Skip to main content
Log in

Therapeutic Strategies to Treat Dry Eye in an Aging Population

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Dry eye (DE) is a prevalent ocular disease that primarily affects the elderly. Affecting up to 30 % of adults aged 50 years and older, DE affects both visual function and quality of life. Symptoms of DE, including ocular pain (aching, burning), visual disturbances, and tearing, can be addressed with therapeutic agents that target dysfunction of the meibomian glands, lacrimal glands, goblet cells, ocular surface, and/or neural network. This review provides an overview of the efficacy, use, and limitations of current therapeutic interventions being used to treat DE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):75–92.

  2. Horwath-Winter J, Berghold A, Schmut O, et al. Evaluation of the clinical course of dry eye syndrome. Arch Ophthalmol. 2003;121(10):1364–8.

    PubMed  Google Scholar 

  3. Moss SE, Klein R, Klein BE. Incidence of dry eye in an older population. Arch Ophthalmol. 2004;122(3):369–73.

    PubMed  Google Scholar 

  4. Pouyeh B, Viteri E, Feuer W, et al. Impact of ocular surface symptoms on quality of life in a United States veterans affairs population. Am J Ophthalmol. 2012;153(6):1061–66 e3.

  5. Ding J, Sullivan DA. Aging and dry eye disease. Exp Gerontol. 2012;47(7):483–90.

    PubMed Central  PubMed  Google Scholar 

  6. Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol. 2003;136(2):318–26.

    PubMed  Google Scholar 

  7. Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye disease among US men: estimates from the Physicians’ Health Studies. Arch Ophthalmol. 2009;127(6):763–8.

    PubMed Central  PubMed  Google Scholar 

  8. Schaumberg DA, Buring JE, Sullivan DA, Dana MR. Hormone replacement therapy and dry eye syndrome. JAMA. 2001;286(17):2114–9.

    CAS  PubMed  Google Scholar 

  9. Foulks GN. Pharmacological management of dry eye in the elderly patient. Drugs Aging. 2008;25(2):105–18.

    CAS  PubMed  Google Scholar 

  10. Draper CE, Adeghate E, Lawrence PA, et al. Age-related changes in morphology and secretory responses of male rat lacrimal gland. J Auton Nerv Syst. 1998;69(2–3):173–83.

    CAS  PubMed  Google Scholar 

  11. Draper CE, Adeghate EA, Singh J, Pallot DJ. Evidence to suggest morphological and physiological alterations of lacrimal gland acini with ageing. Exp Eye Res. 1999;68(3):265–76.

    CAS  PubMed  Google Scholar 

  12. El-Fadaly AB, El-Shaarawy EA, Rizk AA, et al. Age-related alterations in the lacrimal gland of adult albino rat: a light and electron microscopic study. Ann Anat. 2014;196(5):336–51.

    PubMed  Google Scholar 

  13. McClellan AJ, Volpe EA, Zhang X, et al. Ocular surface disease and dacryoadenitis in aging C57BL/6 mice. Am J Pathol. 2014;184(3):631–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Spike RC, Payne AP, Moore MR. The effects of age on the structure and porphyrin synthesis of the harderian gland of the female golden hamster. J Anat. 1988;160:157–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Draper CE, Singh J, Adeghate E. Effects of age on morphology, protein synthesis and secretagogue-evoked secretory responses in the rat lacrimal gland. Mol Cell Biochem. 2003;248(1–2):7–16.

    CAS  PubMed  Google Scholar 

  16. Obata H, Yamamoto S, Horiuchi H, Machinami R. Histopathologic study of human lacrimal gland. Statistical analysis with special reference to aging. Ophthalmology. 1995;102(4):678–86.

    CAS  PubMed  Google Scholar 

  17. Ueno H, Ariji E, Izumi M, et al. MR imaging of the lacrimal gland. Age-related and gender-dependent changes in size and structure. Acta Radiol. 1996;37(5):714–9.

    CAS  PubMed  Google Scholar 

  18. Nien CJ, Paugh JR, Massei J, et al. Age-related changes in the meibomian gland. Exp Eye Res. 2009;89(6):1021–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Villani E, Canton V, Magnani F, et al. The aging Meibomian gland: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2013;54(7):4735–40.

    PubMed  Google Scholar 

  20. Ban Y, Shimazaki-Den S, Tsubota K, Shimazaki J. Morphological evaluation of meibomian glands using noncontact infrared meibography. Ocul Surf. 2013;11(1):47–53.

    PubMed  Google Scholar 

  21. Borchman D, Foulks GN, Yappert MC, Milliner SE. Changes in human meibum lipid composition with age using nuclear magnetic resonance spectroscopy. Invest Ophthalmol Vis Sci. 2012;53(1):475–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Wei A, Hong J, Sun X, Xu J. Evaluation of age-related changes in human palpebral conjunctiva and meibomian glands by in vivo confocal microscopy. Cornea. 2011;30(9):1007–12.

    PubMed  Google Scholar 

  23. Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. Int Rev Immunol. 2013;32(1):19–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. St-Jacques B, Ma W. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors. Exp Neurol. 2014;261:354–66.

    CAS  PubMed  Google Scholar 

  25. Stemkowski PL, Smith PA. Sensory neurons, ion channels, inflammation and the onset of neuropathic pain. Can J Neurol Sci. 2012;39(4):416–35.

    PubMed  Google Scholar 

  26. Taguchi T, Ota H, Matsuda T, et al. Cutaneous C-fiber nociceptor responses and nociceptive behaviors in aged Sprague-Dawley rats. Pain. 2010;151(3):771–82.

    PubMed  Google Scholar 

  27. Namer B, Barta B, Orstavik K, et al. Microneurographic assessment of C-fibre function in aged healthy subjects. J Physiol. 2009;587(Pt 2):419–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Niederer RL, Perumal D, Sherwin T, McGhee CN. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol. 2007;91(9):1165–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Gambato C, Longhin E, Catania AG, et al. Aging and corneal layers: an in vivo corneal confocal microscopy study. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):267–75.

    PubMed  Google Scholar 

  30. Erie JC, McLaren JW, Hodge DO, Bourne WM. The effect of age on the corneal subbasal nerve plexus. Cornea. 2005;24(6):705–9.

    PubMed  Google Scholar 

  31. Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev. 2014;24(1):49–62.

    PubMed Central  PubMed  Google Scholar 

  32. Miller C, Utter ML, Beech J. Evaluation of the effects of age and pituitary pars intermedia dysfunction on corneal sensitivity in horses. Am J Vet Res. 2013;74(7):1030–5.

    PubMed  Google Scholar 

  33. Roszkowska AM, Colosi P, Ferreri FM, Galasso S. Age-related modifications of corneal sensitivity. Ophthalmologica. 2004;218(5):350–5.

    PubMed  Google Scholar 

  34. Acosta MC, Alfaro ML, Borras F, et al. Influence of age, gender and iris color on mechanical and chemical sensitivity of the cornea and conjunctiva. Exp Eye Res. 2006;83(4):932–8.

    CAS  PubMed  Google Scholar 

  35. Ozdemir M, Temizdemir H. Age- and gender-related tear function changes in normal population. Eye (Lond). 2010;24(1):79–83.

    CAS  Google Scholar 

  36. Cruz AA, Garcia DM, Pinto CT, Cechetti SP. Spontaneous eyeblink activity. Ocul Surf. 2011;9(1):29–41.

    PubMed  Google Scholar 

  37. Chew CK, Hykin PG, Jansweijer C, et al. The casual level of meibomian lipids in humans. Curr Eye Res. 1993;12(3):255–9.

    CAS  PubMed  Google Scholar 

  38. Borchman D, Foulks GN, Yappert MC, et al. Physical changes in human meibum with age as measured by infrared spectroscopy. Ophthalmic Res. 2010;44(1):34–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Nien CJ, Massei S, Lin G, et al. Effects of age and dysfunction on human meibomian glands. Arch Ophthalmol. 2011;129(4):462–9.

    PubMed Central  PubMed  Google Scholar 

  40. Ansari Z, Singh R, Alabiad C, Galor A. Prevalence, risk factors, and morbidity of eye lid laxity in a veteran population. Cornea. 2015;34(1):32–6.

    PubMed  Google Scholar 

  41. Le Q, Cui X, Xiang J, et al. Impact of conjunctivochalasis on visual quality of life: a community population survey. PLoS One. 2014;9(10):e110821.

    PubMed Central  PubMed  Google Scholar 

  42. Gumus K, Pflugfelder SC. Increasing prevalence and severity of conjunctivochalasis with aging detected by anterior segment optical coherence tomography. Am J Ophthalmol. 2013;155(2):238–42 e2.

  43. Zhang X, Li Q, Zou H, et al. Assessing the severity of conjunctivochalasis in a senile population: a community-based epidemiology study in Shanghai, China. BMC Public Health. 2011;11:198.

    PubMed Central  PubMed  Google Scholar 

  44. Toshida H, Nguyen DH, Beuerman RW, Murakami A. Neurologic evaluation of acute lacrimomimetic effect of cyclosporine in an experimental rabbit dry eye model. Invest Ophthalmol Vis Sci. 2009;50(6):2736–41.

    PubMed Central  PubMed  Google Scholar 

  45. Sall K, Stevenson OD, Mundorf TK, Reis BL. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA Phase 3 Study Group. Ophthalmology. 2000;107(4):631–9.

    CAS  PubMed  Google Scholar 

  46. Baiza-Duran L, Medrano-Palafox J, Hernandez-Quintela E, et al. A comparative clinical trial of the efficacy of two different aqueous solutions of cyclosporine for the treatment of moderate-to-severe dry eye syndrome. Br J Ophthalmol. 2010;94(10):1312–5.

    PubMed  Google Scholar 

  47. Chen M, Gong L, Sun X, et al. A comparison of cyclosporine 0.05 % ophthalmic emulsion versus vehicle in Chinese patients with moderate to severe dry eye disease: an eight-week, multicenter, randomized, double-blind, parallel-group trial. J Ocul Pharmacol Ther. 2010;26(4):361–6.

    CAS  PubMed  Google Scholar 

  48. Byun YS, Rho CR, Cho K, et al. Cyclosporine 0.05 % ophthalmic emulsion for dry eye in Korea: a prospective, multicenter, open-label, surveillance study. Korean J Ophthalmol. 2011;25(6):369–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Demiryay E, Yaylali V, Cetin EN, Yildirim C. Effects of topical cyclosporine a plus artificial tears versus artificial tears treatment on conjunctival goblet cell density in dysfunctional tear syndrome. Eye Contact Lens. 2011;37(5):312–5.

    PubMed  Google Scholar 

  50. Kim EC, Choi JS, Joo CK. A comparison of vitamin a and cyclosporine a 0.05 % eye drozps for treatment of dry eye syndrome. Am J Ophthalmol. 2009;147(2):206–13.e3.

  51. Rao SN. Topical cyclosporine 0.05 % for the prevention of dry eye disease progression. J Ocul Pharmacol Ther. 2010;26(2):157–64.

    CAS  PubMed  Google Scholar 

  52. Stonecipher K, Perry HD, Gross RH, Kerney DL. The impact of topical cyclosporine A emulsion 0.05 % on the outcomes of patients with keratoconjunctivitis sicca. Curr Med Res Opin. 2005;21(7):1057–63.

    CAS  PubMed  Google Scholar 

  53. Deveci H, Kobak S. The efficacy of topical 0.05 % cyclosporine A in patients with dry eye disease associated with Sjogren’s syndrome. Int Ophthalmol. 2014;34(5):1043–8.

    PubMed  Google Scholar 

  54. Malta JB, Soong HK, Shtein RM, et al. Treatment of ocular graft-versus-host disease with topical cyclosporine 0.05 %. Cornea. 2010;29(12):1392–6.

    PubMed  Google Scholar 

  55. Bron AJ, Tiffany JM. The contribution of meibomian disease to dry eye. Ocul Surf. 2004;2(2):149–65.

    CAS  PubMed  Google Scholar 

  56. Craig JP, Blades K, Patel S. Tear lipid layer structure and stability following expression of the meibomian glands. Ophthalmic Physiol Opt. 1995;15(6):569–74.

    CAS  PubMed  Google Scholar 

  57. Lindsley K, Matsumura S, Hatef E, Akpek EK. Interventions for chronic blepharitis. Cochrane Database Syst Rev. 2012;(5):CD005556.

  58. Villani E, Garoli E, Canton V, et al. Evaluation of a novel eyelid-warming device in meibomian gland dysfunction unresponsive to traditional warm compress treatment: an in vivo confocal study. Int Ophthalmol. 2015;35(3):319–23.

    PubMed  Google Scholar 

  59. Doan S, Chiambaretta F, Baudouin C, group Es. Evaluation of an eyelid warming device (Blephasteam®) for the management of ocular surface diseases in France: The ESPOIR Study. J Fr Ophtalmol. 2014;37(10):763–72.

  60. Benitez Del Castillo JM, Kaercher T, Mansour K, et al. Evaluation of the efficacy, safety, and acceptability of an eyelid warming device for the treatment of meibomian gland dysfunction. Clin Ophthalmol. 2014;8:2019–27.

    PubMed Central  PubMed  Google Scholar 

  61. Foulks GN, Borchman D, Yappert M, Kakar S. Topical azithromycin and oral doxycycline therapy of meibomian gland dysfunction: a comparative clinical and spectroscopic pilot study. Cornea. 2013;32(1):44–53.

    PubMed Central  PubMed  Google Scholar 

  62. Pflugfelder SC, Karpecki PM, Perez VL. Treatment of blepharitis: recent clinical trials. Ocul Surf. 2014;12(4):273–84.

    PubMed  Google Scholar 

  63. Lee H, Min K, Kim EK, Kim TI. Minocycline controls clinical outcomes and inflammatory cytokines in moderate and severe meibomian gland dysfunction. Am J Ophthalmol. 2012;154(6):949–57 e1.

  64. Souchier M, Joffre C, Gregoire S, et al. Changes in meibomian fatty acids and clinical signs in patients with meibomian gland dysfunction after minocycline treatment. Br J Ophthalmol. 2008;92(6):819–22.

    CAS  PubMed  Google Scholar 

  65. Aronowicz JD, Shine WE, Oral D, et al. Short term oral minocycline treatment of meibomianitis. Br J Ophthalmol. 2006;90(7):856–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Shine WE, McCulley JP, Pandya AG. Minocycline effect on meibomian gland lipids in meibomianitis patients. Exp Eye Res. 2003;76(4):417–20.

    CAS  PubMed  Google Scholar 

  67. Liu Y, Kam WR, Ding J, Sullivan DA. One man’s poison is another man’s meat: using azithromycin-induced phospholipidosis to promote ocular surface health. Toxicology. 2014;320:1–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Foulks GN, Borchman D, Yappert M, et al. Topical azithromycin therapy for meibomian gland dysfunction: clinical response and lipid alterations. Cornea. 2010;29(7):781–8.

    PubMed Central  PubMed  Google Scholar 

  69. Haque RM, Torkildsen GL, Brubaker K, et al. Multicenter open-label study evaluating the efficacy of azithromycin ophthalmic solution 1 % on the signs and symptoms of subjects with blepharitis. Cornea. 2010;29(8):871–7.

    PubMed  Google Scholar 

  70. Fadlallah A, Rami HE, Fahd D, et al. Azithromycin 1.5 % ophthalmic solution: efficacy and treatment modalities in chronic blepharitis. Arq Bras Oftalmol. 2012;75(3):178–82.

    PubMed  Google Scholar 

  71. Opitz DL, Tyler KF. Efficacy of azithromycin 1 % ophthalmic solution for treatment of ocular surface disease from posterior blepharitis. Clin Exp Optom. 2011;94(2):200–6.

    PubMed  Google Scholar 

  72. Luchs J. Efficacy of topical azithromycin ophthalmic solution 1 % in the treatment of posterior blepharitis. Adv Ther. 2008;25(9):858–70.

    CAS  PubMed  Google Scholar 

  73. Donshik P, Kulvin SM, McKinley P, Skowron R. Treatment of chronic staphylococcal blepharoconjunctivitis with a new topical steroid anti-infective ophthalmic solution. Ann Ophthalmol. 1983;15(2):162–7.

    CAS  PubMed  Google Scholar 

  74. Jackson WB, Easterbrook WM, Connolly WE, Leers WD. Treatment of blepharitis and blepharoconjunctivitis: comparison of gentamicin-betamethasone, gentamicin alone and placebo. Can J Ophthalmol. 1982;17(4):153–6.

    CAS  PubMed  Google Scholar 

  75. Qiao J, Yan X. Emerging treatment options for meibomian gland dysfunction. Clin Ophthalmol. 2013;7:1797–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Greiner JV. A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months. Curr Eye Res. 2012;37(4):272–8.

    PubMed  Google Scholar 

  77. Craig JP, Chen YH, Turnbull PR. Prospective trial of intense pulsed light for the treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2015;56(3):1965–70.

    PubMed  Google Scholar 

  78. McGinnigle S, Naroo SA, Eperjesi F. Evaluation of dry eye. Surv Ophthalmol. 2012;57(4):293–316.

    PubMed  Google Scholar 

  79. Tauber J, Davitt WF, Bokosky JE, et al. Double-masked, placebo-controlled safety and efficacy trial of diquafosol tetrasodium (INS365) ophthalmic solution for the treatment of dry eye. Cornea. 2004;23(8):784–92.

    CAS  PubMed  Google Scholar 

  80. Kamiya K, Nakanishi M, Ishii R, et al. Clinical evaluation of the additive effect of diquafosol tetrasodium on sodium hyaluronate monotherapy in patients with dry eye syndrome: a prospective, randomized, multicenter study. Eye (Lond). 2012;26(10):1363–8.

    CAS  Google Scholar 

  81. Hwang HS, Sung YM, Lee WS, Kim EC. Additive effect of preservative-free sodium hyaluronate 0.1 % in treatment of dry eye syndrome with diquafosol 3 % eye drops. Cornea. 2014;33(9):935–41.

    PubMed  Google Scholar 

  82. Pflugfelder SC, Solomon A, Stern ME. The diagnosis and management of dry eye: a twenty-five-year review. Cornea. 2000;19(5):644–9.

    CAS  PubMed  Google Scholar 

  83. Solomon A, Dursun D, Liu Z, et al. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci. 2001;42(10):2283–92.

    CAS  PubMed  Google Scholar 

  84. Skalicky SE, Petsoglou C, Gurbaxani A, et al. New agents for treating dry eye syndrome. Curr Allergy Asthma Rep. 2013;13(3):322–8.

    CAS  PubMed  Google Scholar 

  85. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Villani E, Garoli E, Termine V, et al. Corneal confocal microscopy in dry eye treated with corticosteroids. Optom Vis Sci. Epub 23 Apr 2015.

  87. Pavesio CE, Decory HH. Treatment of ocular inflammatory conditions with loteprednol etabonate. Br J Ophthalmol. 2008;92(4):455–9.

    CAS  PubMed  Google Scholar 

  88. Pflugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5 %, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.

    CAS  PubMed  Google Scholar 

  89. Valim V, Trevisani VF, de Sousa JM, et al. Current approach to dry eye disease. Clin Rev Allergy Immunol. Epub 1 Aug 2014.

  90. Kino T, Hatanaka H, Hashimoto M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I: Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo). 1987;40(9):1249–55.

    CAS  Google Scholar 

  91. Aoki S, Mizote H, Minamoto A, et al. Systemic FK506 improved tear secretion in dry eye associated with chronic graft versus host disease. Br J Ophthalmol. 2005;89(2):243–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Moscovici BK, Holzchuh R, Chiacchio BB, et al. Clinical treatment of dry eye using 0.03 % tacrolimus eye drops. Cornea. 2012;31(8):945–9.

    PubMed  Google Scholar 

  93. Ryu EH, Kim JM, Laddha PM, et al. Therapeutic effect of 0.03 % tacrolimus ointment for ocular graft versus host disease and vernal keratoconjunctivitis. Korean J Ophthalmol. 2012;26(4):241–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Sanz-Marco E, Udaondo P, Garcia-Delpech S, et al. Treatment of refractory dry eye associated with graft versus host disease with 0.03 % tacrolimus eyedrops. J Ocul Pharmacol Ther. 2013;29(8):776–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Liew SH, Nichols KK, Klamerus KJ, et al. Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry eye disease: results from a phase 1/2 trial. Ophthalmology. 2012;119(7):1328–35.

    PubMed  Google Scholar 

  96. Brignole-Baudouin F, Baudouin C, Aragona P, et al. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients.” Acta Ophthalmol. 2011;89(7):e591–597.

  97. Olenik A, Jimenez-Alfaro I, Alejandre-Alba N, Mahillo-Fernandez I. A randomized, double-masked study to evaluate the effect of omega-3 fatty acids supplementation in meibomian gland dysfunction. Clin Interv Aging. 2013;8:1133–8.

    PubMed Central  PubMed  Google Scholar 

  98. Galor A, Levitt RC, Felix ER, et al. Neuropathic ocular pain: an important yet underevaluated feature of dry eye. Eye (Lond). 2015;29(3):301–12.

    CAS  Google Scholar 

  99. Lambiase A, Micera A, Sacchetti M, et al. Alterations of tear neuromediators in dry eye disease. Arch Ophthalmol. 2011;129(8):981–6.

    CAS  PubMed  Google Scholar 

  100. Kojima T, Ishida R, Dogru M, et al. The effect of autologous serum eyedrops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol. 2005;139(2):242–6.

    PubMed  Google Scholar 

  101. Noble BA, Loh RS, MacLennan S, et al. Comparison of autologous serum eye drops with conventional therapy in a randomised controlled crossover trial for ocular surface disease. Br J Ophthalmol. 2004;88(5):647–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Tananuvat N, Daniell M, Sullivan LJ, et al. Controlled study of the use of autologous serum in dry eye patients. Cornea. 2001;20(8):802–6.

    CAS  PubMed  Google Scholar 

  103. Urzua CA, Vasquez DH, Huidobro A, et al. Randomized double-blind clinical trial of autologous serum versus artificial tears in dry eye syndrome. Curr Eye Res. 2012;37(8):684–8.

    CAS  PubMed  Google Scholar 

  104. Celebi AR, Ulusoy C, Mirza GE. The efficacy of autologous serum eye drops for severe dry eye syndrome: a randomized double-blind crossover study. Graefes Arch Clin Exp Ophthalmol. 2014;252(4):619–26.

    CAS  PubMed  Google Scholar 

  105. Lambiase A, Sacchetti M, Bonini S. Nerve growth factor therapy for corneal disease. Curr Opin Ophthalmol. 2012;23(4):296–302.

    PubMed  Google Scholar 

  106. Meerovitch K, Torkildsen G, Lonsdale J, et al. Safety and efficacy of MIM-D3 ophthalmic solutions in a randomized, placebo-controlled phase 2 clinical trial in patients with dry eye. Clin Ophthalmol. 2013;7:1275–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Andersson S, Lundeberg T. Acupuncture—from empiricism to science: functional background to acupuncture effects in pain and disease. Med Hypotheses. 1995;45(3):271–81.

    CAS  PubMed  Google Scholar 

  108. Lee MS, Shin BC, Choi TY, Ernst E. Acupuncture for treating dry eye: a systematic review. Acta Ophthalmol. 2011;89(2):101–6.

    PubMed  Google Scholar 

  109. Gronlund MA, Stenevi U, Lundeberg T. Acupuncture treatment in patients with keratoconjunctivitis sicca: a pilot study. Acta Ophthalmol Scand. 2004;82(3 Pt 1):283–90.

    PubMed  Google Scholar 

  110. Nepp J, Jandrasits K, Schauersberger J, et al. Is acupuncture an useful tool for pain-treatment in ophthalmology? Acupunct Electrother Res. 2002;27(3–4):171–82.

    PubMed  Google Scholar 

  111. Tseng KL, Liu HJ, Tso KY, et al. A clinical study of acupuncture and SSP (silver spike point) electro-therapy for dry eye syndrome. Am J Chin Med. 2006;34(2):197–206.

    PubMed  Google Scholar 

  112. Shin MS, Kim JI, Lee MS, et al. Acupuncture for treating dry eye: a randomized placebo-controlled trial. Acta Ophthalmol. 2010;88(8):e328–33.

    PubMed  Google Scholar 

  113. Jacobs DS, Rosenthal P. Boston scleral lens prosthetic device for treatment of severe dry eye in chronic graft-versus-host disease. Cornea. 2007;26(10):1195–9.

    PubMed  Google Scholar 

  114. Mastrota KM. Impact of floppy eyelid syndrome in ocular surface and dry eye disease. Optom Vis Sci. 2008;85(9):814–6.

    PubMed  Google Scholar 

  115. Ezra DG, Beaconsfield M, Sira M, et al. Long-term outcomes of surgical approaches to the treatment of floppy eyelid syndrome. Ophthalmology. 2010;117(4):839–46.

    PubMed  Google Scholar 

  116. Chhadva P AA, McClellan AL, Galor A. The impact of conjunctivochalasis on dry eye symptoms. World Cornea Congress VII of the ASCRS; 15–17 April 2015; San Diego (CA).

  117. Hara S, Kojima T, Ishida R, et al. Evaluation of tear stability after surgery for conjunctivochalasis. Optom Vis Sci. 2011;88(9):1112–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Clinical Sciences Research and Development’s Career Development Award CDA-2-024-10S (Dr. Galor), National Institutes of Health Center Core Grant P30EY014801, and Research to Prevent Blindness unrestricted grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Galor.

Ethics declarations

Conflicts of interest

Nisreen S. Ezuddin, Karam A. Alawa, and Anat Galor declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezuddin, N.S., Alawa, K.A. & Galor, A. Therapeutic Strategies to Treat Dry Eye in an Aging Population. Drugs Aging 32, 505–513 (2015). https://doi.org/10.1007/s40266-015-0277-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-015-0277-6

Keywords

Navigation