Skip to main content

Advertisement

Log in

Treatment Options in Spinal Muscular Atrophy: A Pragmatic Approach for Clinicians

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Spinal muscular atrophy (SMA) is a rare neurodegenerative neuromuscular disorder with a wide phenotypic spectrum of severity. SMA was previously life limiting for patients with the most severe phenotype and resulted in progressive disability for those with less severe phenotypes. This has changed dramatically in the past few years with the approvals of three disease-modifying treatments. We review the evidence supporting the use of currently approved SMA treatments (nusinersen, onasemnogene abeparvovec, and risdiplam), focusing on mechanisms of action, side effect profiles, published clinical trial data, health economics, and pending questions. Whilst there is robust data from clinical trials of efficacy and side effect profile for individual drugs in select SMA populations, there are no comparative head-to-head clinical trials. This presents a challenge for clinicians who need to make recommendations on the best treatment option for an individual patient and we hope to provide a pragmatic approach for clinicians across each SMA profile based on current evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis. 2017;12(1):124. https://doi.org/10.1186/s13023-017-0671-8. (Epub 20170704. PubMed PMID: 28676062; PubMed Central PMCID: PMCPMC5496354).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet. 1997;60(6):1411–22. https://doi.org/10.1086/515465. (PubMed PMID: 9199562; PubMed CentralPMCID: PMCPMC1716150).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aragon-Gawinska K, Mouraux C, Dangouloff T, Servais L. Spinal muscular atrophy treatment in patients identified by newborn screening-a systematic review. Genes (Basel). 2023. https://doi.org/10.3390/genes14071377. (Epub 20230629. PubMed PMID: 37510282; PubMed Central PMCID: PMCPMC10379202).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155–65. https://doi.org/10.1016/0092-8674(95)90460-3. (PubMed PMID: 7813012).

    Article  CAS  PubMed  Google Scholar 

  5. Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat. 2000;15(3):228–37. https://doi.org/10.1002/(sici)1098-1004(200003)15:3%3c228::Aid-humu3%3e3.0.Co;2-9. (PubMed PMID: 10679938).

    Article  CAS  PubMed  Google Scholar 

  6. Calucho M, Bernal S, Alías L, March F, Venceslá A, Rodríguez-Álvarez FJ, et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28(3):208–15. https://doi.org/10.1016/j.nmd.2018.01.003. (Epub 20180111. PubMed PMID: 29433793).

    Article  PubMed  Google Scholar 

  7. Wirth B, Mendoza-Ferreira N, Torres-Benito L. Spinal muscular atrophy disease modifiers. Spinal muscular atrophy. Amsterdam: Elsevier; 2017. p. 191–210.

    Book  Google Scholar 

  8. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009;85(3):408–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. TL M. International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul Disord. 1992;2:423–8.

  10. Polido GJ, Miranda MMVd, Carvas N, Mendonça RdH, Caromano FA, Reed UC, et al. Cognitive performance of children with spinal muscular atrophy: a systematic review. Dementia Neuropsychologia. 2019;13:436–43.

  11. Ngawa M, Dal Farra F, Marinescu A-D, Servais L. Longitudinal developmental profile of newborns and toddlers treated for spinal muscular atrophy. Ther Adv Neurol Disord. 2023;16:17562864231154336.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Masson R, Brusa C, Scoto M, Baranello G. Brain, cognition, and language development in spinal muscular atrophy type 1: a scoping review. Dev Med Child Neurol. 2021;63(5):527–36.

    Article  PubMed  Google Scholar 

  13. Baranello G, Group NiSW. The emerging spectrum of neurodevelopmental comorbidities in early-onset spinal muscular atrophy. Eur J Paediatr Neurol. 2023;48:67–8. https://doi.org/10.1016/j.ejpn.2023.11.006(Epub 20231123. PubMed PMID: 38043384).

  14. Mercuri E, Finkel RS, Muntoni F, Wirth B, Montes J, Main M, et al. Diagnosis and management of spinal muscular atrophy: Part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103–15.

    Article  PubMed  Google Scholar 

  15. Finkel RS, Mercuri E, Meyer OH, Simonds AK, Schroth MK, Graham RJ, et al. Diagnosis and management of spinal muscular atrophy: Part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord. 2018;28(3):197–207. https://doi.org/10.1016/j.nmd.2017.11.004. (Epub 20171123. PubMed PMID: 29305137).

    Article  PubMed  Google Scholar 

  16. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Colvin MK, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17(5):445–55.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoy SM. Nusinersen: first global approval. Drugs. 2017;77:473–9.

    Article  CAS  PubMed  Google Scholar 

  18. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017–26. https://doi.org/10.1016/S0140-6736(16)31408-8. (Epub 20161207. PubMed PMID: 27939059).

    Article  CAS  PubMed  Google Scholar 

  19. Acsadi G, Crawford TO, Müller-Felber W, Shieh PB, Richardson R, Natarajan N, et al. Safety and efficacy of nusinersen in spinal muscular atrophy: the EMBRACE study. Muscle Nerve. 2021;63(5):668–77. https://doi.org/10.1002/mus.27187. (Epub 20210216. PubMed PMID: 33501671; PubMed Central PMCID: PMCPMC8248061).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–35. https://doi.org/10.1056/NEJMoa1710504. (PubMed PMID: 29443664).

    Article  CAS  PubMed  Google Scholar 

  21. Gov.UK. Nusinersen- reports of communicating hydrocephalus 2018 [cited 2024 8/5/2024]. Accesed 8/5/2024.

  22. Viscidi E, Wang N, Juneja M, Bhan I, Prada C, James D, et al. The incidence of hydrocephalus among patients with and without spinal muscular atrophy (SMA): results from a US electronic health records study. Orphanet J Rare Dis. 2021;16(1):207. https://doi.org/10.1186/s13023-021-01822-4. (Epub 20210507. PubMed PMID: 33962637; PubMed Central PMCID: PMCPMC8105953).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Machetanz G, Grziwotz M, Semmler L, Maier M, Maegerlein C, Deschauer M. Symptomatic intracranial hypertension in an adult patient with spinal muscular atrophy and arachnoid cysts receiving nusinersen. J Neuromuscul Dis. 2023;10(4):719–25. https://doi.org/10.3233/JND-230032. (PubMed PMID: 37248913; PubMed Central PMCID: PMCPMC10357201).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scheijmans FEV, Cuppen I, Zwartkruis MM, Signoria I, van Ekris C, Asselman F, et al. Inflammatory markers in cerebrospinal fluid of paediatric spinal muscular atrophy patients receiving nusinersen treatment. Eur J Paediatr Neurol. 2023;42:34–41. https://doi.org/10.1016/j.ejpn.2022.12.003. (Epub 20221207. PubMed PMID: 36525882).

    Article  CAS  PubMed  Google Scholar 

  25. Ubysz J, Koszewicz M, Bladowska J, Budrewicz S. Spinal adhesive arachnoiditis in an adult patient with spinal muscular atrophy type 3 treated with intrathecal therapy. BMC Neurol. 2024;24(1):43. https://doi.org/10.1186/s12883-024-03543-0. (Epub 20240124. PubMed PMID: 38267835; PubMed Central PMCID: PMCPMC10807066).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oskoui M, Servais L. Spinal muscular atrophy. Continuum (Minneap Minn). 2023;29(5):1564–84. https://doi.org/10.1212/CON.0000000000001338. (PubMed PMID: 37851043).

    Article  PubMed  Google Scholar 

  27. label E. Nusinsersen EMA label 2023 [cited 2024 11/02/2024]. https://www.ema.europa.eu/en/medicines/human/EPAR/spinraza. Accessed 11/2/2024.

  28. Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational survival motor neuron 2 (SMN2) splicing modifier for spinal muscular atrophy (SMA). Expert Opin Investig Drugs. 2022;31(5):451–61. https://doi.org/10.1080/13543784.2022.2056836. (Epub 20220411. PubMed PMID: 35316106).

    Article  CAS  PubMed  Google Scholar 

  29. Label E. Risdiplam 2024 [cited 2024 11/02/2024]. https://www.ema.europa.eu/en/medicines/human/EPAR/evrysdi. Accessed 11/2/2024.

  30. Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. Risdiplam in type 1 spinal muscular atrophy. N Engl J Med. 2021;384(10):915–23. https://doi.org/10.1056/NEJMoa2009965. (Epub 20210224. PubMed PMID: 33626251).

    Article  CAS  PubMed  Google Scholar 

  31. Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, Rose K, Xiong H, Zanoteli E, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med. 2021;385(5):427–35. https://doi.org/10.1056/NEJMoa2102047. (PubMed PMID: 34320287).

    Article  CAS  PubMed  Google Scholar 

  32. Mueller L, Barrow P, Jacobsen B, Ebeling M, Weinbauer G. Reproductive findings in male animals exposed to selective survival of motor neuron 2 (SMN2) gene splicing-modifying agents. Reprod Toxicol. 2023;118: 108360.

    Article  CAS  PubMed  Google Scholar 

  33. Blair HA. Onasemnogene Abeparvovec: a review in spinal muscular atrophy. CNS Drugs. 2022;36(9):995–1005.

    Article  PubMed  Google Scholar 

  34. Chand DH, Mitchell S, Sun R, LaMarca N, Reyna SP, Sutter T. Safety of onasemnogene abeparvovec for patients with spinal muscular atrophy 8.5 kg or heavier in a global managed access program. Pediatr Neurol. 2022;132:27–32. https://doi.org/10.1016/j.pediatrneurol.2022.05.001. (Epub 20220510. PubMed PMID: 35605311).

    Article  PubMed  Google Scholar 

  35. Servais L, Day JW, De Vivo DC, Kirschner J, Mercuri E, Muntoni F, et al. Real-world outcomes in patients with spinal muscular atrophy treated with onasemnogene abeparvovec monotherapy: findings from the RESTORE registry. J Neuromuscul Dis. 2024. https://doi.org/10.3233/JND-230122. (Epub 20240118. PubMed PMID: 38250783).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang D, Ruan Y, Chen Y. Safety and efficacy of gene therapy with onasemnogene abeparvovec in the treatment of spinal muscular atrophy: a systematic review and meta-analysis. J Paediatr Child Health. 2023;59(3):431–8. https://doi.org/10.1111/jpc.16340. (Epub 20230201. PubMed PMID: 36722610).

    Article  CAS  PubMed  Google Scholar 

  37. Zhuang W, Lu M, Wu Y, Chen Z, Wang M, Wang X, et al. Safety concerns with nusinersen, risdiplam, and onasemnogene abeparvovec in spinal muscular atrophy: a real-world pharmacovigilance study. Clin Drug Investig. 2023;43(12):949–62. https://doi.org/10.1007/s40261-023-01320-4. (Epub 20231123. PubMed PMID: 37995087).

    Article  CAS  PubMed  Google Scholar 

  38. Day JW, Mendell JR, Mercuri E, Finkel RS, Strauss KA, Kleyn A, et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Saf. 2021;44(10):1109–19. https://doi.org/10.1007/s40264-021-01107-6. (Epub 20210812. PubMed PMID: 34383289; PubMed Central PMCID: PMCPMC8473343).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weiß C, Ziegler A, Becker LL, Johannsen J, Brennenstuhl H, Schreiber G, et al. Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. Lancet Child Adolesc Health. 2022;6(1):17–27. https://doi.org/10.1016/S2352-4642(21)00287-X. (Epub 20211029. PubMed PMID: 34756190).

    Article  PubMed  Google Scholar 

  40. Gowda V, Atherton M, Murugan A, Servais L, Sheehan J, Standing E, et al. Efficacy and safety of onasemnogene abeparvovec in children with spinal muscular atrophy type 1: real-world evidence from 6 infusion centres in the United Kingdom. Lancet Regional Health Europe. 2024;37.

  41. Chand DH, Zaidman C, Arya K, Millner R, Farrar MA, Mackie FE, et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J Pediatr. 2021;231:265–8. https://doi.org/10.1016/j.jpeds.2020.11.054.

    Article  CAS  PubMed  Google Scholar 

  42. Guillou J, de Pellegars A, Porcheret F, Frémeaux-Bacchi V, Allain-Launay E, Debord C, et al. Fatal thrombotic microangiopathy case following adeno-associated viral SMN gene therapy. Blood Adv. 2022;6(14):4266–70. https://doi.org/10.1182/bloodadvances.2021006419. (PubMed PMID: 35584395; PubMed Central PMCID: PMCPMC9327533).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–93. https://doi.org/10.1016/S1474-4422(21)00001-6. (Epub 20210317. PubMed PMID: 33743238).

    Article  CAS  PubMed  Google Scholar 

  44. Abiusi E, Vaisfeld A, Fiori S, Novelli A, Spartano S, Faggiano MV, et al. Experience of a 2-year spinal muscular atrophy NBS pilot study in Italy: towards specific guidelines and standard operating procedures for the molecular diagnosis. J Med Genet. 2023;60(7):697–705. https://doi.org/10.1136/jmg-2022-108873. (Epub 20221122. PubMed PMID: 36414255).

    Article  CAS  PubMed  Google Scholar 

  45. Mercuri E, Baranello G, Boespflug-Tanguy O, De Waele L, Goemans N, Kirschner J, et al. Risdiplam in types 2 and 3 spinal muscular atrophy: a randomised, placebo-controlled, dose-finding trial followed by 24 months of treatment. Eur J Neurol. 2023;30(7):1945–56. https://doi.org/10.1111/ene.15499. (Epub 20220801. PubMed PMID: 35837793).

    Article  PubMed  Google Scholar 

  46. Mercuri E, Deconinck N, Mazzone ES, Nascimento A, Oskoui M, Saito K, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2022;21(1):42–52. https://doi.org/10.1016/S1474-4422(21)00367-7. (PubMed PMID: 34942136).

    Article  CAS  PubMed  Google Scholar 

  47. Oskoui M, Day JW, Deconinck N, Mazzone ES, Nascimento A, Saito K, et al. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol. 2023;270(5):2531–46. https://doi.org/10.1007/s00415-023-11560-1. (Epub 20230203. PubMed PMID: 36735057; PubMed Central PMCID: PMCPMC9897618).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dangouloff T, Hiligsmann M, Deconinck N, D’Amico A, Seferian AM, Boemer F, et al. Financial cost and quality of life of patients with spinal muscular atrophy identified by symptoms or newborn screening. Dev Med Child Neurol. 2023;65(1):67–77. https://doi.org/10.1111/dmcn.15286. (Epub 20220608. PubMed PMID: 35673937).

    Article  PubMed  Google Scholar 

  49. Crawford TO, Swoboda KJ, De Vivo DC, Bertini E, Hwu WL, Finkel RS, et al. Continued benefit of nusinersen initiated in the presymptomatic stage of spinal muscular atrophy: 5-year update of the NURTURE study. Muscle Nerve. 2023;68(2):157–70. https://doi.org/10.1002/mus.27853. (Epub 20230706. PubMed PMID: 37409780).

    Article  CAS  PubMed  Google Scholar 

  50. Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1381–9. https://doi.org/10.1038/s41591-022-01866-4. (Epub 20220617. PubMed PMID: 35715566; PubMed Central PMCID: PMCPMC9205281).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1390–7. https://doi.org/10.1038/s41591-022-01867-3. (Epub 20220617. PubMed PMID: 35715567; PubMed Central PMCID: PMCPMC9205287).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. R F, M F, L S, D V, E Z, M A-M, et al. RAINBOWFISH: Primary efficacy and safety data in risdiplam-treated infants with presymptomatic spinal muscular atrophy (SMA). Neuromuscul Disord. 2023;33(Sup 1):S87–S8.

  53. De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord. 2019;29(11):842–56. https://doi.org/10.1016/j.nmd.2019.09.007. (Epub 20190912. PubMed PMID: 31704158; PubMed Central PMCID: PMCPMC7127286).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Finkel RS, Day JW, Pascual Pascual SI, Ryan MM, Mercuri E, De Vivo DC, et al. DEVOTE study exploring higher dose of nusinersen in spinal muscular atrophy: study design and part A results. J Neuromuscul Dis. 2023;10(5):813–23. https://doi.org/10.3233/JND-221667.PubMedPMID:37393513;PubMedCentralPMCID:PMCPMC10578235.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Finkel RS, Ryan MM, Pascual Pascual SI, Day JW, Mercuri E, De Vivo DC, et al. Scientific rationale for a higher dose of nusinersen. Ann Clin Transl Neurol. 2022;9(6):819–29. https://doi.org/10.1002/acn3.51562. (Epub 20220513. PubMed PMID: 35567345; PubMed Central PMCID: PMCPMC9186144).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boemer F, Caberg JH, Beckers P, Dideberg V, di Fiore S, Bours V, et al. Three years pilot of spinal muscular atrophy newborn screening turned into official program in Southern Belgium. Sci Rep. 2021;11(1):19922. https://doi.org/10.1038/s41598-021-99496-2. (Epub 20211007. PubMed PMID: 34620959; PubMed Central PMCID: PMCPMC8497564).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kucera KS, Taylor JL, Robles VR, Clinard K, Migliore B, Boyea BL, et al. A voluntary statewide newborn screening pilot for spinal muscular atrophy: results from early check. Int J Neonatal Screen. 2021. https://doi.org/10.3390/ijns7010020. (Epub 20210321. PubMed PMID: 33801060; PubMed Central PMCID: PMCPMC8006221).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vill K, Schwartz O, Blaschek A, Gläser D, Nennstiel U, Wirth B, et al. Newborn screening for spinal muscular atrophy in Germany: clinical results after 2 years. Orphanet J Rare Dis. 2021;16(1):153. https://doi.org/10.1186/s13023-021-01783-8. (Epub 20210331. PubMed PMID: 33789695; PubMed Central PMCID: PMCPMC8011100).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Blaschek A, Kölbel H, Schwartz O, Köhler C, Gläser D, Eggermann K, et al. Newborn screening for SMA—can a wait-and-see strategy be responsibly justified in patients with four SMN2 copies? J Neuromuscul Dis. 2022;9(5):597–605. https://doi.org/10.3233/JND-221510. (PubMed PMID: 35848034).

    Article  PubMed  Google Scholar 

  60. Sonehara S, Bo R, Nambu Y, Iketani K, Lee T, Shimomura H, et al. Newborn screening for spinal muscular atrophy: a 25-year experience in Hyogo Prefecture, Japan. Genes (Basel). 2023. https://doi.org/10.3390/genes14122211. (Epub 20231214. PubMed PMID: 38137033; PubMed Central PMCID: PMCPMC10742789).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lee BH, Deng S, Chiriboga CA, Kay DM, Irumudomon O, Laureta E, et al. Newborn screening for spinal muscular atrophy in new york state: clinical outcomes from the first 3 years. Neurology. 2022;99(14):e1527–37. https://doi.org/10.1212/WNL.0000000000200986. (Epub 20221003. PubMed PMID: 35835557; PubMed Central PMCID: PMCPMC9576300).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Matteson J, Wu CH, Mathur D, Tang H, Sciortino S, Feuchtbaum L, et al. California’s experience with SMA newborn screening: a successful path to early intervention. J Neuromuscul Dis. 2022;9(6):777–85. https://doi.org/10.3233/JND-221561. (PubMed PMID: 36278357).

    Article  PubMed  Google Scholar 

  63. Elkins K, Wittenauer A, Hagar AF, Logan R, Sekul E, Xiang Y, et al. Georgia state spinal muscular atrophy newborn screening experience: screening assay performance and early clinical outcomes. Am J Med Genet C Semin Med Genet. 2022;190(2):187–96. https://doi.org/10.1002/ajmg.c.32003. (Epub 20220926. PubMed PMID: 36164257).

    Article  PubMed  Google Scholar 

  64. Kariyawasam DS, D’Silva AM, Sampaio H, Briggs N, Herbert K, Wiley V, et al. Newborn screening for spinal muscular atrophy in Australia: a non-randomised cohort study. Lancet Child Adolesc Health. 2023;7(3):159–70. https://doi.org/10.1016/S2352-4642(22)00342-X. (Epub 20230117. PubMed PMID: 36669516).

    Article  PubMed  Google Scholar 

  65. Schwartz O, Kölbel H, Blaschek A, Gläser D, Burggraf S, Röschinger W, et al. Spinal muscular atrophy—is newborn screening too late for children with two SMN2 copies? J Neuromuscul Dis. 2022;9(3):389–96. https://doi.org/10.3233/JND-220789. (PubMed PMID: 35431259).

    Article  PubMed  Google Scholar 

  66. Kölbel H, Kopka M, Modler L, Blaschek A, Schara-Schmidt U, Vill K, et al. Impaired neurodevelopment in children with 5q-SMA—2 years after newborn screening. J Neuromuscul Dis. 2024;11(1):143–51. https://doi.org/10.3233/JND-230136. (PubMed PMID: 37927272).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Buchignani B, Cicala G, Cumbo F, Ricci M, Capasso A, Ticci C, et al. Communicative development inventory in type 1 and presymptomatic infants with spinal muscular atrophy: a cohort study. Arch Dis Child. 2024. https://doi.org/10.1136/archdischild-2023-326613. (Epub 20240130. PubMed PMID: 38290776).

    Article  PubMed  Google Scholar 

  68. Erbas Y, Gusset N. The need for evidence-based treatment decisions in spinal muscular atrophy type 0. Ann Clin Transl Neurol. 2021;8(10):2094–5. https://doi.org/10.1002/acn3.51459. (Epub 20210921. PubMed PMID: 34546649; PubMed Central PMCID: PMCPMC8528450).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tiberi E, Costa S, Pane M, Priolo F, de Sanctis R, Romeo D, et al. Nusinersen in type 0 spinal muscular atrophy: should we treat? Ann Clin Transl Neurol. 2020;7(12):2481–3. https://doi.org/10.1002/acn3.51126. (Epub 20201104. PubMed PMID: 33147378; PubMed Central PMCID: PMCPMC7732235).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mendonça RH, Rocha AJ, Lozano-Arango A, Diaz AB, Castiglioni C, Silva AMS, et al. Severe brain involvement in 5q spinal muscular atrophy type 0. Ann Neurol. 2019;86(3):458–62. https://doi.org/10.1002/ana.25549. (Epub 20190724. PubMed PMID: 31301241).

    Article  CAS  PubMed  Google Scholar 

  71. Tosi M, Cumbo F, Catteruccia M, Carlesi A, Mizzoni I, De Luca G, et al. Neurocognitive profile of a cohort of SMA type 1 pediatric patients and emotional aspects, resilience and coping strategies of their caregivers. Eur J Paediatr Neurol. 2023;43:36–43. https://doi.org/10.1016/j.ejpn.2023.02.004. (Epub 20230303. PubMed PMID: 36893678).

    Article  CAS  PubMed  Google Scholar 

  72. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study. Lancet Child Adolesc Health. 2021;5(7):491–500.

    Article  CAS  PubMed  Google Scholar 

  73. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32. https://doi.org/10.1056/NEJMoa1702752. (PubMed PMID: 29091570).

    Article  CAS  PubMed  Google Scholar 

  74. Servais L, Farrar M, Finkel R, Kirschner J, Muntoni F, Sun P, et al. Nusinersen demonstrates greater efficacy in infants with shorter disease duration: end of study results from the ENDEAR study in infants with spinal muscular atrophy (SMA). Neuromuscul Disord. 2017;27:S211.

    Article  Google Scholar 

  75. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. https://doi.org/10.1056/NEJMoa1706198. (PubMed PMID: 29091557).

    Article  CAS  PubMed  Google Scholar 

  76. Mendell JR, Al-Zaidy SA, Lehman KJ, McColly M, Lowes LP, Alfano LN, et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 2021;78(7):834–41. https://doi.org/10.1001/jamaneurol.2021.1272. (PubMed PMID: 33999158; PubMed Central PMCID: PMCPMC8129901).

    Article  PubMed  Google Scholar 

  77. Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(10):832–41. https://doi.org/10.1016/S1474-4422(21)00251-9. (PubMed PMID: 34536405).

    Article  CAS  PubMed  Google Scholar 

  78. Al-Zaidy S, Pickard AS, Kotha K, Alfano LN, Lowes L, Paul G, et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol. 2019;54(2):179–85.

    Article  PubMed  Google Scholar 

  79. Masson R, Mazurkiewicz-Bełdzińska M, Rose K, Servais L, Xiong H, Zanoteli E, et al. Safety and efficacy of risdiplam in patients with type 1 spinal muscular atrophy (FIREFISH part 2): secondary analyses from an open-label trial. Lancet Neurol. 2022;21(12):1110–9. https://doi.org/10.1016/S1474-4422(22)00339-8. (Epub 20221014. PubMed PMID: 36244364).

    Article  CAS  PubMed  Google Scholar 

  80. Chan SH-S, Chae J-H, Chien Y-H, Ko T-S, Lee JH, Lee YJ, et al. Nusinersen in spinal muscular atrophy type 1 from neonates to young adult: 1-year data from three Asia-Pacific regions. J Neurol Neurosurg Psychiatry. 2021.

  81. Modrzejewska S, Kotulska K, Kopyta I, Grędowska E, Emich-Widera E, Tomaszek K, et al. Nusinersen treatment of Spinal Muscular Atrophy Type 1—results of expanded access programme in Poland. Neurol Neurochir Pol. 2021;55(3):289–94. https://doi.org/10.5603/PJNNS.a2021.0020. (Epub 20210210. PubMed PMID: 33565602).

    Article  PubMed  Google Scholar 

  82. de Holanda Mendonça R, Jorge Polido G, Ciro Jr M, Jorge Fontoura Solla D, Conti Reed U, Zanoteli E. Clinical outcomes in patients with spinal muscular atrophy type 1 treated with nusinersen. J Neuromuscul Dis. 2021;8(2):217–24.

  83. Audic F, de La Banda MGG, Bernoux D, Ramirez-Garcia P, Durigneux J, Barnerias C, et al. Effects of nusinersen after one year of treatment in 123 children with SMA type 1 or 2: a French real-life observational study. Orphanet J Rare Dis. 2020;15(1):1–10.

    Article  Google Scholar 

  84. Łusakowska A, Wójcik A, Frączek A, Aragon-Gawińska K, Potulska-Chromik A, Baranowski P, et al. Long-term nusinersen treatment across a wide spectrum of spinal muscular atrophy severity: a real-world experience. Orphanet J Rare Dis. 2023;18(1):230. https://doi.org/10.1186/s13023-023-02769-4. (Epub 20230804. PubMed PMID: 37542300; PubMed Central PMCID: PMCPMC10401775).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sansone VA, Pirola A, Albamonte E, Pane M, Lizio A, D’Amico A, et al. Respiratory needs in patients with type 1 spinal muscular atrophy treated with nusinersen. J Pediatr. 2020;219:223-8.e4. https://doi.org/10.1016/j.jpeds.2019.12.047. (Epub 20200205. PubMed PMID: 32035635).

    Article  PubMed  Google Scholar 

  86. Lavie M, Diamant N, Cahal M, Sadot E, Be’er M, Fattal-Valevski A, et al. Nusinersen for spinal muscular atrophy type 1: Real-world respiratory experience. Pediatr Pulmonol. 2021;56(1):291–8. https://doi.org/10.1002/ppul.25140. (Epub 20201105. PubMed PMID: 33111497).

    Article  PubMed  Google Scholar 

  87. Al Amrani F, Amin R, Chiang J, Xiao L, Boyd J, Law E, et al. Scoliosis in spinal muscular atrophy type 1 in the nusinersen era. Neurol Clin Pract. 2022;12(4):279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chacko A, Sly PD, Ware RS, Begum N, Deegan S, Thomas N, et al. Effect of nusinersen on respiratory function in paediatric spinal muscular atrophy types 1–3. Thorax. 2022;77(1):40–6. https://doi.org/10.1136/thoraxjnl-2020-216564. (Epub 20210507. PubMed PMID: 33963091).

    Article  PubMed  Google Scholar 

  89. Aragon-Gawinska K, Seferian AM, Daron A, Gargaun E, Vuillerot C, Cances C, et al. Nusinersen in patients older than 7 months with spinal muscular atrophy type 1: a cohort study. Neurology. 2018;91(14):e1312–8.

    Article  CAS  PubMed  Google Scholar 

  90. Pane M, Coratti G, Sansone VA, Messina S, Bruno C, Catteruccia M, et al. Nusinersen in type 1 spinal muscular atrophy: twelve-month real-world data. Ann Neurol. 2019;86(3):443–51.

    Article  CAS  PubMed  Google Scholar 

  91. Weststrate H, Stimpson G, Thomas L, Scoto M, Johnson E, Stewart A, et al. Evolution of bulbar function in spinal muscular atrophy type 1 treated with nusinersen. Dev Med Child Neurol. 2022;64(7):907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  92. D’Silva AM, Holland S, Kariyawasam D, Herbert K, Barclay P, Cairns A, et al. Onasemnogene abeparvovec in spinal muscular atrophy: an Australian experience of safety and efficacy. Ann Clin Transl Neurol. 2022;9(3):339–50. https://doi.org/10.1002/acn3.51519. (Epub 20220216. PubMed PMID: 35170254; PubMed Central PMCID: PMCPMC8935277).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lee S, Lee YJ, Kong J, Ryu HW, Shim YK, Han JY, et al. Short-term clinical outcomes of onasemnogene abeparvovec treatment for spinal muscular atrophy. Brain Dev. 2022;44(4):287–93. https://doi.org/10.1016/j.braindev.2021.12.006. (Epub 20220113. PubMed PMID: 35033405).

    Article  CAS  PubMed  Google Scholar 

  94. Stettner GM, Hasselmann O, Tscherter A, Galiart E, Jacquier D, Klein A. Treatment of spinal muscular atrophy with Onasemnogene Abeparvovec in Switzerland: a prospective observational case series study. BMC Neurol. 2023;23(1):88. https://doi.org/10.1186/s12883-023-03133-6. (Epub 20230228. PubMed PMID: 36855136; PubMed Central PMCID: PMCPMC9971686).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Waldrop MA, Chagat S, Storey M, Meyer A, Iammarino M, Reash N, et al. Continued safety and long-term effectiveness of onasemnogene abeparvovec in Ohio. Neuromuscul Disord. 2024;34:41–8. https://doi.org/10.1016/j.nmd.2023.11.010. (Epub 20231202. PubMed PMID: 38142474).

    Article  PubMed  Google Scholar 

  96. Kwon JM, Arya K, Kuntz N, Phan HC, Sieburg C, Swoboda KJ, et al. An expanded access program of risdiplam for patients with Type 1 or 2 spinal muscular atrophy. Ann Clin Transl Neurol. 2022;9(6):810–8. https://doi.org/10.1002/acn3.51560. (Epub 20220514. PubMed PMID: 35567422; PubMed Central PMCID: PMCPMC9186129).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hahn A, Günther R, Ludolph A, Schwartz O, Trollmann R, Weydt P, et al. Short-term safety results from compassionate use of risdiplam in patients with spinal muscular atrophy in Germany. Orphanet J Rare Dis. 2022;17(1):276.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chiriboga CA, Darras BT, Farrar MA, Mercuri E, Kirschner J, Kuntz NL, et al. Longer-term treatment with nusinersen: results in later-onset spinal muscular atrophy from the shine study (1661). AAN Enterprises; 2020.

  99. Servais L, Oskoui M, Day J, Deconinck N, Mazzone E, Nascimento A, et al. SUNFISH Parts 1 and 2: 4-year efficacy and safety data of risdiplam in types 2 and 3 spinal muscular atrophy (SMA)(S34. 009). AAN Enterprises; 2023.

  100. Finkel RS, Darras BT, Mendell JR, Day JW, Kuntz NL, Connolly AM, et al. Intrathecal onasemnogene abeparvovec for sitting, nonambulatory patients with spinal muscular atrophy: phase I ascending-dose study (STRONG). J Neuromuscul Dis. 2023;(Preprint):1–16.

  101. Ramos DM, d’Ydewalle C, Gabbeta V, Dakka A, Klein SK, Norris DA, et al. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J Clin Investig. 2019;129(11):4817–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Proud CM, Mercuri E, Finkel RS, Kirschner J, De Vivo DC, Muntoni F, et al. Combination disease-modifying treatment in spinal muscular atrophy: a proposed classification. Ann Clin Transl Neurol. 2023;10(11):2155–60. https://doi.org/10.1002/acn3.51889. (Epub 20230910. PubMed PMID: 37691296; PubMed Central PMCID: PMCPMC10646995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chiriboga CA, Bruno C, Duong T, Fischer D, Mercuri E, Kirschner J, et al. Risdiplam in patients previously treated with other therapies for spinal muscular atrophy: an interim analysis from the JEWELFISH Study. Neurol Ther. 2023;12(2):543–57. https://doi.org/10.1007/s40120-023-00444-1. (Epub 20230213. PubMed PMID: 36780114; PubMed Central PMCID: PMCPMC9924181).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mirea A, Shelby ES, Axente M, Badina M, Padure L, Leanca M, et al. Combination therapy with nusinersen and onasemnogene abeparvovec-xioi in spinal muscular atrophy type I. J Clin Med. 2021. https://doi.org/10.3390/jcm10235540. (Epub 20211126. PubMed PMID: 34884240; PubMed Central PMCID: PMCPMC8658131).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Harada Y, Rao VK, Arya K, Kuntz NL, DiDonato CJ, Napchan-Pomerantz G, et al. Combination molecular therapies for type 1 spinal muscular atrophy. Muscle Nerve. 2020;62(4):550–4. https://doi.org/10.1002/mus.27034. (Epub 20200810. PubMed PMID: 32710634).

    Article  CAS  PubMed  Google Scholar 

  106. Rouault F, Christie-Brown V, Broekgaarden R, Gusset N, Henderson D, Marczuk P, et al. Disease impact on general well-being and therapeutic expectations of European Type II and Type III spinal muscular atrophy patients. Neuromuscul Disord. 2017;27(5):428–38.

    Article  PubMed  Google Scholar 

  107. Gusset N, Stalens C, Stumpe E, Klouvi L, Mejat A, Ouillade MC, et al. Understanding European patient expectations towards current therapeutic development in spinal muscular atrophy. Neuromuscul Disord. 2021;31(5):419–30. https://doi.org/10.1016/j.nmd.2021.01.012. (Epub 20210204. PubMed PMID: 33752935).

    Article  PubMed  Google Scholar 

  108. Monnette A, Chen E, Hong D, Bazzano A, Dixon S, Arnold WD, et al. Treatment preference among patients with spinal muscular atrophy (SMA): a discrete choice experiment. Orphanet J Rare Dis. 2021;16(1):36. https://doi.org/10.1186/s13023-020-01667-3. (Epub 20210120. PubMed PMID: 33472673; PubMed Central PMCID: PMCPMC7819167).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dangouloff T, Botty C, Beaudart C, Servais L, Hiligsmann M. Systematic literature review of the economic burden of spinal muscular atrophy and economic evaluations of treatments. Orphanet J Rare Dis. 2021;16(1):47. https://doi.org/10.1186/s13023-021-01695-7. (Epub 20210123. PubMed PMID: 33485382; PubMed Central PMCID: PMCPMC7824917).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dangouloff T, Thokala P, Stevenson MD, Deconinck N, D’Amico A, Daron A, et al. Cost-effectiveness of spinal muscular atrophy newborn screening based on real-world data in Belgium. Neuromuscul Disord. 2023;34:61–7. https://doi.org/10.1016/j.nmd.2023.11.013. (Epub 20231202. PubMed PMID: 38150893).

    Article  PubMed  Google Scholar 

  111. Weidlich D, Servais L, Kausar I, Howells R, Bischof M. Cost-effectiveness of newborn screening for spinal muscular atrophy in England. Neurol Ther. 2023;12(4):1205–20. https://doi.org/10.1007/s40120-023-00489-2. (Epub 20230524. PubMed PMID: 37222861; PubMed Central PMCID: PMCPMC10310612).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Servais L, Baranello G, Scoto M, Daron A, Oskoui M. Therapeutic interventions for spinal muscular atrophy: preclinical and early clinical development opportunities. Expert Opin Investig Drugs. 2021;30(5):519–27. https://doi.org/10.1080/13543784.2021.1904889. (Epub 20210413. PubMed PMID: 33749510).

    Article  CAS  PubMed  Google Scholar 

  113. Mariot V, Joubert R, Hourdé C, Féasson L, Hanna M, Muntoni F, et al. Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches. Nat Commun. 2017;8(1):1859. https://doi.org/10.1038/s41467-017-01486-4. (Epub 20171130. PubMed PMID: 29192144; PubMed Central PMCID: PMCPMC5709430).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stam M, Wijngaarde CA, Bartels B, Asselman FL, Otto LAM, Habets LE, et al. Randomized double-blind placebo-controlled crossover trial with pyridostigmine in spinal muscular atrophy types 2–4. Brain Commun. 2023;5(1):fcac324. https://doi.org/10.1093/braincomms/fcac324. (Epub 20221209. PubMed PMID: 36632180; PubMed Central PMCID: PMCPMC9825780).

    Article  CAS  PubMed  Google Scholar 

  115. Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag. 2019;15:1153–61. https://doi.org/10.2147/TCRM.S172291. (Epub 20191002. PubMed PMID: 31632042; PubMed Central PMCID: PMCPMC6778729).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shih STF, Keller E, Wiley V, Farrar MA, Wong M, Chambers GM. Modelling the cost-effectiveness and budget impact of a newborn screening program for spinal muscular atrophy and severe combined immunodeficiency. Int J Neonatal Screen. 2022. https://doi.org/10.3390/ijns8030045. (Epub 20220720. PubMed PMID: 35892475; PubMed Central PMCID: PMCPMC9326684).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Velikanova R, van der Schans S, Bischof M, van Olden RW, Postma M, Boersma C. Cost-effectiveness of newborn screening for spinal muscular atrophy in The Netherlands. Value Health. 2022;25(10):1696–704. https://doi.org/10.1016/j.jval.2022.06.010. (Epub 20220811. PubMed PMID: 35963838).

    Article  PubMed  Google Scholar 

  118. Agosto C, Benedetti F, Salamon E, Mercante A, Papa S, Giacomelli L, et al. How children and caregivers viewed the change from nusinersen to risdiplam for treating spinal muscular atrophy. Acta Paediatr. 2023;112(2):311–2. https://doi.org/10.1111/apa.16568. (Epub 20221018. PubMed PMID: 36222023).

    Article  PubMed  Google Scholar 

  119. Powell JC, Meiling JB, Cartwright MS. A case series evaluating patient perceptions after switching from nusinersen to risdiplam for spinal muscular atrophy. Muscle Nerve. 2024;69(2):179–84. https://doi.org/10.1002/mus.28015. (Epub 20231201. PubMed PMID: 38040488).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Servais.

Ethics declarations

Funding

This review was not specifically funded.

Conflict of interest

LS gave consultancy/is part of the board/conducts research funded by Biogen, Novartis, Roche, BioHaven, Scholar Rock, Zentech, Illumina. MO has no conflict of interest. SR has served on advisory boards for Roche and Novartis and received speaker fees for educational events from Roche and Novartis.

Ethics approval

This review article did not need ethical approval.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data presented are publicly available.

Code availability

Not applicable.

Authors' contributions

LS had the original idea for the review, conducted the literature search and drafted the paper. MO conducted the literature search and drafted the paper. SR conducted the literature search and drafted the paper. All authors have read and approved the final submitted manuscript, and agree to be accountable for the work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdas, S., Oskoui, M. & Servais, L. Treatment Options in Spinal Muscular Atrophy: A Pragmatic Approach for Clinicians. Drugs 84, 747–762 (2024). https://doi.org/10.1007/s40265-024-02051-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-024-02051-2

Navigation