Advertisement

Drugs & Aging

, Volume 32, Issue 7, pp 505–513 | Cite as

Therapeutic Strategies to Treat Dry Eye in an Aging Population

  • Nisreen S. Ezuddin
  • Karam A. Alawa
  • Anat GalorEmail author
Leading Article

Abstract

Dry eye (DE) is a prevalent ocular disease that primarily affects the elderly. Affecting up to 30 % of adults aged 50 years and older, DE affects both visual function and quality of life. Symptoms of DE, including ocular pain (aching, burning), visual disturbances, and tearing, can be addressed with therapeutic agents that target dysfunction of the meibomian glands, lacrimal glands, goblet cells, ocular surface, and/or neural network. This review provides an overview of the efficacy, use, and limitations of current therapeutic interventions being used to treat DE.

Keywords

Ocular Surface Lacrimal Gland Tofacitinib Intense Pulse Light Meibomian Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Clinical Sciences Research and Development’s Career Development Award CDA-2-024-10S (Dr. Galor), National Institutes of Health Center Core Grant P30EY014801, and Research to Prevent Blindness unrestricted grant.

Conflicts of interest

Nisreen S. Ezuddin, Karam A. Alawa, and Anat Galor declare no conflicts of interest.

References

  1. 1.
    The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):75–92.Google Scholar
  2. 2.
    Horwath-Winter J, Berghold A, Schmut O, et al. Evaluation of the clinical course of dry eye syndrome. Arch Ophthalmol. 2003;121(10):1364–8.PubMedGoogle Scholar
  3. 3.
    Moss SE, Klein R, Klein BE. Incidence of dry eye in an older population. Arch Ophthalmol. 2004;122(3):369–73.PubMedGoogle Scholar
  4. 4.
    Pouyeh B, Viteri E, Feuer W, et al. Impact of ocular surface symptoms on quality of life in a United States veterans affairs population. Am J Ophthalmol. 2012;153(6):1061–66 e3.Google Scholar
  5. 5.
    Ding J, Sullivan DA. Aging and dry eye disease. Exp Gerontol. 2012;47(7):483–90.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol. 2003;136(2):318–26.PubMedGoogle Scholar
  7. 7.
    Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye disease among US men: estimates from the Physicians’ Health Studies. Arch Ophthalmol. 2009;127(6):763–8.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Schaumberg DA, Buring JE, Sullivan DA, Dana MR. Hormone replacement therapy and dry eye syndrome. JAMA. 2001;286(17):2114–9.PubMedGoogle Scholar
  9. 9.
    Foulks GN. Pharmacological management of dry eye in the elderly patient. Drugs Aging. 2008;25(2):105–18.PubMedGoogle Scholar
  10. 10.
    Draper CE, Adeghate E, Lawrence PA, et al. Age-related changes in morphology and secretory responses of male rat lacrimal gland. J Auton Nerv Syst. 1998;69(2–3):173–83.PubMedGoogle Scholar
  11. 11.
    Draper CE, Adeghate EA, Singh J, Pallot DJ. Evidence to suggest morphological and physiological alterations of lacrimal gland acini with ageing. Exp Eye Res. 1999;68(3):265–76.PubMedGoogle Scholar
  12. 12.
    El-Fadaly AB, El-Shaarawy EA, Rizk AA, et al. Age-related alterations in the lacrimal gland of adult albino rat: a light and electron microscopic study. Ann Anat. 2014;196(5):336–51.PubMedGoogle Scholar
  13. 13.
    McClellan AJ, Volpe EA, Zhang X, et al. Ocular surface disease and dacryoadenitis in aging C57BL/6 mice. Am J Pathol. 2014;184(3):631–43.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Spike RC, Payne AP, Moore MR. The effects of age on the structure and porphyrin synthesis of the harderian gland of the female golden hamster. J Anat. 1988;160:157–66.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Draper CE, Singh J, Adeghate E. Effects of age on morphology, protein synthesis and secretagogue-evoked secretory responses in the rat lacrimal gland. Mol Cell Biochem. 2003;248(1–2):7–16.PubMedGoogle Scholar
  16. 16.
    Obata H, Yamamoto S, Horiuchi H, Machinami R. Histopathologic study of human lacrimal gland. Statistical analysis with special reference to aging. Ophthalmology. 1995;102(4):678–86.PubMedGoogle Scholar
  17. 17.
    Ueno H, Ariji E, Izumi M, et al. MR imaging of the lacrimal gland. Age-related and gender-dependent changes in size and structure. Acta Radiol. 1996;37(5):714–9.PubMedGoogle Scholar
  18. 18.
    Nien CJ, Paugh JR, Massei J, et al. Age-related changes in the meibomian gland. Exp Eye Res. 2009;89(6):1021–7.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Villani E, Canton V, Magnani F, et al. The aging Meibomian gland: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2013;54(7):4735–40.PubMedGoogle Scholar
  20. 20.
    Ban Y, Shimazaki-Den S, Tsubota K, Shimazaki J. Morphological evaluation of meibomian glands using noncontact infrared meibography. Ocul Surf. 2013;11(1):47–53.PubMedGoogle Scholar
  21. 21.
    Borchman D, Foulks GN, Yappert MC, Milliner SE. Changes in human meibum lipid composition with age using nuclear magnetic resonance spectroscopy. Invest Ophthalmol Vis Sci. 2012;53(1):475–82.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Wei A, Hong J, Sun X, Xu J. Evaluation of age-related changes in human palpebral conjunctiva and meibomian glands by in vivo confocal microscopy. Cornea. 2011;30(9):1007–12.PubMedGoogle Scholar
  23. 23.
    Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. Int Rev Immunol. 2013;32(1):19–41.PubMedCentralPubMedGoogle Scholar
  24. 24.
    St-Jacques B, Ma W. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors. Exp Neurol. 2014;261:354–66.PubMedGoogle Scholar
  25. 25.
    Stemkowski PL, Smith PA. Sensory neurons, ion channels, inflammation and the onset of neuropathic pain. Can J Neurol Sci. 2012;39(4):416–35.PubMedGoogle Scholar
  26. 26.
    Taguchi T, Ota H, Matsuda T, et al. Cutaneous C-fiber nociceptor responses and nociceptive behaviors in aged Sprague-Dawley rats. Pain. 2010;151(3):771–82.PubMedGoogle Scholar
  27. 27.
    Namer B, Barta B, Orstavik K, et al. Microneurographic assessment of C-fibre function in aged healthy subjects. J Physiol. 2009;587(Pt 2):419–28.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Niederer RL, Perumal D, Sherwin T, McGhee CN. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol. 2007;91(9):1165–9.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Gambato C, Longhin E, Catania AG, et al. Aging and corneal layers: an in vivo corneal confocal microscopy study. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):267–75.PubMedGoogle Scholar
  30. 30.
    Erie JC, McLaren JW, Hodge DO, Bourne WM. The effect of age on the corneal subbasal nerve plexus. Cornea. 2005;24(6):705–9.PubMedGoogle Scholar
  31. 31.
    Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev. 2014;24(1):49–62.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Miller C, Utter ML, Beech J. Evaluation of the effects of age and pituitary pars intermedia dysfunction on corneal sensitivity in horses. Am J Vet Res. 2013;74(7):1030–5.PubMedGoogle Scholar
  33. 33.
    Roszkowska AM, Colosi P, Ferreri FM, Galasso S. Age-related modifications of corneal sensitivity. Ophthalmologica. 2004;218(5):350–5.PubMedGoogle Scholar
  34. 34.
    Acosta MC, Alfaro ML, Borras F, et al. Influence of age, gender and iris color on mechanical and chemical sensitivity of the cornea and conjunctiva. Exp Eye Res. 2006;83(4):932–8.PubMedGoogle Scholar
  35. 35.
    Ozdemir M, Temizdemir H. Age- and gender-related tear function changes in normal population. Eye (Lond). 2010;24(1):79–83.Google Scholar
  36. 36.
    Cruz AA, Garcia DM, Pinto CT, Cechetti SP. Spontaneous eyeblink activity. Ocul Surf. 2011;9(1):29–41.PubMedGoogle Scholar
  37. 37.
    Chew CK, Hykin PG, Jansweijer C, et al. The casual level of meibomian lipids in humans. Curr Eye Res. 1993;12(3):255–9.PubMedGoogle Scholar
  38. 38.
    Borchman D, Foulks GN, Yappert MC, et al. Physical changes in human meibum with age as measured by infrared spectroscopy. Ophthalmic Res. 2010;44(1):34–42.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Nien CJ, Massei S, Lin G, et al. Effects of age and dysfunction on human meibomian glands. Arch Ophthalmol. 2011;129(4):462–9.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Ansari Z, Singh R, Alabiad C, Galor A. Prevalence, risk factors, and morbidity of eye lid laxity in a veteran population. Cornea. 2015;34(1):32–6.PubMedGoogle Scholar
  41. 41.
    Le Q, Cui X, Xiang J, et al. Impact of conjunctivochalasis on visual quality of life: a community population survey. PLoS One. 2014;9(10):e110821.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Gumus K, Pflugfelder SC. Increasing prevalence and severity of conjunctivochalasis with aging detected by anterior segment optical coherence tomography. Am J Ophthalmol. 2013;155(2):238–42 e2.Google Scholar
  43. 43.
    Zhang X, Li Q, Zou H, et al. Assessing the severity of conjunctivochalasis in a senile population: a community-based epidemiology study in Shanghai, China. BMC Public Health. 2011;11:198.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Toshida H, Nguyen DH, Beuerman RW, Murakami A. Neurologic evaluation of acute lacrimomimetic effect of cyclosporine in an experimental rabbit dry eye model. Invest Ophthalmol Vis Sci. 2009;50(6):2736–41.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Sall K, Stevenson OD, Mundorf TK, Reis BL. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA Phase 3 Study Group. Ophthalmology. 2000;107(4):631–9.PubMedGoogle Scholar
  46. 46.
    Baiza-Duran L, Medrano-Palafox J, Hernandez-Quintela E, et al. A comparative clinical trial of the efficacy of two different aqueous solutions of cyclosporine for the treatment of moderate-to-severe dry eye syndrome. Br J Ophthalmol. 2010;94(10):1312–5.PubMedGoogle Scholar
  47. 47.
    Chen M, Gong L, Sun X, et al. A comparison of cyclosporine 0.05 % ophthalmic emulsion versus vehicle in Chinese patients with moderate to severe dry eye disease: an eight-week, multicenter, randomized, double-blind, parallel-group trial. J Ocul Pharmacol Ther. 2010;26(4):361–6.PubMedGoogle Scholar
  48. 48.
    Byun YS, Rho CR, Cho K, et al. Cyclosporine 0.05 % ophthalmic emulsion for dry eye in Korea: a prospective, multicenter, open-label, surveillance study. Korean J Ophthalmol. 2011;25(6):369–74.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Demiryay E, Yaylali V, Cetin EN, Yildirim C. Effects of topical cyclosporine a plus artificial tears versus artificial tears treatment on conjunctival goblet cell density in dysfunctional tear syndrome. Eye Contact Lens. 2011;37(5):312–5.PubMedGoogle Scholar
  50. 50.
    Kim EC, Choi JS, Joo CK. A comparison of vitamin a and cyclosporine a 0.05 % eye drozps for treatment of dry eye syndrome. Am J Ophthalmol. 2009;147(2):206–13.e3.Google Scholar
  51. 51.
    Rao SN. Topical cyclosporine 0.05 % for the prevention of dry eye disease progression. J Ocul Pharmacol Ther. 2010;26(2):157–64.PubMedGoogle Scholar
  52. 52.
    Stonecipher K, Perry HD, Gross RH, Kerney DL. The impact of topical cyclosporine A emulsion 0.05 % on the outcomes of patients with keratoconjunctivitis sicca. Curr Med Res Opin. 2005;21(7):1057–63.PubMedGoogle Scholar
  53. 53.
    Deveci H, Kobak S. The efficacy of topical 0.05 % cyclosporine A in patients with dry eye disease associated with Sjogren’s syndrome. Int Ophthalmol. 2014;34(5):1043–8.PubMedGoogle Scholar
  54. 54.
    Malta JB, Soong HK, Shtein RM, et al. Treatment of ocular graft-versus-host disease with topical cyclosporine 0.05 %. Cornea. 2010;29(12):1392–6.PubMedGoogle Scholar
  55. 55.
    Bron AJ, Tiffany JM. The contribution of meibomian disease to dry eye. Ocul Surf. 2004;2(2):149–65.PubMedGoogle Scholar
  56. 56.
    Craig JP, Blades K, Patel S. Tear lipid layer structure and stability following expression of the meibomian glands. Ophthalmic Physiol Opt. 1995;15(6):569–74.PubMedGoogle Scholar
  57. 57.
    Lindsley K, Matsumura S, Hatef E, Akpek EK. Interventions for chronic blepharitis. Cochrane Database Syst Rev. 2012;(5):CD005556.Google Scholar
  58. 58.
    Villani E, Garoli E, Canton V, et al. Evaluation of a novel eyelid-warming device in meibomian gland dysfunction unresponsive to traditional warm compress treatment: an in vivo confocal study. Int Ophthalmol. 2015;35(3):319–23.PubMedGoogle Scholar
  59. 59.
    Doan S, Chiambaretta F, Baudouin C, group Es. Evaluation of an eyelid warming device (Blephasteam®) for the management of ocular surface diseases in France: The ESPOIR Study. J Fr Ophtalmol. 2014;37(10):763–72.Google Scholar
  60. 60.
    Benitez Del Castillo JM, Kaercher T, Mansour K, et al. Evaluation of the efficacy, safety, and acceptability of an eyelid warming device for the treatment of meibomian gland dysfunction. Clin Ophthalmol. 2014;8:2019–27.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Foulks GN, Borchman D, Yappert M, Kakar S. Topical azithromycin and oral doxycycline therapy of meibomian gland dysfunction: a comparative clinical and spectroscopic pilot study. Cornea. 2013;32(1):44–53.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Pflugfelder SC, Karpecki PM, Perez VL. Treatment of blepharitis: recent clinical trials. Ocul Surf. 2014;12(4):273–84.PubMedGoogle Scholar
  63. 63.
    Lee H, Min K, Kim EK, Kim TI. Minocycline controls clinical outcomes and inflammatory cytokines in moderate and severe meibomian gland dysfunction. Am J Ophthalmol. 2012;154(6):949–57 e1.Google Scholar
  64. 64.
    Souchier M, Joffre C, Gregoire S, et al. Changes in meibomian fatty acids and clinical signs in patients with meibomian gland dysfunction after minocycline treatment. Br J Ophthalmol. 2008;92(6):819–22.PubMedGoogle Scholar
  65. 65.
    Aronowicz JD, Shine WE, Oral D, et al. Short term oral minocycline treatment of meibomianitis. Br J Ophthalmol. 2006;90(7):856–60.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Shine WE, McCulley JP, Pandya AG. Minocycline effect on meibomian gland lipids in meibomianitis patients. Exp Eye Res. 2003;76(4):417–20.PubMedGoogle Scholar
  67. 67.
    Liu Y, Kam WR, Ding J, Sullivan DA. One man’s poison is another man’s meat: using azithromycin-induced phospholipidosis to promote ocular surface health. Toxicology. 2014;320:1–5.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Foulks GN, Borchman D, Yappert M, et al. Topical azithromycin therapy for meibomian gland dysfunction: clinical response and lipid alterations. Cornea. 2010;29(7):781–8.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Haque RM, Torkildsen GL, Brubaker K, et al. Multicenter open-label study evaluating the efficacy of azithromycin ophthalmic solution 1 % on the signs and symptoms of subjects with blepharitis. Cornea. 2010;29(8):871–7.PubMedGoogle Scholar
  70. 70.
    Fadlallah A, Rami HE, Fahd D, et al. Azithromycin 1.5 % ophthalmic solution: efficacy and treatment modalities in chronic blepharitis. Arq Bras Oftalmol. 2012;75(3):178–82.PubMedGoogle Scholar
  71. 71.
    Opitz DL, Tyler KF. Efficacy of azithromycin 1 % ophthalmic solution for treatment of ocular surface disease from posterior blepharitis. Clin Exp Optom. 2011;94(2):200–6.PubMedGoogle Scholar
  72. 72.
    Luchs J. Efficacy of topical azithromycin ophthalmic solution 1 % in the treatment of posterior blepharitis. Adv Ther. 2008;25(9):858–70.PubMedGoogle Scholar
  73. 73.
    Donshik P, Kulvin SM, McKinley P, Skowron R. Treatment of chronic staphylococcal blepharoconjunctivitis with a new topical steroid anti-infective ophthalmic solution. Ann Ophthalmol. 1983;15(2):162–7.PubMedGoogle Scholar
  74. 74.
    Jackson WB, Easterbrook WM, Connolly WE, Leers WD. Treatment of blepharitis and blepharoconjunctivitis: comparison of gentamicin-betamethasone, gentamicin alone and placebo. Can J Ophthalmol. 1982;17(4):153–6.PubMedGoogle Scholar
  75. 75.
    Qiao J, Yan X. Emerging treatment options for meibomian gland dysfunction. Clin Ophthalmol. 2013;7:1797–803.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Greiner JV. A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months. Curr Eye Res. 2012;37(4):272–8.PubMedGoogle Scholar
  77. 77.
    Craig JP, Chen YH, Turnbull PR. Prospective trial of intense pulsed light for the treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2015;56(3):1965–70.PubMedGoogle Scholar
  78. 78.
    McGinnigle S, Naroo SA, Eperjesi F. Evaluation of dry eye. Surv Ophthalmol. 2012;57(4):293–316.PubMedGoogle Scholar
  79. 79.
    Tauber J, Davitt WF, Bokosky JE, et al. Double-masked, placebo-controlled safety and efficacy trial of diquafosol tetrasodium (INS365) ophthalmic solution for the treatment of dry eye. Cornea. 2004;23(8):784–92.PubMedGoogle Scholar
  80. 80.
    Kamiya K, Nakanishi M, Ishii R, et al. Clinical evaluation of the additive effect of diquafosol tetrasodium on sodium hyaluronate monotherapy in patients with dry eye syndrome: a prospective, randomized, multicenter study. Eye (Lond). 2012;26(10):1363–8.Google Scholar
  81. 81.
    Hwang HS, Sung YM, Lee WS, Kim EC. Additive effect of preservative-free sodium hyaluronate 0.1 % in treatment of dry eye syndrome with diquafosol 3 % eye drops. Cornea. 2014;33(9):935–41.PubMedGoogle Scholar
  82. 82.
    Pflugfelder SC, Solomon A, Stern ME. The diagnosis and management of dry eye: a twenty-five-year review. Cornea. 2000;19(5):644–9.PubMedGoogle Scholar
  83. 83.
    Solomon A, Dursun D, Liu Z, et al. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci. 2001;42(10):2283–92.PubMedGoogle Scholar
  84. 84.
    Skalicky SE, Petsoglou C, Gurbaxani A, et al. New agents for treating dry eye syndrome. Curr Allergy Asthma Rep. 2013;13(3):322–8.PubMedGoogle Scholar
  85. 85.
    Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Villani E, Garoli E, Termine V, et al. Corneal confocal microscopy in dry eye treated with corticosteroids. Optom Vis Sci. Epub 23 Apr 2015.Google Scholar
  87. 87.
    Pavesio CE, Decory HH. Treatment of ocular inflammatory conditions with loteprednol etabonate. Br J Ophthalmol. 2008;92(4):455–9.PubMedGoogle Scholar
  88. 88.
    Pflugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5 %, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.PubMedGoogle Scholar
  89. 89.
    Valim V, Trevisani VF, de Sousa JM, et al. Current approach to dry eye disease. Clin Rev Allergy Immunol. Epub 1 Aug 2014.Google Scholar
  90. 90.
    Kino T, Hatanaka H, Hashimoto M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I: Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo). 1987;40(9):1249–55.Google Scholar
  91. 91.
    Aoki S, Mizote H, Minamoto A, et al. Systemic FK506 improved tear secretion in dry eye associated with chronic graft versus host disease. Br J Ophthalmol. 2005;89(2):243–4.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Moscovici BK, Holzchuh R, Chiacchio BB, et al. Clinical treatment of dry eye using 0.03 % tacrolimus eye drops. Cornea. 2012;31(8):945–9.PubMedGoogle Scholar
  93. 93.
    Ryu EH, Kim JM, Laddha PM, et al. Therapeutic effect of 0.03 % tacrolimus ointment for ocular graft versus host disease and vernal keratoconjunctivitis. Korean J Ophthalmol. 2012;26(4):241–7.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Sanz-Marco E, Udaondo P, Garcia-Delpech S, et al. Treatment of refractory dry eye associated with graft versus host disease with 0.03 % tacrolimus eyedrops. J Ocul Pharmacol Ther. 2013;29(8):776–83.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Liew SH, Nichols KK, Klamerus KJ, et al. Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry eye disease: results from a phase 1/2 trial. Ophthalmology. 2012;119(7):1328–35.PubMedGoogle Scholar
  96. 96.
    Brignole-Baudouin F, Baudouin C, Aragona P, et al. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients.” Acta Ophthalmol. 2011;89(7):e591–597.Google Scholar
  97. 97.
    Olenik A, Jimenez-Alfaro I, Alejandre-Alba N, Mahillo-Fernandez I. A randomized, double-masked study to evaluate the effect of omega-3 fatty acids supplementation in meibomian gland dysfunction. Clin Interv Aging. 2013;8:1133–8.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Galor A, Levitt RC, Felix ER, et al. Neuropathic ocular pain: an important yet underevaluated feature of dry eye. Eye (Lond). 2015;29(3):301–12.Google Scholar
  99. 99.
    Lambiase A, Micera A, Sacchetti M, et al. Alterations of tear neuromediators in dry eye disease. Arch Ophthalmol. 2011;129(8):981–6.PubMedGoogle Scholar
  100. 100.
    Kojima T, Ishida R, Dogru M, et al. The effect of autologous serum eyedrops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol. 2005;139(2):242–6.PubMedGoogle Scholar
  101. 101.
    Noble BA, Loh RS, MacLennan S, et al. Comparison of autologous serum eye drops with conventional therapy in a randomised controlled crossover trial for ocular surface disease. Br J Ophthalmol. 2004;88(5):647–52.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Tananuvat N, Daniell M, Sullivan LJ, et al. Controlled study of the use of autologous serum in dry eye patients. Cornea. 2001;20(8):802–6.PubMedGoogle Scholar
  103. 103.
    Urzua CA, Vasquez DH, Huidobro A, et al. Randomized double-blind clinical trial of autologous serum versus artificial tears in dry eye syndrome. Curr Eye Res. 2012;37(8):684–8.PubMedGoogle Scholar
  104. 104.
    Celebi AR, Ulusoy C, Mirza GE. The efficacy of autologous serum eye drops for severe dry eye syndrome: a randomized double-blind crossover study. Graefes Arch Clin Exp Ophthalmol. 2014;252(4):619–26.PubMedGoogle Scholar
  105. 105.
    Lambiase A, Sacchetti M, Bonini S. Nerve growth factor therapy for corneal disease. Curr Opin Ophthalmol. 2012;23(4):296–302.PubMedGoogle Scholar
  106. 106.
    Meerovitch K, Torkildsen G, Lonsdale J, et al. Safety and efficacy of MIM-D3 ophthalmic solutions in a randomized, placebo-controlled phase 2 clinical trial in patients with dry eye. Clin Ophthalmol. 2013;7:1275–85.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Andersson S, Lundeberg T. Acupuncture—from empiricism to science: functional background to acupuncture effects in pain and disease. Med Hypotheses. 1995;45(3):271–81.PubMedGoogle Scholar
  108. 108.
    Lee MS, Shin BC, Choi TY, Ernst E. Acupuncture for treating dry eye: a systematic review. Acta Ophthalmol. 2011;89(2):101–6.PubMedGoogle Scholar
  109. 109.
    Gronlund MA, Stenevi U, Lundeberg T. Acupuncture treatment in patients with keratoconjunctivitis sicca: a pilot study. Acta Ophthalmol Scand. 2004;82(3 Pt 1):283–90.PubMedGoogle Scholar
  110. 110.
    Nepp J, Jandrasits K, Schauersberger J, et al. Is acupuncture an useful tool for pain-treatment in ophthalmology? Acupunct Electrother Res. 2002;27(3–4):171–82.PubMedGoogle Scholar
  111. 111.
    Tseng KL, Liu HJ, Tso KY, et al. A clinical study of acupuncture and SSP (silver spike point) electro-therapy for dry eye syndrome. Am J Chin Med. 2006;34(2):197–206.PubMedGoogle Scholar
  112. 112.
    Shin MS, Kim JI, Lee MS, et al. Acupuncture for treating dry eye: a randomized placebo-controlled trial. Acta Ophthalmol. 2010;88(8):e328–33.PubMedGoogle Scholar
  113. 113.
    Jacobs DS, Rosenthal P. Boston scleral lens prosthetic device for treatment of severe dry eye in chronic graft-versus-host disease. Cornea. 2007;26(10):1195–9.PubMedGoogle Scholar
  114. 114.
    Mastrota KM. Impact of floppy eyelid syndrome in ocular surface and dry eye disease. Optom Vis Sci. 2008;85(9):814–6.PubMedGoogle Scholar
  115. 115.
    Ezra DG, Beaconsfield M, Sira M, et al. Long-term outcomes of surgical approaches to the treatment of floppy eyelid syndrome. Ophthalmology. 2010;117(4):839–46.PubMedGoogle Scholar
  116. 116.
    Chhadva P AA, McClellan AL, Galor A. The impact of conjunctivochalasis on dry eye symptoms. World Cornea Congress VII of the ASCRS; 15–17 April 2015; San Diego (CA).Google Scholar
  117. 117.
    Hara S, Kojima T, Ishida R, et al. Evaluation of tear stability after surgery for conjunctivochalasis. Optom Vis Sci. 2011;88(9):1112–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nisreen S. Ezuddin
    • 1
  • Karam A. Alawa
    • 1
  • Anat Galor
    • 1
    • 2
    Email author
  1. 1.Bascom Palmer Eye InstituteUniversity of MiamiMiamiUSA
  2. 2.Miami Veterans Administration Medical CenterMiamiUSA

Personalised recommendations