Skip to main content
Log in

New Opportunities to Individualize Frontline Therapy in Advanced Stages of Hepatocellular Carcinoma

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally and is rising in incidence. Until recently, treatment options for patients with advanced stages of HCC have been limited to antiangiogenic therapies with modest improvements in overall survival. The emerging role of immunotherapy with immune checkpoint inhibitors (ICI) in oncology has led to a rapid expansion in treatment options and improvements in outcomes for patients with advanced stages of HCC. Recent clinical trials have shown meaningful survival improvement in patients treated with the combination of bevacizumab and atezolizumab, as well as with the combination of tremelimumab with durvalumab, resulting in regulatory approvals of these regimens as frontline therapy. Beyond improvements in overall survival, ICI-based combination regimens achieve higher rates of durable treatment response than multikinase inhibitors and have favorable side effect profiles. With the emergence of doublet anti-angiogenic and immune checkpoint inhibitor (ICI) and dual ICI combinations, individualized therapy is now possible for patients based on co-morbidity profiles and other factors. These more potent systemic therapies are also being tested in earlier stages of disease and in combination with loco-regional therapies such as trans-arterial chemoembolization and stereotactic body radiotherapy. We summarize these advances and emerging therapeutic combinations currently in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Llovet JM, Hilgard P, de Oliveira AC, Forner A, Zeuzem S, Galle PR, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008.

  3. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. https://doi.org/10.1016/S0140-6736(16)32453-9.

    Article  CAS  PubMed  Google Scholar 

  4. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63. https://doi.org/10.1056/NEJMoa1717002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73. https://doi.org/10.1016/S0140-6736(18)30207-1.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu AX, Kang Y-K, Yen C-J, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96. https://doi.org/10.1016/S1470-2045(18)30937-9.

    Article  CAS  PubMed  Google Scholar 

  7. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–905. https://doi.org/10.1056/NEJMoa1915745.

    Article  CAS  PubMed  Google Scholar 

  8. Abou-Alfa GK, Lau G, Kudo M, Chan SL, Kelley RK, Furuse J, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022. https://doi.org/10.1056/EVIDoa2100070.

    Article  Google Scholar 

  9. Global Burden of Disease Liver Cancer C, Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3(12):1683–91. https://doi.org/10.1001/jamaoncol.2017.3055.

  10. Vogel A, Martinelli E, Vogel A, Cervantes A, Chau I, Daniele B, et al. Updated treatment recommendations for hepatocellular carcinoma (HCC) from the ESMO Clinical Practice Guidelines. Ann Oncol. 2021;32(6):801–5. https://doi.org/10.1016/j.annonc.2021.02.014.

    Article  CAS  PubMed  Google Scholar 

  11. Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47(10):1187–93. https://doi.org/10.1038/ng.3389.

    Article  CAS  PubMed  Google Scholar 

  12. Ye J, Li TS, Xu G, Zhao YM, Zhang NP, Fan J, et al. JCAD promotes progression of nonalcoholic steatohepatitis to liver cancer by inhibiting LATS2 kinase activity. Cancer Res. 2017;77(19):5287–300. https://doi.org/10.1158/0008-5472.CAN-17-0229.

    Article  CAS  PubMed  Google Scholar 

  13. Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Sole M, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52(4):550–9. https://doi.org/10.1016/j.jhep.2010.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pilati C, Letouze E, Nault JC, Imbeaud S, Boulai A, Calderaro J, et al. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell. 2014;25(4):428–41. https://doi.org/10.1016/j.ccr.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  15. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327-41 e23. https://doi.org/10.1016/j.cell.2017.05.046.

  16. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46(12):1267–73. https://doi.org/10.1038/ng.3126.

    Article  CAS  PubMed  Google Scholar 

  17. Lim HC, Gordan JD. Tumor hepatitis B virus RNA identifies a clinically and molecularly distinct subset of hepatocellular carcinoma. PLoS Comput Biol. 2021;17(2): e1008699. https://doi.org/10.1371/journal.pcbi.1008699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sung W-K, Zheng H, Li S, Chen R, Liu X, Li Y, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44(7):765–9. https://doi.org/10.1038/ng.2295.

    Article  CAS  PubMed  Google Scholar 

  19. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016;64(1 Suppl):S84–101. https://doi.org/10.1016/j.jhep.2016.02.021.

    Article  CAS  PubMed  Google Scholar 

  20. Nassal M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut. 2015;64(12):1972–84. https://doi.org/10.1136/gutjnl-2015-309809.

    Article  CAS  PubMed  Google Scholar 

  21. Ha J, Yan M, Aguilar M, Bhuket T, Tana MM, Liu B, et al. Race/ethnicity-specific disparities in cancer incidence, burden of disease, and overall survival among patients with hepatocellular carcinoma in the United States. Cancer. 2016;122(16):2512–23. https://doi.org/10.1002/cncr.30103.

    Article  PubMed  Google Scholar 

  22. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–80. https://doi.org/10.1002/hep.29086.

    Article  PubMed  Google Scholar 

  23. Amaddeo G, Cao Q, Ladeiro Y, Imbeaud S, Nault JC, Jaoui D, et al. Integration of tumour and viral genomic characterizations in HBV-related hepatocellular carcinomas. Gut. 2015;64(5):820–9. https://doi.org/10.1136/gutjnl-2013-306228.

    Article  CAS  PubMed  Google Scholar 

  24. Dustin LB, Bartolini B, Capobianchi MR, Pistello M. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin Microbiol Infect. 2016;22(10):826–32. https://doi.org/10.1016/j.cmi.2016.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramage HR, Kumar GR, Verschueren E, Johnson JR, Von Dollen J, Johnson T, et al. A combined proteomics/genomics approach links hepatitis C virus infection with nonsense-mediated mRNA decay. Mol Cell. 2015;57(2):329–40. https://doi.org/10.1016/j.molcel.2014.12.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ioannou GN, Green PK, Berry K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J Hepatol. 2017. https://doi.org/10.1016/j.jhep.2017.08.030.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toyoda H, Hiraoka A, Uojima H, Nozaki A, Shimada N, Takaguchi K, et al. Characteristics and prognosis of de novo hepatocellular carcinoma after sustained virologic response. Hepatol Commun. 2021;5(7):1290–9. https://doi.org/10.1002/hep4.1716.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Waziry R, Hajarizadeh B, Grebely J, Amin J, Law M, Danta M, et al. Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: a systematic review, meta-analyses, and meta-regression. J Hepatol. 2017;67(6):1204–12. https://doi.org/10.1016/j.jhep.2017.07.025.

    Article  CAS  PubMed  Google Scholar 

  29. Kondili LA, Quaranta MG, Cavalletto L, Calvaruso V, Ferrigno L, D’Ambrosio R, et al. Profiling the risk of hepatocellular carcinoma after long-term HCV eradication in patients with liver cirrhosis in the PITER cohort. Dig Liver Dis. 2023. https://doi.org/10.1016/j.dld.2023.01.153.

    Article  PubMed  Google Scholar 

  30. Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505–11. https://doi.org/10.1038/ng.3252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim RD, Sarker D, Meyer T, Yau T, Macarulla T, Park JW, et al. First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 2019;9(12):1696–707. https://doi.org/10.1158/2159-8290.CD-19-0555.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, He H, Zang M, Wu Q, Zhao H, Lu LL, et al. Genetic features of aflatoxin-associated hepatocellular carcinoma. Gastroenterology. 2017;153(1):249-62 e2. https://doi.org/10.1053/j.gastro.2017.03.024.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng A-L, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol. 2022;76(4):862–73. https://doi.org/10.1016/j.jhep.2021.11.030.

    Article  CAS  PubMed  Google Scholar 

  34. Galle PR, Finn RS, Qin S, Ikeda M, Zhu AX, Kim T-Y, et al. Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(7):991–1001. https://doi.org/10.1016/S1470-2045(21)00151-0.

    Article  CAS  PubMed  Google Scholar 

  35. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. https://doi.org/10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34. https://doi.org/10.1016/S1470-2045(08)70285-7.

    Article  CAS  PubMed  Google Scholar 

  37. Gordan JD, Kennedy EB, Abou-Alfa GK, Beg MS, Brower ST, Gade TP, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J Clin Oncol. 2020;38(36):4317–45. https://doi.org/10.1200/JCO.20.02672.

    Article  CAS  PubMed  Google Scholar 

  38. Benson AB, D’Angelica MI, Abbott DE, Anaya DA, Anders R, Are C, et al. Hepatobiliary cancers, Version 22021, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw JNCCN. 2021;19(5):541–65. https://doi.org/10.6004/jnccn.2021.0022.

    Article  PubMed  Google Scholar 

  39. Ren Z, Xu J, Bai Y, Xu A, Cang S, Du C, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study. Lancet Oncol. 2021;22(7):977–90. https://doi.org/10.1016/S1470-2045(21)00252-7.

    Article  CAS  PubMed  Google Scholar 

  40. Qin S, Chan LS, Gu S, Bai Y, Ren Z, Lin X, et al. LBA35 Camrelizumab (C) plus rivoceranib (R) vs. sorafenib (S) as first-line therapy for unresectable hepatocellular carcinoma (uHCC): a randomized, phase III trial. Ann Oncol. 2022;33:S1401–2. https://doi.org/10.1016/j.annonc.2022.08.032.

    Article  Google Scholar 

  41. Qin S, Kudo M, Meyer T, Finn RS, Vogel A, Bai Y, et al. LBA36 final analysis of RATIONALE-301: randomized, phase III study of tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Ann Oncol. 2022;33:S1402–3. https://doi.org/10.1016/j.annonc.2022.08.033.

    Article  Google Scholar 

  42. Kelley RK, Rimassa L, Cheng A-L, Kaseb A, Qin S, Zhu AX, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23(8):995–1008. https://doi.org/10.1016/S1470-2045(22)00326-6.

    Article  CAS  PubMed  Google Scholar 

  43. Finn RS, Kudo M, Merle P, Meyer T, Qin S, Ikeda M, et al. LBA34 Primary results from the phase III LEAP-002 study: lenvatinib plus pembrolizumab versus lenvatinib as first-line (1L) therapy for advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2022;33:S1401. https://doi.org/10.1016/j.annonc.2022.08.031.

    Article  Google Scholar 

  44. Rimini M, Persano M, Tada T, Suda G, Shimose S, Kudo M, et al. Real-world data for atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: how does adherence to the IMbrave150 trial inclusion criteria impact prognosis? Target Oncol. 2023;18(2):221–33. https://doi.org/10.1007/s11523-023-00953-x.

    Article  PubMed  Google Scholar 

  45. Larrey E, Campion B, Evain M, Sultanik P, Blaise L, Giudicelli H, et al. A history of variceal bleeding is associated with further bleeding under atezolizumab-bevacizumab in patients with HCC. Liver Int. 2022;42(12):2843–54. https://doi.org/10.1111/liv.15458.

    Article  CAS  PubMed  Google Scholar 

  46. Pizuorno Machado A, Shatila M, Liu C, Wang J, Altan M, Zhang HC, et al. Immune-related adverse events after immune checkpoint inhibitor exposure in adult cancer patients with pre-existing autoimmune diseases. J Cancer Res Clin Oncol. 2023. https://doi.org/10.1007/s00432-023-04582-9.

    Article  PubMed  Google Scholar 

  47. Abu-Sbeih H, Faleck DM, Ricciuti B, Mendelsohn RB, Naqash AR, Cohen JV, et al. Immune checkpoint inhibitor therapy in patients with preexisting inflammatory bowel disease. J Clin Oncol. 2020;38(6):576–83. https://doi.org/10.1200/JCO.19.01674.

    Article  CAS  PubMed  Google Scholar 

  48. Grover S, Ruan AB, Srivoleti P, Giobbie-Hurder A, Braschi-Amirfarzan M, Srivastava A, et al. Safety of immune checkpoint inhibitors in patients with pre-existing inflammatory bowel disease and microscopic colitis. JCO Oncol Pract. 2020;16(9):e933–42. https://doi.org/10.1200/JOP.19.00672.

    Article  PubMed  Google Scholar 

  49. Kayali S, Pasta A, Plaz Torres MC, Jaffe A, Strazzabosco M, Marenco S, et al. Immune checkpoint inhibitors in malignancies after liver transplantation: a systematic review and pooled analysis. Liver Int. 2023;43(1):8–17. https://doi.org/10.1111/liv.15419.

    Article  PubMed  Google Scholar 

  50. Runger A, Schadendorf D, Hauschild A, Gebhardt C. Immune checkpoint blockade for organ-transplant recipients with cancer: a review. Eur J Cancer. 2022;175:326–35. https://doi.org/10.1016/j.ejca.2022.08.010.

    Article  CAS  PubMed  Google Scholar 

  51. Vogel A, Lleo A. Immune checkpoint inhibitors in malignancies after liver transplantation: better safe or sorry? Liver Int. 2023;43(1):6–7. https://doi.org/10.1111/liv.15474.

    Article  CAS  PubMed  Google Scholar 

  52. D’Alessio A, Fulgenzi CAM, Nishida N, Schonlein M, von Felden J, Schulze K, et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: a real-world study. Hepatology. 2022;76(4):1000-12. https://doi.org/10.1002/hep.32468.

  53. Tanaka T, Hiraoka A, Tada T, Hirooka M, Kariyama K, Tani J, et al. Therapeutic efficacy of atezolizumab plus bevacizumab treatment for unresectable hepatocellular carcinoma in patients with Child-Pugh class A or B liver function in real-world clinical practice. Hepatol Res. 2022;52(9):773–83. https://doi.org/10.1111/hepr.13797.

    Article  CAS  PubMed  Google Scholar 

  54. Jost-Brinkmann F, Demir M, Wree A, Luedde T, Loosen SH, Muller T, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: results from a German real-world cohort. Aliment Pharmacol Ther. 2023. https://doi.org/10.1111/apt.17441.

    Article  PubMed  Google Scholar 

  55. Kudo M, Matilla A, Santoro A, Melero I, Gracian AC, Acosta-Rivera M, et al. CheckMate 040 cohort 5: a phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J Hepatol. 2021;75(3):600–9. https://doi.org/10.1016/j.jhep.2021.04.047.

    Article  CAS  PubMed  Google Scholar 

  56. Kambhampati S, Bauer KE, Bracci PM, Keenan BP, Behr SC, Gordan JD, et al. Nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh class B cirrhosis: safety and clinical outcomes in a retrospective case series. Cancer. 2019;125(18):3234–41. https://doi.org/10.1002/cncr.32206.

    Article  CAS  PubMed  Google Scholar 

  57. Scheiner B, Kirstein MM, Hucke F, Finkelmeier F, Schulze K, von Felden J, et al. Programmed cell death protein-1 (PD-1)-targeted immunotherapy in advanced hepatocellular carcinoma: efficacy and safety data from an international multicentre real-world cohort. Aliment Pharmacol Ther. 2019;49(10):1323–33. https://doi.org/10.1111/apt.15245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022;23(1):77–90. https://doi.org/10.1016/S1470-2045(21)00604-5.

    Article  CAS  PubMed  Google Scholar 

  59. Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96. https://doi.org/10.1016/S1470-2045(18)30937-9.

    Article  CAS  PubMed  Google Scholar 

  60. Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5(8):1195–204. https://doi.org/10.1001/jamaoncol.2019.1549.

    Article  PubMed  PubMed Central  Google Scholar 

  61. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502. https://doi.org/10.1016/S0140-6736(17)31046-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52. https://doi.org/10.1016/S1470-2045(18)30351-6.

    Article  PubMed  Google Scholar 

  63. Haber PK, Castet F, Torres-Martin M, Andreu-Oller C, Puigvehi M, Miho M, et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma. Gastroenterology. 2023;164(1):72-88 e18. https://doi.org/10.1053/j.gastro.2022.09.005.

    Article  CAS  PubMed  Google Scholar 

  64. Sangro B, Melero I, Wadhawan S, Finn RS, Abou-Alfa GK, Cheng AL, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol. 2020;73(6):1460–9. https://doi.org/10.1016/j.jhep.2020.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Neely JY, Kudo M, et al., editor. Genomic and transcriptomic analyses related to the clinical efficacy of first-line nivolumab in advanced hepatocellular carcinoma from the phase 3 CheckMate 459 trial. New Orleans: American Association for Cancer Research; 2022.

  66. Zhu AX, Abbas AR, de Galarreta MR, Guan Y, Lu S, Koeppen H, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28(8):1599–611. https://doi.org/10.1038/s41591-022-01868-2.

    Article  CAS  PubMed  Google Scholar 

  67. Pfister D, Nunez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021;592(7854):450–6. https://doi.org/10.1038/s41586-021-03362-0.PubMedPMID:33762733;PMCID:8046670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38(3):193–202. https://doi.org/10.1200/JCO.19.01307.

    Article  CAS  PubMed  Google Scholar 

  69. Kelley RK, Greten TF. Hepatocellular carcinoma—origins and outcomes. N Engl J Med. 2021;385(3):280–2. https://doi.org/10.1056/NEJMcibr2106594.

    Article  PubMed  Google Scholar 

  70. Qin S, Finn RS, Kudo M, Meyer T, Vogel A, Ducreux M, et al. RATIONALE 301 study: tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Future Oncol. 2019;15(16):1811–22. https://doi.org/10.2217/fon-2019-0097.

    Article  CAS  PubMed  Google Scholar 

  71. Yasui Y, Tsuchiya K, Kurosaki M, Takeguchi T, Takeguchi Y, Okada M, et al. Up-to-seven criteria as a useful predictor for tumor downstaging to within Milan criteria and Child-Pugh grade deterioration after initial conventional transarterial chemoembolization. Hepatol Res. 2018;48(6):442–50. https://doi.org/10.1111/hepr.13048.

    Article  CAS  PubMed  Google Scholar 

  72. Kudo M, Ueshima K, Chan S, Minami T, Chishina H, Aoki T, et al. Lenvatinib as an initial treatment in patients with intermediate-stage hepatocellular carcinoma beyond up-to-seven criteria and Child-Pugh A liver function: a proof-of-concept study. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11081084.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Peng Z, Fan W, Zhu B, Wang G, Sun J, Xiao C, et al. Lenvatinib combined with transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma: a phase III, randomized clinical trial (LAUNCH). J Clin Oncol. 2023;41(1):117–27. https://doi.org/10.1200/JCO.22.00392.

    Article  CAS  PubMed  Google Scholar 

  74. Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11(11):1013. https://doi.org/10.1038/s41419-020-03221-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57(4):1448–57. https://doi.org/10.1002/hep.26153.

    Article  CAS  PubMed  Google Scholar 

  76. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66(3):545–51. https://doi.org/10.1016/j.jhep.2016.10.029.

    Article  CAS  PubMed  Google Scholar 

  77. De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: safety and efficacy of intratumoral immunotherapy. Biochim Biophys Acta Rev Cancer. 2021;1875(2):188526. https://doi.org/10.1016/j.bbcan.2021.188526.

    Article  CAS  PubMed  Google Scholar 

  78. Chen M, Chow PKH, Kaseb AO, Lee HC, Yopp AC, Becker L, et al. Efficacy, safety and patient reported outcomes (PROs) from the phase III IMbrave050 trial of adjuvant atezolizumab (atezo) + bevacizumab (bev) vs active surveillance in patients with hepatocellular carcinoma (HCC) at high risk of disease recurrence following resection or ablation. J Clin Oncol. 2023;41(16_suppl):4002. https://doi.org/10.1200/JCO.2023.41.16_suppl.4002.

    Article  Google Scholar 

  79. Marron TU, Fiel MI, Hamon P, Fiaschi N, Kim E, Ward SC, et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2022;7(3):219–29. https://doi.org/10.1016/S2468-1253(21)00385-X.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kaseb AO, Hasanov E, Cao HST, Xiao L, Vauthey JN, Lee SS, et al. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2022;7(3):208–18. https://doi.org/10.1016/S2468-1253(21)00427-1.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ho WJ, Zhu Q, Durham J, Popovic A, Xavier S, Leatherman J, et al. Neoadjuvant cabozantinib and nivolumab converts locally advanced HCC into resectable disease with enhanced antitumor immunity. Nat Cancer. 2021;2(9):891–903. https://doi.org/10.1038/s43018-021-00234-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu J, Blake SJ, Yong MC, Harjunpaa H, Ngiow SF, Takeda K, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016;6(12):1382–99. https://doi.org/10.1158/2159-8290.CD-16-0577.

    Article  CAS  PubMed  Google Scholar 

  83. Patel S, Othus M, Prieto V, Lowe M, Buchbinder E, Chen Y, et al. LBA6 neoadjvuant versus adjuvant pembrolizumab for resected stage III–IV melanoma (SWOG S1801). Ann Oncol. 2022;33:S1408. https://doi.org/10.1016/j.annonc.2022.08.039.

    Article  Google Scholar 

  84. Ho WJ, Sharma G, Zhu Q, Stein-O’Brien G, Durham J, Anders R, et al. Integrated immunological analysis of a successful conversion of locally advanced hepatocellular carcinoma to resectability with neoadjuvant therapy. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000932.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. IMbrave150: updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021;39(3_suppl):267. https://doi.org/10.1200/JCO.2021.39.3_suppl.267.

    Article  Google Scholar 

  86. Abou-Alfa GK, Lau G, Kudo M, Chan SL, Kelley RK, Furuse J, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022;1(8):EVIDoa2100070. https://doi.org/10.1056/EVIDoa2100070.

    Article  Google Scholar 

  87. Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 2020;6(11): e204564. https://doi.org/10.1001/jamaoncol.2020.4564.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Finn RSKM, Merle P et al., editor. Primary results from the phase 3 LEAP-002 study: lenvatinib plus pembrolizumab versus lenvatinib as first-line therapy for advanced hepatocellular carcinoma. Paris: 2022 European Society of Medical Oncology; 2022.

  89. El-Khoueiry AB, Hanna DL, Llovet J, Kelley RK. Cabozantinib: an evolving therapy for hepatocellular carcinoma. Cancer Treat Rev. 2021;98:102221. https://doi.org/10.1016/j.ctrv.2021.102221.

    Article  CAS  PubMed  Google Scholar 

  90. Mou L, Tian X, Zhou B, Zhan Y, Chen J, Lu Y, et al. Improving outcomes of tyrosine kinase inhibitors in hepatocellular carcinoma: new data and ongoing trials. Front Oncol. 2021;11: 752725. https://doi.org/10.3389/fonc.2021.752725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yau T, Zagonel V, Santoro A, Acosta-Rivera M, Choo SP, Matilla A, et al. Nivolumab plus cabozantinib with or without ipilimumab for advanced hepatocellular carcinoma: results from cohort 6 of the CheckMate 040 trial. J Clin Oncol. 2023;41(9):1747–57. https://doi.org/10.1200/JCO.22.00972.

    Article  CAS  PubMed  Google Scholar 

  92. Ryoo B-Y, Hsu C-H, Li D, Burgoyne A, Cotter C, Badhrinarayanan S, et al. Results from the MORPHEUS-liver study: phase Ib/II randomized evaluation of tiragolumab (tira) in combination with atezolizumab (atezo) and bevacizumab (bev) in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (uHCC). J Clin Oncol. 2023;41(16_suppl):4010. https://doi.org/10.1200/JCO.2023.41.16_suppl.4010.

    Article  Google Scholar 

  93. Kelley RK, Cheng A-L, Kaseb A, Qin S, Zhu AX, Chan S, Sukeepaisarnjaroen W, Breder V, Verset G, Gane E, Borbath I, Gomez Rangel JD, Merle P, Benzaghou FM, Banerjee K, Hazra S, Fawcett J, Rimassa L. VP10-2021: cabozantinib (C) plus atezolizumab (A) versus sorafenib (S) as first-line systemic treatment for advanced hepatocellular carcinoma (aHCC): results from the randomized phase III COSMIC-312 trial. Ann Oncol. 2021. https://doi.org/10.1016/j.annonc.2021.10.008.

    Article  Google Scholar 

  94. Yang Y, Jin G, Pang Y, Huang Y, Wang W, Zhang H, et al. Comparative efficacy and safety of nivolumab and nivolumab plus ipilimumab in advanced cancer: a systematic review and meta-analysis. Front Pharmacol. 2020;11:40. https://doi.org/10.3389/fphar.2020.00040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Patnaik A, Swanson KD, Csizmadia E, Solanki A, Landon-Brace N, Gehring MP, et al. Cabozantinib eradicates advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov. 2017;7(7):750–65. https://doi.org/10.1158/2159-8290.CD-16-0778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dovedi SJ, Elder MJ, Yang C, Sitnikova SI, Irving L, Hansen A, et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1(+) activated T cells. Cancer Discov. 2021;11(5):1100–17. https://doi.org/10.1158/2159-8290.CD-20-1445.

    Article  CAS  PubMed  Google Scholar 

  97. Berezhnoy A, Sumrow BJ, Stahl K, Shah K, Liu D, Li J, et al. Development and preliminary clinical activity of PD-1-guided CTLA-4 blocking bispecific DART molecule. Cell Rep Med. 2020;1(9): 100163. https://doi.org/10.1016/j.xcrm.2020.100163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bai L, Sun M, Xu A, Bai Y, Wu J, Shao G, et al. Phase 2 study of AK104 (PD-1/CTLA-4 bispecific antibody) plus lenvatinib as first-line treatment of unresectable hepatocellular carcinoma. J Clin Oncol. 2021;39(15_suppl):4101. https://doi.org/10.1200/JCO.2021.39.15_suppl.4101.

    Article  Google Scholar 

  99. Xing B, Da X, Zhang Y, Ma Y. A phase II study combining KN046 (an anti-PD-L1/CTLA-4 bispecific antibody) and lenvatinib in the treatment for advanced unresectable or metastatic hepatocellular carcinoma (HCC): updated efficacy and safety results. J Clin Oncol. 2022;40(16_suppl):4115. https://doi.org/10.1200/JCO.2022.40.16_suppl.4115.

    Article  Google Scholar 

  100. Poleszczuk JT, Luddy KA, Prokopiou S, Robertson-Tessi M, Moros EG, Fishman M, et al. Abscopal benefits of localized radiotherapy depend on activated T-cell trafficking and distribution between metastatic lesions. Cancer Res. 2016;76(5):1009–18. https://doi.org/10.1158/0008-5472.CAN-15-1423.

    Article  CAS  PubMed  Google Scholar 

  101. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95. https://doi.org/10.1182/blood-2009-02-206870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Abou-Alfa GK, Shi Q, Knox JJ, Kaubisch A, Niedzwiecki D, Posey J, et al. Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in patients with advanced hepatocellular carcinoma: phase 3 CALGB 80802 randomized clinical trial. JAMA Oncol. 2019;5(11):1582–8. https://doi.org/10.1001/jamaoncol.2019.2792.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Assenat E, Pageaux GP, Thezenas S, Peron JM, Becouarn Y, Seitz JF, et al. Sorafenib alone vs. sorafenib plus GEMOX as 1(st)-line treatment for advanced HCC: the phase II randomised PRODIGE 10 trial. Br J Cancer. 2019;120(9):896–902. https://doi.org/10.1038/s41416-019-0443-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de Moura M, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153(3):812–26. https://doi.org/10.1053/j.gastro.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

  105. Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, et al. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer. 2019;121(1):22–33. https://doi.org/10.1038/s41416-019-0482-x.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer. 2023. https://doi.org/10.1038/s41568-022-00546-2.

    Article  PubMed  Google Scholar 

  107. Montironi C, Castet F, Haber PK, Pinyol R, Torres-Martin M, Torrens L, et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut. 2023;72(1):129–40. https://doi.org/10.1136/gutjnl-2021-325918.

    Article  CAS  PubMed  Google Scholar 

  108. Aghayev T, Mazitova AM, Fang JR, Peshkova IO, Rausch M, Hung M, et al. IL27 signaling serves as an immunologic checkpoint for innate cytotoxic cells to promote hepatocellular carcinoma. Cancer Discov. 2022;12(8):1960–83. https://doi.org/10.1158/2159-8290.CD-20-1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meyer TMA, Borad MJ, Edeline J, Hausner PF, Hollebecque A, Goyal L, Evans J, Wong KM, Tan BR, Mitry E, Sarker D, Finn R, El-Khoueiry A, Feun LG, El-Rayes B, Thistlethwaite F, Kaseb A, Cirillo C, Noto P, Cristiani S, Sun A, Bruix J, Sangro B, editor. Overall safety and efficacy from the phase 1 trial of ADP-A2AFP SPEAR T-cells in patients with advanced hepatocellular carcinoma or other cancer types expressing alpha-fetoprotein. In: ILCA 16th annual conference; 2022 1–4 September 2022; Madrid, Spain.

  110. Zhao Z, Guo W, Fang S, Song S, Song J, Teng F, et al. An armored GPC3-directed CAR-T for refractory or relapsed hepatocellular carcinoma in China: a phase I trial. J Clin Oncol. 2021;39(15_suppl):4095. https://doi.org/10.1200/JCO.2021.39.15_suppl.4095.

    Article  Google Scholar 

  111. Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin Cancer Res. 2020;26(15):3979–89. https://doi.org/10.1158/1078-0432.CCR-19-3259.

    Article  CAS  PubMed  Google Scholar 

  112. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018. https://doi.org/10.1038/nrdp.2016.18.

    Article  PubMed  Google Scholar 

  113. Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer. 2019;7(1):267. https://doi.org/10.1186/s40425-019-0749-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Gordan.

Ethics declarations

Funding

Dr. Gordan is supported by a Burroughs Wellcome Fund Career Award.

Conflicts of interest/Competing interests

Dr. Gordan and Dr. Lim declare that they have no conflicts of interest that might be relevant to the contents of this manuscript. Dr. Keenan is a member of the consulting/advisory board of Regeneron and has received research funding from Partner Therapeutics and travel funds from Roche/Genentech. Dr. Yarchoan has received research support from Bristol-Myers Squibb, Incyte and Genentech and honoraria from Genentech, Exelixis, Eisai, AstraZeneca, Replimune, and Hepion. Dr. Yarchoan is a co-founder of Adventris Pharmaceuticals and holds equity. Dr. Kelley has received research funding from Agios, Astra Zeneca, Bayer, BMS, Eli Lilly, EMD Serono, Exelixis, Genentech/Roche, Loxo Oncology, Merck, Novartis, Partner Therapeutics, QED, Relay Therapeutics, Surface Oncology, and Taiho, as well as consulting/advisory fees from Agios, Astra Zeneca, BMS, Exelixis, Ipsen, Merck, Compass, Exact Sciences, Kinnate, Regeneron, and Tyra Therapeutics. She has received travel support from: Astra Zeneca and Merck.

Author contributions

All authors contributed to the conceptualization of the review, manuscript preparation, and manuscript review.

Availability of data and material

No datasets were generated or analyzed during the current study.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordan, J.D., Keenan, B.P., Lim, H.C. et al. New Opportunities to Individualize Frontline Therapy in Advanced Stages of Hepatocellular Carcinoma. Drugs 83, 1091–1109 (2023). https://doi.org/10.1007/s40265-023-01907-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01907-3

Navigation