Skip to main content

Advertisement

Log in

Bronchiectasis in Older Patients with Chronic Obstructive Pulmonary Disease

Prevalence, Diagnosis and Therapeutic Management

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The prevalence of chronic obstructive pulmonary disease (COPD) increases with age. Recent evidence suggests that the finding of co-existent bronchiectasis is becoming increasingly common, possibly because of increased use of high-resolution CT scanning in the assessment of patients with COPD. This may represent a distinct phenotype of COPD, but, nevertheless, it is likely to pose an increased burden to health services and challenges in determining the correct management of these patients. Here, we review the factors associated with bronchiectasis in older patients with COPD and the evidence for many of the therapies currently used in the treatment of patients, providing a rational approach to their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weycker D, Edelsberg J, Oster G, et al. Prevalence and economic burden of bronchiectasis. Clin Pulm Med. 2005;12(4):205–9.

    Article  Google Scholar 

  2. Halbert RJ, Natoli JL, Gano A, et al. Global burden of COPD: systematic review and meta-analysis. Eur Respir J 2006;28(3):523–32.

    Article  PubMed  CAS  Google Scholar 

  3. O’Brien C, Guest PJ, Hill SL, et al. Physiological and radiological characterisation of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax. 2000;55:635–42.

    Article  PubMed  Google Scholar 

  4. Martinez-Garcia MA, Soler-Cataluna JJ, Donat Sanz Y, et al. Factors associated with bronchiectasis in patients with COPD. Chest. 2011;140(5):1130–7.

    Article  PubMed  CAS  Google Scholar 

  5. Cole P, Wilson R. Host microbial interrelationships in respiratory infection. Chest. 1989;95:217S–21S.

    Article  Google Scholar 

  6. Pasteur MC, Helliwell SM, Houghton SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med. 2000;162:1277–84.

    Article  PubMed  CAS  Google Scholar 

  7. Pasteur MC, Bilton D, Hill AT, et al. British Thoracic Society guidelines for non CF bronchiectasis. Thorax. 2010;65:i1–58.

    Article  PubMed  Google Scholar 

  8. O’Donnell AE. Bronchiectasis in patients with COPD: a distinct COPD phenotype? Chest. 2011;140(5):1107–8.

    Article  PubMed  Google Scholar 

  9. Wedzicha JA, Hurst JR. Structural and functional co-conspirators in chronic obstructive pulmonary disease exacerbations. Proc Am Thor Soc. 2007;4(8):602–5.

    Article  Google Scholar 

  10. Devereux G. ABC of chronic obstructive pulmonary disease. Definition, epidemiology and risk factors. BMJ. 2006;332:1142–4.

    Article  PubMed  Google Scholar 

  11. Agusti A, Calverley PM, Celli B, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res. 2010;11:122.

    PubMed  Google Scholar 

  12. Patel IS, Vlahos I, Wilkinson TMA, et al. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(4):400–7.

    Article  PubMed  Google Scholar 

  13. Mannino DM. COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest. 2002;121(5 Suppl):121S–6S.

    Article  PubMed  Google Scholar 

  14. Murray CJL, Lopez AD. Evidence-based health policy – lessons from the Global Burden of Disease Study. Science. 1996;274(5288):740–3.

    Article  PubMed  CAS  Google Scholar 

  15. Crofton J, Douglas A, editors. Respiratory diseases. 3rd ed. Oxford: Blackwell Science Ltd; 1981. p. 417–30.

    Google Scholar 

  16. Saynajakangas O, Keistinen T, Tuuponen T, et al. Bronchiectasis in Finland: trends in hospital treatment. Respir Med. 1997;91(7):395–8.

    Article  PubMed  CAS  Google Scholar 

  17. Roberts HJ, Hubbard R. Trends in bronchiectasis mortality in England and Wales. Resp Med. 2010;104(7):981–5.

    Article  Google Scholar 

  18. Seitz AE, Olivier KN, Steiner CA, et al. Trends and burden of bronchiectasis-associated hospitalisations in the United States, 1993–2006. Chest. 2010;138(4):944–9.

    Article  PubMed  Google Scholar 

  19. Smith IE, Jurriaans E, Diederich S, et al. Chronic sputum production: correlations between clinical features and findings on high resolution computed tomographic scanning of the chest. Thorax. 1996;51(9):914–8.

    Article  PubMed  CAS  Google Scholar 

  20. Jones DK, Godden D, Cavanage P. Alpha 1 antitrypsin deficiency presenting as bronchiectasis. Br J Dis Chest. 1985;79(3):301–4.

    Article  PubMed  CAS  Google Scholar 

  21. Dowson LJ, Guest PJ, Stockley RA. The relationship of chronic sputum expectoration to physiological, radiologic, and health status characteristics in alpha(1)-antitrypsin deficiency (PiZ). Chest. 2002;122(4):1247–55.

    Article  PubMed  Google Scholar 

  22. Parr DG, Guest PG, Reynolds JH, et al. Prevalence and impact of bronchiectasis in alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2007;176(12):1215–21.

    Article  PubMed  Google Scholar 

  23. Stockley RA, O’Brien C, Pye A, et al. Relationship of sputum colour to nature and outpatient management of acute exacerbations of COPD. Chest. 2000;117(6):1638–45.

    Article  PubMed  CAS  Google Scholar 

  24. Wilson R. Bacteria, antibiotics and COPD. Eur Resp J. 2001;17(5):995–1007.

    Article  CAS  Google Scholar 

  25. Murphy TF, Brauer AL, Eschberger K, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):853–60.

    Article  PubMed  CAS  Google Scholar 

  26. Martinez-Garcia MA, Soler-Cataluńa JJ, Perpińá-Tordera M, et al. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest. 2007;132:1565–72.

    Article  PubMed  CAS  Google Scholar 

  27. Wilson R. Outcome predictors in bronchitis. Chest. 1995;108(2):53s–7s.

    Article  PubMed  CAS  Google Scholar 

  28. Saetta M, Di Stefano A, Maestrelli P, et al. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis. 1993;147(2):301–6.

    Article  PubMed  CAS  Google Scholar 

  29. Fuschillo S, De Felice A, Balzano G. Mucosal inflammation in idiopathic bronchiectasis cellular and molecular mechanisms. Eur Respir J. 2008;31(2):396–406.

    Article  PubMed  CAS  Google Scholar 

  30. Sharafkhaneh A, Hanania NA, Kim V. Pathogenesis of emphysema: from the bench to the bedside. Proc Am Thorac Soc. 2008;5(4):475–7.

    Article  PubMed  Google Scholar 

  31. Cole PJ. Inflammation: a two edged sword – the model of bronchiectasis. Eur J. Respir Dis Suppl. 1986;147:6–15.

    PubMed  CAS  Google Scholar 

  32. Martinez Garcia MA, Perpina-Tordera M, Roman-Sanchez P, et al. Quality of life determinants in patients with clinically stable bronchiectasis. Chest. 2005;128(2):739–45.

    Article  PubMed  Google Scholar 

  33. Roberts HR, Wells AU, Milne DG, et al. Airflow obstruction in bronchiectasis: correlation between computed tomography features and pulmonary function tests. Thorax. 2000;55(3):198–204.

    Article  PubMed  CAS  Google Scholar 

  34. King P, Holdsworth SR, Freezer NJ, et al. Outcome in adult bronchiectasis. COPD. 2005;2(1):27–34.

    Article  PubMed  Google Scholar 

  35. King PT. The pathophysiology of bronchiectasis. Int J Chron Obstruct Pulmon Dis. 2009;4:411–9.

    Article  PubMed  Google Scholar 

  36. Elborn JS, Johnstone B, Allen F, et al. Inhaled steroids in patients with bronchiectasis. Respir Med. 1992;86(2):121–4.

    Article  PubMed  CAS  Google Scholar 

  37. Tsang KW, Tan KC, Ho PL, et al. Inhaled fluticasone in bronchiectasis: a twelve month study. Thorax. 2005;60(3):239–43.

    Article  PubMed  CAS  Google Scholar 

  38. Martinez-Garcia MA, Perpina-Tordera M, Roman-Sanchez P, et al. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir Med. 2006;100(9):1623–32.

    Article  PubMed  Google Scholar 

  39. Sheikh A, Nolan D, Greenstone M. Long-acting beta-2-agonists for bronchiectasis. Cochrane Database Syst Rev. 2001;(4):CD002155.

  40. Franco F, Sheikh A, Greenstone M. Short-acting beta-2-agonists for bronchiectasis. Cochrane Database Syst Rev. 2003;(3):CD003572.

  41. Tashkin DP, Celli B, Senn S, et al. A four year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543–54.

    Article  PubMed  CAS  Google Scholar 

  42. Sethi S, Maloney J, Grove L, et al. Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(9):991–8.

    Article  PubMed  Google Scholar 

  43. Angrill J, Agusti C, De Celis R, et al. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am J Respir Crit Care Med. 2001;164(9):1628–32.

    Article  PubMed  CAS  Google Scholar 

  44. King P. Is there a role for inhaled corticosteroids and macrolide therapy in bronchiectasis? Drugs. 2007;67(7):965–74.

    Article  PubMed  CAS  Google Scholar 

  45. Sin DD, Man SF. Steroids in COPD: still up in the air? Eur Respir J. 2010;35(5):949–51.

    Article  PubMed  CAS  Google Scholar 

  46. Crim C, Calverley PM, Anderson JA, et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J. 2009;34(3):641–7.

    Article  PubMed  CAS  Google Scholar 

  47. Singh S, Loke YK. Risk of pneumonia associated with long term use of inhaled corticosteroids in COPD: a critical review and update. Curr Opin Pulm Med. 2010;16(2):118–22.

    Article  PubMed  Google Scholar 

  48. Wedzicha JA, Calverley PM, Seemungal TA, et al. The prevention of COPD exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Resp Crit Care Med. 2008;177(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  49. National Institute for Health and Clinical Excellence. Clinical guideline 101 – chronic obstructive pulmonary disease. Management of chronic obstructive pulmonary disease in adults in primary and secondary care (update of NICE clinical guideline 12). London: National Institute for Health and Clinical Excellence. June 2010. http://guidance.nice.org.uk/CG101. Accessed 17 Sep 2012.

  50. Kapur N, Bell S, Kolbe J et al. Inhaled steroids for bronchiectasis. Cochrane Database Syst Rev 2009; 21(1):CD000996.

    Google Scholar 

  51. Tsang KW, Pak-Leung HO, Lam WK, et al. Inhaled fluticasone reduces sputum inflammatory indices in severe bronchiectasis. Am J Respir Crit Care Med. 1998;158(3):723–7.

    Article  PubMed  CAS  Google Scholar 

  52. Martinez-Garcia MA, Soler-Cataluna JJ, Catalan-Serra P, et al. Clinical efficacy and safety of budesonide-formoterol in non-cystic fibrosis bronchiectasis. Chest. 2012;141(2):461–8.

    Article  PubMed  CAS  Google Scholar 

  53. Antoniu SA. New therapeutic options in the management of COPD – focus on roflumilast. Int J Chron Obstruct Pulmon Dis. 2011;6:147–55.

    Article  PubMed  CAS  Google Scholar 

  54. Gamble E, Grootendorst DC, Brightling CE, et al. Anti-inflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(8):967–82.

    Article  Google Scholar 

  55. Rennard SI, Calverley PM, Goehring UM, et al. Reduction of exacerbations by PDE4 inhibitor roflumilast – the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18.

    Article  PubMed  CAS  Google Scholar 

  56. Foreman MG, DeMeo DL, Hersh CP, et al. Clinical determinants of exacerbations in severe, early-onset COPD. Eur Respir J. 2007;30(6):1124–30.

    Article  PubMed  CAS  Google Scholar 

  57. Schenkein JG, Nahm MH, Dransfield MT. Pneumococcal vaccination for patients with COPD: current practice and future directions. Chest. 2008;133(3):767–74.

    Article  PubMed  Google Scholar 

  58. Rubins JB, Puri AK, Loch J, et al. Magnitude, duration, quality and function of pneumococcal vaccine responses in elderly adults. J Infect Dis. 1998;178(2):431–40.

    Article  PubMed  CAS  Google Scholar 

  59. Romero-Steiner S, Musher DM, Cetron MS, et al. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin Infect Dis. 1999;29(2):281–8.

    Article  PubMed  CAS  Google Scholar 

  60. Poole P, Chacko EE, Wood-Baker R, et al. Influenzae vaccine for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006;25(1):CD002733.

    Google Scholar 

  61. Kang I, Hong MS, Nolasco H, et al. Age-associated change in the frequency of memory CD4+ T cells impairs long term CD4+ T cell responses to influenza vaccine. J Immunol. 2004;173(1):673–81.

    PubMed  CAS  Google Scholar 

  62. World Health Organisation. WHO position paper on Haemophilus influenza type b conjugate vaccines. (Replaces WHO position paper on Hib vaccines previously published in the Weekly Epidemiological Record.). Wkly Epidemiol Rec. 2006;81(47):445–52.

    Google Scholar 

  63. McElhaney JE. The unmet need in the elderly: designing new influenza vaccines for older adults. Vaccine. 2005;23(Suppl 1):S10–25.

    Article  PubMed  Google Scholar 

  64. Woodhead M. New guidelines for the management of adult lower respiratory tract infections. Eur Respir J. 2011;38(6):1250–1.

    Article  PubMed  CAS  Google Scholar 

  65. Itkin IH, Menzel ML. The use of marolide antibiotic substances in the treatment of asthma. J Allergy. 1970;45(3):146–62.

    Article  PubMed  CAS  Google Scholar 

  66. Kudoh S, Uetake T, Hagiwara K. et al Clinical effect of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis [in Japanese with English abstract]. Jpn J Thorac Dis. 1987;25:632–42.

    CAS  Google Scholar 

  67. Tateda K, Ishii Y, Kimura S, et al. Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery? J Infect Chemother. 2007;13(6):357–67.

    Article  PubMed  CAS  Google Scholar 

  68. Smith DJ, Chang AB, Bell SC. Anti-inflammatory therapies in bronchiectasis. Eur Respir Mon. 2011;52:223–38.

    Article  Google Scholar 

  69. Tamaoki J. The effects of macrolides on inflammatory cells. Chest. 2004;125(2 Suppl):41S–50S.

    Article  PubMed  CAS  Google Scholar 

  70. Gorrini M, Lupi A, Viglio S, et al. Inhibition of human neutrophil elastase by erythromycin and flurithromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol. 2001;25(4):492–9.

    Article  PubMed  CAS  Google Scholar 

  71. Cymbala AA, Edmonds LC, Bauer MA, et al. The disease modifying effects of twice weekly azithromycin in patients with bronchiectasis. Treat Respir Med. 2005;4(2):117–22.

    Article  PubMed  CAS  Google Scholar 

  72. Tsang KW, Ho PI, Chan KN. A pilot study of low dose erythromycin in bronchiectasis. Eur Respir J. 1999;13(2):361–4.

    Article  PubMed  CAS  Google Scholar 

  73. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689–98.

    Article  PubMed  CAS  Google Scholar 

  74. Basyigit I, Yildiz F, Ozkara SK, et al. The effect of clarithromycin on inflammatory markers in chronic obstructive pulmonary disease: preliminary data. Ann Pharmacother. 2004;38(9):1400–5.

    Article  PubMed  CAS  Google Scholar 

  75. Seemungal TA, Wilkinson TM, Hurst JR, et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008;178(11):1139–47.

    Article  PubMed  CAS  Google Scholar 

  76. Sapey E, Stockley RA. COPD exacerbations 2: aetiology. Thorax. 2006;61(3):250–8.

    Article  PubMed  CAS  Google Scholar 

  77. El Moussari R, Roede BM, Speelman P, et al. Short course antibiotic treatment in acute exacerbations of chronic bronchitis and COPD: a meta-analysis of double-blind studies. Thorax. 2008;63(5):415–22.

    Article  Google Scholar 

  78. Patel IS, Seemungal TA, Wilks M, et al. Relationship between bacterial colonisation and the frequency, character and severity of COPD exacerbations. Thorax. 2002;57(9):759–64.

    Article  PubMed  CAS  Google Scholar 

  79. Gursel G. Does coexistence with bronchiectasis influence intensive care unit outcome in patients with chronic obstructive pulmonary disease? Heart Lung. 2006;35(1):58–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Whitters is the main author of the manuscript. Professor Stockley contributed to the writing and review of the manuscript.

Conflicts of interest and funding

Dr. Whitters has no disclosures. Professor Stockley has acted as an advisor to several pharmaceutical companies including GSK, AZ, Almirall, Novartis, Schering Plough, Boehringer Ingelheim, Pfizer, MSD, Baxter Biologicals, CSL Behring and Grifols. He has lectured on COPD and received fees from Takeda, GSK, Pfizer, AZ and Grifols and received travel funding to attend international meetings from Boehringer, GSK and Grifols. He has received unconditional research funding from AZ, GSK and Grifols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Stockley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitters, D., Stockley, R.A. Bronchiectasis in Older Patients with Chronic Obstructive Pulmonary Disease. Drugs Aging 30, 215–225 (2013). https://doi.org/10.1007/s40266-013-0053-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-013-0053-4

Keywords

Navigation