

    Article  CAS  PubMed  Google Scholar 

  45. Counts SE, He B, Che S, et al. Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer’s disease. Neurodegener Dis. 2008;5:228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frölich L. The cholinergic pathology in Alzheimer’s disease: discrepancies between clinical experience and pathophysiological findings. J Neural Transm. 2002;109:1003–13.

    Article  PubMed  Google Scholar 

  47. Ikonomovic MD, Mufson EJ, Wuu J, et al. Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer’s neuropathology. J Alzheimers Dis. 2003;5:39–48.

    CAS  PubMed  Google Scholar 

  48. Decker MW, McGaugh JL. The role of interactions between the cholinergic system and other neuromodulatory systems in learing and memory. Synapse. 1991;7:151–68.

    Article  CAS  PubMed  Google Scholar 

  49. Dumas JA, Newhouse PA. The cholinergic hypothesis of cognitive aging revisited again: cholinergic functional compensation. Pharmacol Biochem Behav. 2011;99:254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oberauer K. Removing irrelevant information from working memory: a cognitive aging study with the modified Sternberg task. J Exp Psychol Learn Mem Cogn. 2001;27:948.

    Article  CAS  PubMed  Google Scholar 

  51. Naveh-Benjamin M, Brav TK, Levy O. The associative memory deficit of older adults: the role of strategy utilization. Psychol Aging. 2007;22:202.

    Article  PubMed  Google Scholar 

  52. Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull. 1999;25:233–55.

    Article  CAS  PubMed  Google Scholar 

  53. Qiu C, Winblad B, Marengoni A, et al. Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study. Arch Intern Med. 2006;166:1003–8.

    Article  PubMed  Google Scholar 

  54. Hajjar I, Catoe H, Sixta S, et al. Cross-sectional and longitudinal association between antihypertensive medications and cognitive impairment in an elderly population. J Gerontol A Biol Sci Med Sci. 2005;60:67–73.

    Article  PubMed  Google Scholar 

  55. Hanon O, Pequignot R, Seux ML, et al. Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J Hypertens. 2006;24:2101–7.

    Article  CAS  PubMed  Google Scholar 

  56. Ohrui T, Tomita N, Sato-Nakagawa T, et al. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology. 2004;63:1324–5.

    Article  CAS  PubMed  Google Scholar 

  57. Lopez OL, Becker JT, Wisniewski S, et al. Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;72:310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the participants and their families for their contributions to the research into AD, and the NAAC for providing us the data for this research. We also thank Dr. Catherine W. Striley, Assistant Professor, Department of Epidemiology, College of Public Health and Health Professions, University of Florida, for her skilled assistance and mentorship in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Swami.

Ethics declarations

Conflict of interest

Sunil Swami, Ronald Cohen, John Kairalla and Todd Manini declare that they have no potential conflicts of interest.

Funding

This research was not funded by any intramural or extramural source. The NACC database is funded by a National Institute on Aging/National Institute of Health (NIA/NIH) Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (principal investigator [PI] Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Steven Ferris, PhD), P30 AG013854 (PI M. Marsel Mesulam, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG016570 (PI David Teplow, PhD), P50 AG005131 (PI Douglas Galasko, MD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P50 AG005136 (PI Thomas Montine, MD, PhD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), and P50 AG005681 (PI John Morris, MD).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. In addition, this is a retrospective study and formal consent is not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

Supplementary material 2 (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swami, S., Cohen, R.A., Kairalla, J.A. et al. Anticholinergic Drug Use and Risk to Cognitive Performance in Older Adults with Questionable Cognitive Impairment: A Cross-Sectional Analysis. Drugs Aging 33, 809–818 (2016). https://doi.org/10.1007/s40266-016-0400-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-016-0400-3

Keywords

Navigation