Drugs & Aging

, Volume 31, Issue 4, pp 239–261 | Cite as

Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson’s Disease

  • Tiago Martins Rodrigues
  • André Jerónimo-Santos
  • Tiago Fleming Outeiro
  • Ana Maria Sebastião
  • Maria José DiógenesEmail author
Review Article


Parkinson’s disease (PD) is a chronic movement disorder typically coupled to progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The treatments currently available are satisfactory for symptomatic management, but the efficacy tends to decrease as neuronal loss progresses. Neurotrophic factors (NTFs) are endogenous proteins known to promote neuronal survival, even in degenerating states. Therefore, the use of these factors is regarded as a possible therapeutic approach, which would aim to prevent PD or to even restore homeostasis in neurodegenerative disorders. Intriguingly, although favorable results in in vitro and in vivo models of the disease were attained, clinical trials using these molecules have failed to demonstrate a clear therapeutic benefit. Therefore, the development of animal models that more closely reproduce the mechanisms known to underlie PD-related neurodegeneration would be a major step towards improving the capacity to predict the clinical usefulness of a given NTF-based approach in the experimental setting. Moreover, some adjustments to the design of clinical trials ought to be considered, which include recruiting patients in the initial stages of the disease, improving the efficacy of the delivery methods, and combining synergetic NTFs or adding NTF-boosting drugs to the already available pharmacological approaches. Despite the drawbacks on the road to the use of NTFs as pharmacological tools for PD, very relevant achievements have been reached. In this article, we review the current status of the potential relevance of NTFs for treating PD, taking into consideration experimental evidence, human observational studies, and data from clinical trials.


Nerve Growth Factor Substantia Nigra MPTP Rasagiline Cerebral Dopamine Neurotrophic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Tiago Martins Rodrigues, André Jerónimo-Santos, Tiago Fleming Outeiro, Ana Maria Sebastião and Maria José Diógenes do not have any financial interest in this manuscript nor any potential conflicts of interest are foreseen. This work was supported by a Fundação para a Ciência e a Tecnologia (FCT) project grant. André Jerónimo-Santos is supported by an FCT fellowship grant (SFRH/BD/62828/2009) and Tiago Fleming Outeiro is supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain.


  1. 1.
    de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.PubMedGoogle Scholar
  2. 2.
    Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.PubMedGoogle Scholar
  3. 3.
    Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5(3):235–45.PubMedGoogle Scholar
  4. 4.
    Gasser T. Update on the genetics of Parkinson’s disease. Mov Disord. 2007;22(Suppl 17):S343–50.PubMedGoogle Scholar
  5. 5.
    Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445–54.PubMedGoogle Scholar
  6. 6.
    Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet. 2011;12:301–25.PubMedGoogle Scholar
  7. 7.
    Irizarry MC, Growdon W, Gomez-Isla T, Newell K, George JM, Clayton DF, et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J Neuropathol Exp Neurol. 1998;57(4):334–7.PubMedGoogle Scholar
  8. 8.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.PubMedGoogle Scholar
  9. 9.
    Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet JC, et al. Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun. 2006;351(3):631–8.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry. 2002;41(32):10209–17.PubMedGoogle Scholar
  11. 11.
    Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, et al. Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One. 2008;3(4):e1867.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Klucken J, Outeiro TF, Nguyen P, McLean PJ, Hyman BT. Detection of novel intracellular alpha-synuclein oligomeric species by fluorescence lifetime imaging. FASEB J. 2006;20(12):2050–7.PubMedGoogle Scholar
  13. 13.
    Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002;295(5556):865–8.PubMedGoogle Scholar
  14. 14.
    Clayton DF, George JM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1999;58(1):120–9.PubMedGoogle Scholar
  15. 15.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4(2):160–4.PubMedGoogle Scholar
  16. 16.
    Conway KA, Harper JD, Lansbury PT Jr. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry. 2000;39(10):2552–63.PubMedGoogle Scholar
  17. 17.
    Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, et al. Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol. 2002;322(5):1089–102.PubMedGoogle Scholar
  18. 18.
    Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem. 2001;276(14):10737–44.PubMedGoogle Scholar
  19. 19.
    Cookson MR. The biochemistry of Parkinson’s disease. Annu Rev Biochem. 2005;74:29–52.PubMedGoogle Scholar
  20. 20.
    El-Agnaf OM, Salem SA, Paleologou KE, Cooper LJ, Fullwood NJ, Gibson MJ, et al. Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. Faseb J. 2003;17(13):1945–7.PubMedGoogle Scholar
  21. 21.
    Lansbury PT Jr, Brice A. Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Cell Biol. 2002;14(5):653–60.PubMedGoogle Scholar
  22. 22.
    Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317(5837):516–9.PubMedGoogle Scholar
  23. 23.
    Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32(34):11750–62.Google Scholar
  24. 24.
    Teng KK, Felice S, Kim T, Hempstead BL. Understanding proneurotrophin actions: recent advances and challenges. Dev Neurobiol. 2010;70(5):350–9.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350(6314):158–60.PubMedGoogle Scholar
  26. 26.
    Klein R, Jing SQ, Nanduri V, O’Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65(1):189–97.PubMedGoogle Scholar
  27. 27.
    Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 1991;7(5):857–66.PubMedGoogle Scholar
  28. 28.
    Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, Radziejewski C, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell. 1991;65(5):885–93.PubMedGoogle Scholar
  29. 29.
    Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991;66(5):967–79.PubMedGoogle Scholar
  30. 30.
    Arevalo JC, Wu SH. Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci. 2006;63(13):1523–37.PubMedGoogle Scholar
  31. 31.
    Ebendal T. NGF in CNS: experimental data and clinical implications. Prog Growth Factor Res. 1989;1(3):143–59.PubMedGoogle Scholar
  32. 32.
    Thoenen H, Barde YA. Physiology of nerve growth factor. Physiol Rev. 1980;60(4):1284–335.PubMedGoogle Scholar
  33. 33.
    Knusel B, Winslow JW, Rosenthal A, Burton LE, Seid DP, Nikolics K, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A. 1991;88(3):961–5.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Knusel B, Michel PP, Schwaber JS, Hefti F. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci. 1990;10(2):558–70.PubMedGoogle Scholar
  35. 35.
    Studer L, Spenger C, Seiler RW, Altar CA, Lindsay RM, Hyman C. Comparison of the effects of the neurotrophins on the morphological structure of dopaminergic neurons in cultures of rat substantia nigra. Eur J Neurosci. 1995;7(2):223–33.PubMedGoogle Scholar
  36. 36.
    Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350(6315):230–2.PubMedGoogle Scholar
  37. 37.
    Garcia E, Rios C, Sotelo J. Ventricular injection of nerve growth factor increases dopamine content in the striata of MPTP-treated mice. Neurochem Res. 1992;17(10):979–82.PubMedGoogle Scholar
  38. 38.
    Kirschner PB, Jenkins BG, Schulz JB, Finkelstein SP, Matthews RT, Rosen BR, et al. NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res. 1996;713(1–2):178–85.PubMedGoogle Scholar
  39. 39.
    Chaturvedi RK, Shukla S, Seth K, Agrawal AK. Nerve growth factor increases survival of dopaminergic graft, rescue nigral dopaminergic neurons and restores functional deficits in rat model of Parkinson’s disease. Neurosci Lett. 2006;398(1–2):44–9.PubMedGoogle Scholar
  40. 40.
    Salinas M, Diaz R, Abraham NG, Ruiz de Galarreta CM, Cuadrado A. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem. 2003;278(16):13898–904.Google Scholar
  41. 41.
    Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett. 1999;270(1):45–8.PubMedGoogle Scholar
  42. 42.
    Lorigados Pedre L, Pavon Fuentes N, Alvarez Gonzalez L, McRae A, Serrano Sanchez T, Blanco Lescano L, et al. Nerve growth factor levels in Parkinson disease and experimental parkinsonian rats. Brain Res. 2002;952(1):122–7.Google Scholar
  43. 43.
    Date I, Ohmoto T. Neural transplantation and trophic factors in Parkinson’s disease: special reference to chromaffin cell grafting, NGF support from pretransected peripheral nerve, and encapsulated dopamine-secreting cell grafting. Exp Neurol. 1996;137(2):333–44.PubMedGoogle Scholar
  44. 44.
    Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM. Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol. 1994;342(3):321–34.PubMedGoogle Scholar
  45. 45.
    Zhang HT, Li LY, Zou XL, Song XB, Hu YL, Feng ZT, et al. Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult rhesus monkey brains. J Histochem Cytochem. 2007;55(1):1–19.PubMedGoogle Scholar
  46. 46.
    Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci. 2005;25(26):6251–9.PubMedGoogle Scholar
  47. 47.
    Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol. 2011;228(1):118–25.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci. 1994;14(1):335–47.PubMedGoogle Scholar
  49. 49.
    Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem. 1992;59(1):99–106.PubMedGoogle Scholar
  50. 50.
    Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A. 2010;107(6):2687–92.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Levivier M, Przedborski S, Bencsics C, Kang UJ. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci. 1995;15(12):7810–20.PubMedGoogle Scholar
  52. 52.
    Tsukahara T, Takeda M, Shimohama S, Ohara O, Hashimoto N. Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery. 1995;37(4):733–9; discussion 9–41.Google Scholar
  53. 53.
    Shults CW, Kimber T, Altar CA. BDNF attenuates the effects of intrastriatal injection of 6-hydroxydopamine. Neuroreport. 1995;6(8):1109–12.PubMedGoogle Scholar
  54. 54.
    Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci U S A. 1994;91(11):5104–8.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Ding YX, Xia Y, Jiao XY, Duan L, Yu J, Wang X, et al. The TrkB-positive dopaminergic neurons are less sensitive to MPTP insult in the substantia nigra of adult C57/BL mice. Neurochem Res. 2011;36(10):1759–66.PubMedGoogle Scholar
  56. 56.
    von Bohlen und Halbach O, Minichiello L, Unsicker K. Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J. 2005;19(12):1740–2.Google Scholar
  57. 57.
    Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I. Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS Lett. 1992;313(2):138–42.PubMedGoogle Scholar
  58. 58.
    Zhang X, Andren PE, Svenningsson P. Repeated l-Dopa treatment increases c-fos and BDNF mRNAs in the subthalamic nucleus in the 6-OHDA rat model of Parkinson’s disease. Brain Res. 2006;1095(1):207–10.PubMedGoogle Scholar
  59. 59.
    Hynes MA, Poulsen K, Armanini M, Berkemeier L, Phillips H, Rosenthal A. Neurotrophin-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures. J Neurosci Res. 1994;37(1):144–54.PubMedGoogle Scholar
  60. 60.
    Lingor P, Unsicker K, Krieglstein K. GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp Neurol. 2000;163(1):55–62.PubMedGoogle Scholar
  61. 61.
    Haque NS, Hlavin ML, Fawcett JW, Dunnett SB. The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson’s disease. Brain Res. 1996;712(1):45–52.PubMedGoogle Scholar
  62. 62.
    Gu S, Huang H, Bi J, Yao Y, Wen T. Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res. 2009;27(1257):1–9.Google Scholar
  63. 63.
    Altar CA, Boylan CB, Fritsche M, Jones BE, Jackson C, Wiegand SJ, et al. Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J Neurochem. 1994;63(3):1021–32.PubMedGoogle Scholar
  64. 64.
    Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130–2.PubMedGoogle Scholar
  65. 65.
    Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature. 1996;384(6608):467–70.PubMedGoogle Scholar
  66. 66.
    Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron. 1998;21(6):1291–302.PubMedGoogle Scholar
  67. 67.
    Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron. 1998;20(2):245–53.PubMedGoogle Scholar
  68. 68.
    Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci. 2003;116(Pt 19):3855–62.PubMedGoogle Scholar
  69. 69.
    Ledda F, Paratcha G, Ibanez CF. Target-derived GFRalpha1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron. 2002;36(3):387–401.PubMedGoogle Scholar
  70. 70.
    Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, et al. Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron. 2001;29(1):171–84.PubMedGoogle Scholar
  71. 71.
    Paratcha G, Ledda F, Ibanez CF. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell. 2003;113(7):867–79.PubMedGoogle Scholar
  72. 72.
    Akerud P, Alberch J, Eketjall S, Wagner J, Arenas E. Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem. 1999;73(1):70–8.PubMedGoogle Scholar
  73. 73.
    Hou JG, Lin LF, Mytilineou C. Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J Neurochem. 1996;66(1):74–82.PubMedGoogle Scholar
  74. 74.
    Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci. 2008;11(7):755–61.PubMedGoogle Scholar
  75. 75.
    Eggert K, Schlegel J, Oertel W, Wurz C, Krieg JC, Vedder H. Glial cell line-derived neurotrophic factor protects dopaminergic neurons from 6-hydroxydopamine toxicity in vitro. Neurosci Lett. 1999;269(3):178–82.PubMedGoogle Scholar
  76. 76.
    Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995;373(6512):335–9.PubMedGoogle Scholar
  77. 77.
    Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci. 2005;25(4):769–77.PubMedGoogle Scholar
  78. 78.
    Aoi M, Date I, Tomita S, Ohmoto T. Single or continuous injection of glial cell line-derived neurotrophic factor in the striatum induces recovery of the nigrostriatal dopaminergic system. Neurol Res. 2000;22(8):832–6.PubMedGoogle Scholar
  79. 79.
    Kirik D, Georgievska B, Rosenblad C, Bjorklund A. Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson’s disease. Eur J Neurosci. 2001;13(8):1589–99.PubMedGoogle Scholar
  80. 80.
    Ren Z, Wang J, Wang S, Zou C, Li X, Guan Y, et al. Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci Rep. 2013;3:2786.PubMedGoogle Scholar
  81. 81.
    Horger BA, Nishimura MC, Armanini MP, Wang LC, Poulsen KT, Rosenblad C, et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci. 1998;18(13):4929–37.PubMedGoogle Scholar
  82. 82.
    Oiwa Y, Yoshimura R, Nakai K, Itakura T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson’s disease. Brain Res. 2002;947(2):271–83.PubMedGoogle Scholar
  83. 83.
    Liu WG, Lu GQ, Li B, Chen SD. Dopaminergic neuroprotection by neurturin-expressing c17.2 neural stem cells in a rat model of Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(2):77–88.PubMedGoogle Scholar
  84. 84.
    Kordower JH, Herzog CD, Dass B, Bakay RA, Stansell J 3rd, Gasmi M, et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol. 2006;60(6):706–15.PubMedGoogle Scholar
  85. 85.
    Grondin R, Zhang Z, Ai Y, Ding F, Walton AA, Surgener SP, et al. Intraputamenal infusion of exogenous neurturin protein restores motor and dopaminergic function in the globus pallidus of MPTP-lesioned rhesus monkeys. Cell Transplant. 2008;17(4):373–81.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Rosenblad C, Gronborg M, Hansen C, Blom N, Meyer M, Johansen J, et al. In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol Cell Neurosci. 2000;15(2):199–214.PubMedGoogle Scholar
  87. 87.
    Zihlmann KB, Ducray AD, Schaller B, Huber AW, Krebs SH, Andres RH, et al. The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesencephalic dopaminergic neurons. Brain Res Bull. 2005;68(1–2):42–53.PubMedGoogle Scholar
  88. 88.
    Akerud P, Holm PC, Castelo-Branco G, Sousa K, Rodriguez FJ, Arenas E. Persephin-overexpressing neural stem cells regulate the function of nigral dopaminergic neurons and prevent their degeneration in a model of Parkinson’s disease. Mol Cell Neurosci. 2002;21(2):205–22.PubMedGoogle Scholar
  89. 89.
    Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci. 2003;20(2):173–88.PubMedGoogle Scholar
  90. 90.
    Lindholm P, Voutilainen MH, Lauren J, Peranen J, Leppanen VM, Andressoo JO, et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007;448(7149):73–7.PubMedGoogle Scholar
  91. 91.
    Lindholm P, Peranen J, Andressoo JO, Kalkkinen N, Kokaia Z, Lindvall O, et al. MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci. 2008;39(3):356–71.PubMedGoogle Scholar
  92. 92.
    Airavaara M, Harvey BK, Voutilainen MH, Shen H, Chou J, Lindholm P, et al. CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant. 2012;21(6):1213–23.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Back S, Peranen J, Galli E, Pulkkila P, Lonka-Nevalaita L, Tamminen T, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain Behav. 2013;3(2):75–88.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Voutilainen MH, Back S, Peranen J, Lindholm P, Raasmaja A, Mannisto PT, et al. Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson’s disease. Exp Neurol. 2011;228(1):99–108.PubMedGoogle Scholar
  95. 95.
    Voutilainen MH, Back S, Porsti E, Toppinen L, Lindgren L, Lindholm P, et al. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci. 2009;29(30):9651–9.PubMedGoogle Scholar
  96. 96.
    Hellman M, Arumae U, Yu LY, Lindholm P, Peranen J, Saarma M, et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem. 2011;286(4):2675–80.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, et al. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol. 2000;166(1):127–35.PubMedGoogle Scholar
  98. 98.
    Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport. 1999;10(3):557–61.PubMedGoogle Scholar
  99. 99.
    Foltynie T, Lewis SG, Goldberg TE, Blackwell AD, Kolachana BS, Weinberger DR, et al. The BDNF Val66 Met polymorphism has a gender specific influence on planning ability in Parkinson’s disease. J Neurol. 2005;252(7):833–8.PubMedGoogle Scholar
  100. 100.
    Foltynie T, Cheeran B, Williams-Gray CH, Edwards MJ, Schneider SA, Weinberger D, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009;80(2):141–4.PubMedGoogle Scholar
  101. 101.
    Parsian A, Sinha R, Racette B, Zhao JH, Perlmutter JS. Association of a variation in the promoter region of the brain-derived neurotrophic factor gene with familial Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(4):213–9.PubMedGoogle Scholar
  102. 102.
    Toda T, Momose Y, Murata M, Tamiya G, Yamamoto M, Hattori N, et al. Toward identification of susceptibility genes for sporadic Parkinson’s disease. J Neurol. 2003;250 Suppl 3:III40–3.Google Scholar
  103. 103.
    Chen L, Wang Y, Xiao H, Wang L, Wang C, Guo S, et al. The 712A/G polymorphism of brain-derived neurotrophic factor is associated with Parkinson’s disease but not major depressive disorder in a Chinese Han population. Biochem Biophys Res Commun. 2011;408(2):318–21.PubMedGoogle Scholar
  104. 104.
    Karamohamed S, Latourelle JC, Racette BA, Perlmutter JS, Wooten GF, Lew M, et al. BDNF genetic variants are associated with onset age of familial Parkinson disease: GenePD Study. Neurology. 2005;65(11):1823–5.PubMedGoogle Scholar
  105. 105.
    Momose Y, Murata M, Kobayashi K, Tachikawa M, Nakabayashi Y, Kanazawa I, et al. Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Ann Neurol. 2002;51(1):133–6.PubMedGoogle Scholar
  106. 106.
    Guerini FR, Beghi E, Riboldazzi G, Zangaglia R, Pianezzola C, Bono G, et al. BDNF Val66Met polymorphism is associated with cognitive impairment in Italian patients with Parkinson’s disease. Eur J Neurol. 2009;16(11):1240–5.PubMedGoogle Scholar
  107. 107.
    Liu J, Zhou Y, Wang C, Wang T, Zheng Z, Chan P. Brain-derived neurotrophic factor (BDNF) genetic polymorphism greatly increases risk of leucine-rich repeat kinase 2 (LRRK2) for Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(2):140–3.PubMedGoogle Scholar
  108. 108.
    Wirdefeldt K, Burgess CE, Westerberg L, Payami H, Schalling M. A linkage study of candidate loci in familial Parkinson’s Disease. BMC Neurol. 2003;26(3):6.Google Scholar
  109. 109.
    Gasser T, Wszolek ZK, Trofatter J, Ozelius L, Uitti RJ, Lee CS, et al. Genetic linkage studies in autosomal dominant parkinsonism: evaluation of seven candidate genes. Ann Neurol. 1994;36(3):387–96.PubMedGoogle Scholar
  110. 110.
    Karakasis C, Kalinderi K, Katsarou Z, Fidani L, Bostantjopoulou S. Association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with Parkinson’s disease in a Greek population. J Clin Neurosci. 2011;18(12):1744–5.PubMedGoogle Scholar
  111. 111.
    Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ, et al. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s Disease. Am J Med Genet B Neuropsychiatr Genet. 2005;134B(1):93–103.PubMedGoogle Scholar
  112. 112.
    Masaki T, Matsushita S, Arai H, Takeda A, Itoyama Y, Mochizuki H, et al. Association between a polymorphism of brain-derived neurotrophic factor gene and sporadic Parkinson’s disease. Ann Neurol. 2003;54(2):276–7.PubMedGoogle Scholar
  113. 113.
    Nishimura M, Kuno S, Kaji R, Kawakami H. Brain-derived neurotrophic factor gene polymorphisms in Japanese patients with sporadic Alzheimer’s disease, Parkinson’s disease, and multiple system atrophy. Mov Disord. 2005;20(8):1031–3.PubMedGoogle Scholar
  114. 114.
    Hakansson A, Melke J, Westberg L, Shahabi HN, Buervenich S, Carmine A, et al. Lack of association between the BDNF Val66Met polymorphism and Parkinson’s disease in a Swedish population. Ann Neurol. 2003;53(6):823.PubMedGoogle Scholar
  115. 115.
    Hong CJ, Liu HC, Liu TY, Lin CH, Cheng CY, Tsai SJ. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in Parkinson’s disease and age of onset. Neurosci Lett. 2003;353(1):75–7.PubMedGoogle Scholar
  116. 116.
    Saarela MS, Lehtimaki T, Rinne JO, Huhtala H, Rontu R, Hervonen A, et al. No association between the brain-derived neurotrophic factor 196 G>A or 270 C>T polymorphisms and Alzheimer’s or Parkinson’s disease. Folia Neuropathol. 2006;44(1):12–6.PubMedGoogle Scholar
  117. 117.
    Chen CM, Chen IC, Chang KH, Chen YC, Lyu RK, Liu YT, et al. Nuclear receptor NR4A2 IVS6 +18insG and brain derived neurotrophic factor (BDNF) V66M polymorphisms and risk of Taiwanese Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(4):458–62.PubMedGoogle Scholar
  118. 118.
    Gao L, Diaz-Corrales FJ, Carrillo F, Diaz-Martin J, Caceres-Redondo MT, Carballo M, et al. Brain-derived neurotrophic factor G196A polymorphism and clinical features in Parkinson’s disease. Acta Neurol Scand. 2010;122(1):41–5.PubMedGoogle Scholar
  119. 119.
    Xiromerisiou G, Hadjigeorgiou GM, Eerola J, Fernandez HH, Tsimourtou V, Mandel R, et al. BDNF tagging polymorphisms and haplotype analysis in sporadic Parkinson’s disease in diverse ethnic groups. Neurosci Lett. 2007;415(1):59–63.PubMedGoogle Scholar
  120. 120.
    Zintzaras E, Hadjigeorgiou GM. The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson’s disease: a meta-analysis. J Hum Genet. 2005;50(11):560–6.PubMedGoogle Scholar
  121. 121.
    Wartiovaara K, Hytonen M, Vuori M, Paulin L, Rinne J, Sariola H. Mutation analysis of the glial cell line-derived neurotrophic factor gene in Parkinson’s disease. Exp Neurol. 1998;152(2):307–9.PubMedGoogle Scholar
  122. 122.
    Lucking CB, Lichtner P, Kramer ER, Gieger C, Illig T, Dichgans M, et al. Polymorphisms in the receptor for GDNF (RET) are not associated with Parkinson’s disease in Southern Germany. Neurobiol Aging. 2010;31(1):167–8.PubMedGoogle Scholar
  123. 123.
    Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, et al. Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Transm. 1996;103(8–9):1043–52.PubMedGoogle Scholar
  124. 124.
    Souza RP, de Luca V, Remington G, Lieberman JA, Meltzer HY, Kennedy JL, et al. Glial cell line-derived neurotrophic factor receptor alpha 2 (GFRA2) gene is associated with tardive dyskinesia. Psychopharmacology (Berl). 2010;210(3):347–54.PubMedGoogle Scholar
  125. 125.
    Fusco D, Vargiolu M, Vidone M, Mariani E, Pennisi LF, Bonora E, et al. The RET51/FKBP52 complex and its involvement in Parkinson disease. Hum Mol Genet. 2010;19(14):2804–16.PubMedGoogle Scholar
  126. 126.
    Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60(1):69–73.PubMedGoogle Scholar
  127. 127.
    Bjorklund T, Kirik D. Scientific rationale for the development of gene therapy strategies for Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):703–13.PubMedGoogle Scholar
  128. 128.
    Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol. 1999;46(3):419–24.PubMedGoogle Scholar
  129. 129.
    Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876–80.PubMedGoogle Scholar
  130. 130.
    Vastag B. Biotechnology: crossing the barrier. Nature. 2010;466(7309):916–8.PubMedGoogle Scholar
  131. 131.
    Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003;9(5):589–95.PubMedGoogle Scholar
  132. 132.
    Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med. 2005;11(7):703–4.PubMedGoogle Scholar
  133. 133.
    Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol. 2005;57(2):298–302.PubMedGoogle Scholar
  134. 134.
    Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg. 2005;102(2):216–22.PubMedGoogle Scholar
  135. 135.
    Slevin JT, Gash DM, Smith CD, Gerhardt GA, Kryscio R, Chebrolu H, et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J Neurosurg. 2007;106(4):614–20.PubMedGoogle Scholar
  136. 136.
    Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59(3):459–66.PubMedGoogle Scholar
  137. 137.
    Barker RA. Parkinson’s disease and growth factors—are they the answer? Parkinsonism Relat Disord. 2009;15(Suppl 3):S181–4.PubMedGoogle Scholar
  138. 138.
    Hutchinson M, Gurney S, Newson R. GDNF in Parkinson disease: an object lesson in the tyranny of type II. J Neurosci Methods. 2007;163(2):190–2.PubMedGoogle Scholar
  139. 139.
    Tatarewicz SM, Wei X, Gupta S, Masterman D, Swanson SJ, Moxness MS. Development of a maturing T-cell-mediated immune response in patients with idiopathic Parkinson’s disease receiving r-metHuGDNF via continuous intraputaminal infusion. J Clin Immunol. 2007;27(6):620–7.PubMedGoogle Scholar
  140. 140.
    Sherer TB, Fiske BK, Svendsen CN, Lang AE, Langston JW. Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord. 2006;21(2):136–41.PubMedGoogle Scholar
  141. 141.
    Chebrolu H, Slevin JT, Gash DA, Gerhardt GA, Young B, Given CA, et al. MRI volumetric and intensity analysis of the cerebellum in Parkinson’s disease patients infused with glial-derived neurotrophic factor (GDNF). Exp Neurol. 2006;198(2):450–6.PubMedGoogle Scholar
  142. 142.
    The hard way to a Bill of Rights. Lancet Neurol. 2005;4(12):787.Google Scholar
  143. 143.
    Lang AE, Langston JW, Stoessl AJ, Brodsky M, Brooks DJ, Dhawan V, et al. GDNF in treatment of Parkinson’s disease: response to editorial. Lancet Neurol. 2006;5(3):200–2.PubMedGoogle Scholar
  144. 144.
    Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 2008;7(5):400–8.PubMedGoogle Scholar
  145. 145.
    Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9(12):1164–72.PubMedGoogle Scholar
  146. 146.
    Bartus RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, et al. Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate brains. Mov Disord. 2011;26(1):27–36.PubMedGoogle Scholar
  147. 147.
    Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N, et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology. 2013;80(18):1698–701.PubMedGoogle Scholar
  148. 148.
    Choi JM, Hong JH, Chae MJ, Ngyuen PH, Kang HS, Ma HI, et al. Analysis of mutations and the association between polymorphisms in the cerebral dopamine neurotrophic factor (CDNF) gene and Parkinson disease. Neurosci Lett. 2011;493(3):97–101.PubMedGoogle Scholar
  149. 149.
    Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol. 2008;86(3):186–215.PubMedGoogle Scholar
  150. 150.
    Weinreb O, Amit T, Bar-Am O, Youdim MB. Induction of neurotrophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: new insights and implications for therapy. Ann N Y Acad Sci. 2007;1122:155–68.PubMedGoogle Scholar
  151. 151.
    Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res. 2001;1(6):407–18.Google Scholar
  152. 152.
    Parkinson-Study-Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol. 2004;61(4):561–6.Google Scholar
  153. 153.
    Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009;361(13):1268–78.PubMedGoogle Scholar
  154. 154.
    Rascol O, Fitzer-Attas CJ, Hauser R, Jankovic J, Lang A, Langston JW, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes. Lancet Neurol. 2011;10(5):415–23.PubMedGoogle Scholar
  155. 155.
    Visanji NP, Orsi A, Johnston TH, Howson PA, Dixon K, Callizot N, et al. PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson’s disease. FASEB J. 2008;22(7):2488–97.PubMedGoogle Scholar
  156. 156.
    Hirsch EC. Animal models in neurodegenerative diseases. J Neural Transm Suppl. 2007;72:87–90.PubMedGoogle Scholar
  157. 157.
    Soderstrom K, O’Malley J, Steece-Collier K, Kordower JH. Neural repair strategies for Parkinson’s disease: insights from primate models. Cell Transplant. 2006;15(3):251–65.PubMedGoogle Scholar
  158. 158.
    Forno LS, DeLanney LE, Irwin I, Langston JW. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv Neurol. 1993;60:600–8.PubMedGoogle Scholar
  159. 159.
    Speciale SG. MPTP: insights into parkinsonian neurodegeneration. Neurotoxicol Teratol. 2002;24(5):607–20.Google Scholar
  160. 160.
    Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disord. 2013;28(1):61–70.PubMedCentralPubMedGoogle Scholar
  161. 161.
    Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66(5):646–61.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Piltonen M, Bespalov MM, Ervasti D, Matilainen T, Sidorova YA, Rauvala H, et al. Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons. Exp Neurol. 2009;219(2):499–506.PubMedGoogle Scholar
  164. 164.
    Gash DM, Zhang Z, Ai Y, Grondin R, Coffey R, Gerhardt GA. Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann Neurol. 2005;58(2):224–33.PubMedGoogle Scholar
  165. 165.
    Kirik D, Winkler C, Bjorklund A. Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci. 2001;21(8):2889–96.PubMedGoogle Scholar
  166. 166.
    Aoi M, Date I, Tomita S, Ohmoto T. The effect of intrastriatal single injection of GDNF on the nigrostriatal dopaminergic system in hemiparkinsonian rats: behavioral and histological studies using two different dosages. Neurosci Res. 2000;36(4):319–25.PubMedGoogle Scholar
  167. 167.
    Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandaca MS, Larson PS, et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther. 2011;19(6):1048–57.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Deierborg T, Soulet D, Roybon L, Hall V, Brundin P. Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol. 2008;85(4):407–32.PubMedGoogle Scholar
  169. 169.
    Yasuhara T, Shingo T, Muraoka K, Kobayashi K, Takeuchi A, Yano A, et al. Early transplantation of an encapsulated glial cell line-derived neurotrophic factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson disease. J Neurosurg. 2005;102(1):80–9.PubMedGoogle Scholar
  170. 170.
    Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.PubMedGoogle Scholar
  171. 171.
    Evans JR, Barker RA. Neurotrophic factors as a therapeutic target for Parkinson’s disease. Expert Opin Ther Targets. 2008;12(4):437–47.PubMedGoogle Scholar
  172. 172.
    Barker RA. Continuing trials of GDNF in Parkinson’s disease. Lancet Neurol. 2006;5(4):285–6.PubMedGoogle Scholar
  173. 173.
    Schober A, Peterziel H, von Bartheld CS, Simon H, Krieglstein K, Unsicker K. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis. 2007;25(2):378–91.PubMedGoogle Scholar
  174. 174.
    Lee FS, Chao MV. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A. 2001;98(6):3555–60.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Diogenes MJ, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastiao AM. Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus. 2007;17(7):577–85.PubMedGoogle Scholar
  176. 176.
    Diogenes MJ, Costenla AR, Lopes LV, Jeronimo-Santos A, Sousa VC, Fontinha BM, et al. Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology. 2011;36(9):1823–36.PubMedCentralPubMedGoogle Scholar
  177. 177.
    Diogenes MJ, Fernandes CC, Sebastiao AM, Ribeiro JA. Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci. 2004;24(12):2905–13.PubMedGoogle Scholar
  178. 178.
    Fontinha BM, Diogenes MJ, Ribeiro JA, Sebastiao AM. Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology. 2008;54(6):924–33.PubMedGoogle Scholar
  179. 179.
    Tebano MT, Martire A, Potenza RL, Gro C, Pepponi R, Armida M, et al. Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem. 2008;104(1):279–86.PubMedGoogle Scholar
  180. 180.
    Gomes CA, Vaz SH, Ribeiro JA, Sebastiao AM. Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res. 2006;1113(1):129–36.PubMedGoogle Scholar
  181. 181.
    Pousinha PA, Diogenes MJ, Ribeiro JA, Sebastiao AM. Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neurosci Lett. 2006;404(1–2):143–7.PubMedGoogle Scholar
  182. 182.
    Assaife-Lopes N, Sousa VC, Pereira DB, Ribeiro JA, Sebastiao AM. Regulation of TrkB receptor translocation to lipid rafts by adenosine A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity. Purinergic Signal. 2013.
  183. 183.
    Rodrigues TM, Jeronimo-Santos A, Sebastiao AM, Diogenes MJ. Adenosine A Receptors as novel upstream regulators of BDNF-mediated attenuation of hippocampal Long-Term Depression (LTD). Neuropharmacology. 2013;18(79C):389–98.Google Scholar
  184. 184.
    Rosenblad C, Martinez-Serrano A, Bjorklund A. Glial cell line-derived neurotrophic factor increases survival, growth and function of intrastriatal fetal nigral dopaminergic grafts. Neuroscience. 1996;75(4):979–85.PubMedGoogle Scholar
  185. 185.
    Sinclair SR, Svendsen CN, Torres EM, Martin D, Fawcett JW, Dunnett SB. GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. Neuroreport. 1996;7(15–17):2547–52.PubMedGoogle Scholar
  186. 186.
    Mendez I, Dagher A, Hong M, Hebb A, Gaudet P, Law A, et al. Enhancement of survival of stored dopaminergic cells and promotion of graft survival by exposure of human fetal nigral tissue to glial cell line-derived neurotrophic factor in patients with Parkinson’s disease. Report of two cases and technical considerations. J Neurosurg. 2000;92(5):863–9.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tiago Martins Rodrigues
    • 1
    • 2
  • André Jerónimo-Santos
    • 1
    • 2
  • Tiago Fleming Outeiro
    • 3
    • 4
    • 5
  • Ana Maria Sebastião
    • 1
    • 2
  • Maria José Diógenes
    • 1
    • 2
    • 6
    Email author
  1. 1.Instituto de Farmacologia e Neurociências, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
  2. 2.Unidade de Neurociências, Instituto de Medicina MolecularUniversidade de LisboaLisbonPortugal
  3. 3.Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the BrainUniversity Medical Center GoettingenGoettingenGermany
  4. 4.Unidade de Neurociências Celular e Molecular, Instituto de Medicina MolecularUniversidade de LisboaLisbonPortugal
  5. 5.Instituto de Fisiologia, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
  6. 6.Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, PortugalLisbonPortugal

Personalised recommendations